If I'm going to publish Tweak, it seems unfriendly to require people
[sgt/library] / tree234.c
CommitLineData
e7f01466 1/*
2 * tree234.c: reasonably generic counted 2-3-4 tree routines.
3 *
4 * This file is copyright 1999-2001 Simon Tatham.
5 *
6 * Permission is hereby granted, free of charge, to any person
7 * obtaining a copy of this software and associated documentation
8 * files (the "Software"), to deal in the Software without
9 * restriction, including without limitation the rights to use,
10 * copy, modify, merge, publish, distribute, sublicense, and/or
11 * sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following
13 * conditions:
14 *
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
23 * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
26 */
27
28#include <stdio.h>
29#include <stdlib.h>
30#include <assert.h>
31
32#include "tree234.h"
33
34#define smalloc malloc
35#define sfree free
36
37#define mknew(typ) ( (typ *) smalloc (sizeof (typ)) )
38
39#ifdef TEST
40#define LOG(x) (printf x)
41#else
42#define LOG(x)
43#endif
44
45typedef struct node234_Tag node234;
46
47struct tree234_Tag {
48 node234 *root;
49 cmpfn234 cmp;
50};
51
52struct node234_Tag {
53 node234 *parent;
54 node234 *kids[4];
55 int counts[4];
56 void *elems[3];
57};
58
59/*
60 * Create a 2-3-4 tree.
61 */
62tree234 *newtree234(cmpfn234 cmp) {
63 tree234 *ret = mknew(tree234);
64 LOG(("created tree %p\n", ret));
65 ret->root = NULL;
66 ret->cmp = cmp;
67 return ret;
68}
69
70/*
71 * Free a 2-3-4 tree (not including freeing the elements).
72 */
73static void freenode234(node234 *n) {
74 if (!n)
75 return;
76 freenode234(n->kids[0]);
77 freenode234(n->kids[1]);
78 freenode234(n->kids[2]);
79 freenode234(n->kids[3]);
80 sfree(n);
81}
82void freetree234(tree234 *t) {
83 freenode234(t->root);
84 sfree(t);
85}
86
87/*
88 * Internal function to count a node.
89 */
90static int countnode234(node234 *n) {
91 int count = 0;
92 int i;
93 if (!n)
94 return 0;
95 for (i = 0; i < 4; i++)
96 count += n->counts[i];
97 for (i = 0; i < 3; i++)
98 if (n->elems[i])
99 count++;
100 return count;
101}
102
103/*
104 * Count the elements in a tree.
105 */
106int count234(tree234 *t) {
107 if (t->root)
108 return countnode234(t->root);
109 else
110 return 0;
111}
112
113/*
114 * Propagate a node overflow up a tree until it stops. Returns 0 or
115 * 1, depending on whether the root had to be split or not.
116 */
117static int add234_insert(node234 *left, void *e, node234 *right,
118 node234 **root, node234 *n, int ki) {
119 int lcount, rcount;
120 /*
121 * We need to insert the new left/element/right set in n at
122 * child position ki.
123 */
124 lcount = countnode234(left);
125 rcount = countnode234(right);
126 while (n) {
127 LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
128 n,
129 n->kids[0], n->counts[0], n->elems[0],
130 n->kids[1], n->counts[1], n->elems[1],
131 n->kids[2], n->counts[2], n->elems[2],
132 n->kids[3], n->counts[3]));
133 LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
134 left, lcount, e, right, rcount, ki));
135 if (n->elems[1] == NULL) {
136 /*
137 * Insert in a 2-node; simple.
138 */
139 if (ki == 0) {
140 LOG((" inserting on left of 2-node\n"));
141 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
142 n->elems[1] = n->elems[0];
143 n->kids[1] = right; n->counts[1] = rcount;
144 n->elems[0] = e;
145 n->kids[0] = left; n->counts[0] = lcount;
146 } else { /* ki == 1 */
147 LOG((" inserting on right of 2-node\n"));
148 n->kids[2] = right; n->counts[2] = rcount;
149 n->elems[1] = e;
150 n->kids[1] = left; n->counts[1] = lcount;
151 }
152 if (n->kids[0]) n->kids[0]->parent = n;
153 if (n->kids[1]) n->kids[1]->parent = n;
154 if (n->kids[2]) n->kids[2]->parent = n;
155 LOG((" done\n"));
156 break;
157 } else if (n->elems[2] == NULL) {
158 /*
159 * Insert in a 3-node; simple.
160 */
161 if (ki == 0) {
162 LOG((" inserting on left of 3-node\n"));
163 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
164 n->elems[2] = n->elems[1];
165 n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
166 n->elems[1] = n->elems[0];
167 n->kids[1] = right; n->counts[1] = rcount;
168 n->elems[0] = e;
169 n->kids[0] = left; n->counts[0] = lcount;
170 } else if (ki == 1) {
171 LOG((" inserting in middle of 3-node\n"));
172 n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
173 n->elems[2] = n->elems[1];
174 n->kids[2] = right; n->counts[2] = rcount;
175 n->elems[1] = e;
176 n->kids[1] = left; n->counts[1] = lcount;
177 } else { /* ki == 2 */
178 LOG((" inserting on right of 3-node\n"));
179 n->kids[3] = right; n->counts[3] = rcount;
180 n->elems[2] = e;
181 n->kids[2] = left; n->counts[2] = lcount;
182 }
183 if (n->kids[0]) n->kids[0]->parent = n;
184 if (n->kids[1]) n->kids[1]->parent = n;
185 if (n->kids[2]) n->kids[2]->parent = n;
186 if (n->kids[3]) n->kids[3]->parent = n;
187 LOG((" done\n"));
188 break;
189 } else {
190 node234 *m = mknew(node234);
191 m->parent = n->parent;
192 LOG((" splitting a 4-node; created new node %p\n", m));
193 /*
194 * Insert in a 4-node; split into a 2-node and a
195 * 3-node, and move focus up a level.
196 *
197 * I don't think it matters which way round we put the
198 * 2 and the 3. For simplicity, we'll put the 3 first
199 * always.
200 */
201 if (ki == 0) {
202 m->kids[0] = left; m->counts[0] = lcount;
203 m->elems[0] = e;
204 m->kids[1] = right; m->counts[1] = rcount;
205 m->elems[1] = n->elems[0];
206 m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
207 e = n->elems[1];
208 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
209 n->elems[0] = n->elems[2];
210 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
211 } else if (ki == 1) {
212 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
213 m->elems[0] = n->elems[0];
214 m->kids[1] = left; m->counts[1] = lcount;
215 m->elems[1] = e;
216 m->kids[2] = right; m->counts[2] = rcount;
217 e = n->elems[1];
218 n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
219 n->elems[0] = n->elems[2];
220 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
221 } else if (ki == 2) {
222 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
223 m->elems[0] = n->elems[0];
224 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
225 m->elems[1] = n->elems[1];
226 m->kids[2] = left; m->counts[2] = lcount;
227 /* e = e; */
228 n->kids[0] = right; n->counts[0] = rcount;
229 n->elems[0] = n->elems[2];
230 n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
231 } else { /* ki == 3 */
232 m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
233 m->elems[0] = n->elems[0];
234 m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
235 m->elems[1] = n->elems[1];
236 m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
237 n->kids[0] = left; n->counts[0] = lcount;
238 n->elems[0] = e;
239 n->kids[1] = right; n->counts[1] = rcount;
240 e = n->elems[2];
241 }
242 m->kids[3] = n->kids[3] = n->kids[2] = NULL;
243 m->counts[3] = n->counts[3] = n->counts[2] = 0;
244 m->elems[2] = n->elems[2] = n->elems[1] = NULL;
245 if (m->kids[0]) m->kids[0]->parent = m;
246 if (m->kids[1]) m->kids[1]->parent = m;
247 if (m->kids[2]) m->kids[2]->parent = m;
248 if (n->kids[0]) n->kids[0]->parent = n;
249 if (n->kids[1]) n->kids[1]->parent = n;
250 LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
251 m->kids[0], m->counts[0], m->elems[0],
252 m->kids[1], m->counts[1], m->elems[1],
253 m->kids[2], m->counts[2]));
254 LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
255 n->kids[0], n->counts[0], n->elems[0],
256 n->kids[1], n->counts[1]));
257 left = m; lcount = countnode234(left);
258 right = n; rcount = countnode234(right);
259 }
260 if (n->parent)
261 ki = (n->parent->kids[0] == n ? 0 :
262 n->parent->kids[1] == n ? 1 :
263 n->parent->kids[2] == n ? 2 : 3);
264 n = n->parent;
265 }
266
267 /*
268 * If we've come out of here by `break', n will still be
269 * non-NULL and all we need to do is go back up the tree
270 * updating counts. If we've come here because n is NULL, we
271 * need to create a new root for the tree because the old one
272 * has just split into two. */
273 if (n) {
274 while (n->parent) {
275 int count = countnode234(n);
276 int childnum;
277 childnum = (n->parent->kids[0] == n ? 0 :
278 n->parent->kids[1] == n ? 1 :
279 n->parent->kids[2] == n ? 2 : 3);
280 n->parent->counts[childnum] = count;
281 n = n->parent;
282 }
283 return 0; /* root unchanged */
284 } else {
285 LOG((" root is overloaded, split into two\n"));
286 (*root) = mknew(node234);
287 (*root)->kids[0] = left; (*root)->counts[0] = lcount;
288 (*root)->elems[0] = e;
289 (*root)->kids[1] = right; (*root)->counts[1] = rcount;
290 (*root)->elems[1] = NULL;
291 (*root)->kids[2] = NULL; (*root)->counts[2] = 0;
292 (*root)->elems[2] = NULL;
293 (*root)->kids[3] = NULL; (*root)->counts[3] = 0;
294 (*root)->parent = NULL;
295 if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
296 if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
297 LOG((" new root is %p/%d \"%s\" %p/%d\n",
298 (*root)->kids[0], (*root)->counts[0],
299 (*root)->elems[0],
300 (*root)->kids[1], (*root)->counts[1]));
301 return 1; /* root moved */
302 }
303}
304
305/*
306 * Add an element e to a 2-3-4 tree t. Returns e on success, or if
307 * an existing element compares equal, returns that.
308 */
309static void *add234_internal(tree234 *t, void *e, int index) {
310 node234 *n;
311 int ki;
312 void *orig_e = e;
313 int c;
314
315 LOG(("adding element \"%s\" to tree %p\n", e, t));
316 if (t->root == NULL) {
317 t->root = mknew(node234);
318 t->root->elems[1] = t->root->elems[2] = NULL;
319 t->root->kids[0] = t->root->kids[1] = NULL;
320 t->root->kids[2] = t->root->kids[3] = NULL;
321 t->root->counts[0] = t->root->counts[1] = 0;
322 t->root->counts[2] = t->root->counts[3] = 0;
323 t->root->parent = NULL;
324 t->root->elems[0] = e;
325 LOG((" created root %p\n", t->root));
326 return orig_e;
327 }
328
329 n = t->root;
330 while (n) {
331 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
332 n,
333 n->kids[0], n->counts[0], n->elems[0],
334 n->kids[1], n->counts[1], n->elems[1],
335 n->kids[2], n->counts[2], n->elems[2],
336 n->kids[3], n->counts[3]));
337 if (index >= 0) {
338 if (!n->kids[0]) {
339 /*
340 * Leaf node. We want to insert at kid position
341 * equal to the index:
342 *
343 * 0 A 1 B 2 C 3
344 */
345 ki = index;
346 } else {
347 /*
348 * Internal node. We always descend through it (add
349 * always starts at the bottom, never in the
350 * middle).
351 */
352 if (index <= n->counts[0]) {
353 ki = 0;
354 } else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
355 ki = 1;
356 } else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
357 ki = 2;
358 } else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
359 ki = 3;
360 } else
361 return NULL; /* error: index out of range */
362 }
363 } else {
364 if ((c = t->cmp(e, n->elems[0])) < 0)
365 ki = 0;
366 else if (c == 0)
367 return n->elems[0]; /* already exists */
368 else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1])) < 0)
369 ki = 1;
370 else if (c == 0)
371 return n->elems[1]; /* already exists */
372 else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2])) < 0)
373 ki = 2;
374 else if (c == 0)
375 return n->elems[2]; /* already exists */
376 else
377 ki = 3;
378 }
379 LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
380 if (!n->kids[ki])
381 break;
382 n = n->kids[ki];
383 }
384
385 add234_insert(NULL, e, NULL, &t->root, n, ki);
386
387 return orig_e;
388}
389
390void *add234(tree234 *t, void *e) {
391 if (!t->cmp) /* tree is unsorted */
392 return NULL;
393
394 return add234_internal(t, e, -1);
395}
396void *addpos234(tree234 *t, void *e, int index) {
397 if (index < 0 || /* index out of range */
398 t->cmp) /* tree is sorted */
399 return NULL; /* return failure */
400
401 return add234_internal(t, e, index); /* this checks the upper bound */
402}
403
404/*
405 * Look up the element at a given numeric index in a 2-3-4 tree.
406 * Returns NULL if the index is out of range.
407 */
408void *index234(tree234 *t, int index) {
409 node234 *n;
410
411 if (!t->root)
412 return NULL; /* tree is empty */
413
414 if (index < 0 || index >= countnode234(t->root))
415 return NULL; /* out of range */
416
417 n = t->root;
418
419 while (n) {
420 if (index < n->counts[0])
421 n = n->kids[0];
422 else if (index -= n->counts[0] + 1, index < 0)
423 return n->elems[0];
424 else if (index < n->counts[1])
425 n = n->kids[1];
426 else if (index -= n->counts[1] + 1, index < 0)
427 return n->elems[1];
428 else if (index < n->counts[2])
429 n = n->kids[2];
430 else if (index -= n->counts[2] + 1, index < 0)
431 return n->elems[2];
432 else
433 n = n->kids[3];
434 }
435
436 /* We shouldn't ever get here. I wonder how we did. */
437 return NULL;
438}
439
440/*
441 * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
442 * found. e is always passed as the first argument to cmp, so cmp
443 * can be an asymmetric function if desired. cmp can also be passed
444 * as NULL, in which case the compare function from the tree proper
445 * will be used.
446 */
447void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,
448 int relation, int *index) {
449 node234 *n;
450 void *ret;
451 int c;
452 int idx, ecount, kcount, cmpret;
453
454 if (t->root == NULL)
455 return NULL;
456
457 if (cmp == NULL)
458 cmp = t->cmp;
459
460 n = t->root;
461 /*
462 * Attempt to find the element itself.
463 */
464 idx = 0;
465 ecount = -1;
466 /*
467 * Prepare a fake `cmp' result if e is NULL.
468 */
469 cmpret = 0;
470 if (e == NULL) {
471 assert(relation == REL234_LT || relation == REL234_GT);
472 if (relation == REL234_LT)
473 cmpret = +1; /* e is a max: always greater */
474 else if (relation == REL234_GT)
475 cmpret = -1; /* e is a min: always smaller */
476 }
477 while (1) {
478 for (kcount = 0; kcount < 4; kcount++) {
479 if (kcount >= 3 || n->elems[kcount] == NULL ||
480 (c = cmpret ? cmpret : cmp(e, n->elems[kcount])) < 0) {
481 break;
482 }
483 if (n->kids[kcount]) idx += n->counts[kcount];
484 if (c == 0) {
485 ecount = kcount;
486 break;
487 }
488 idx++;
489 }
490 if (ecount >= 0)
491 break;
492 if (n->kids[kcount])
493 n = n->kids[kcount];
494 else
495 break;
496 }
497
498 if (ecount >= 0) {
499 /*
500 * We have found the element we're looking for. It's
501 * n->elems[ecount], at tree index idx. If our search
502 * relation is EQ, LE or GE we can now go home.
503 */
504 if (relation != REL234_LT && relation != REL234_GT) {
505 if (index) *index = idx;
506 return n->elems[ecount];
507 }
508
509 /*
510 * Otherwise, we'll do an indexed lookup for the previous
511 * or next element. (It would be perfectly possible to
512 * implement these search types in a non-counted tree by
513 * going back up from where we are, but far more fiddly.)
514 */
515 if (relation == REL234_LT)
516 idx--;
517 else
518 idx++;
519 } else {
520 /*
521 * We've found our way to the bottom of the tree and we
522 * know where we would insert this node if we wanted to:
523 * we'd put it in in place of the (empty) subtree
524 * n->kids[kcount], and it would have index idx
525 *
526 * But the actual element isn't there. So if our search
527 * relation is EQ, we're doomed.
528 */
529 if (relation == REL234_EQ)
530 return NULL;
531
532 /*
533 * Otherwise, we must do an index lookup for index idx-1
534 * (if we're going left - LE or LT) or index idx (if we're
535 * going right - GE or GT).
536 */
537 if (relation == REL234_LT || relation == REL234_LE) {
538 idx--;
539 }
540 }
541
542 /*
543 * We know the index of the element we want; just call index234
544 * to do the rest. This will return NULL if the index is out of
545 * bounds, which is exactly what we want.
546 */
547 ret = index234(t, idx);
548 if (ret && index) *index = idx;
549 return ret;
550}
551void *find234(tree234 *t, void *e, cmpfn234 cmp) {
552 return findrelpos234(t, e, cmp, REL234_EQ, NULL);
553}
554void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation) {
555 return findrelpos234(t, e, cmp, relation, NULL);
556}
557void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index) {
558 return findrelpos234(t, e, cmp, REL234_EQ, index);
559}
560
561/*
562 * Tree transformation used in delete and split: move a subtree
563 * right, from child ki of a node to the next child. Update k and
564 * index so that they still point to the same place in the
565 * transformed tree. Assumes the destination child is not full, and
566 * that the source child does have a subtree to spare. Can cope if
567 * the destination child is undersized.
568 *
569 * . C . . B .
570 * / \ -> / \
571 * [more] a A b B c d D e [more] a A b c C d D e
572 *
573 * . C . . B .
574 * / \ -> / \
575 * [more] a A b B c d [more] a A b c C d
576 */
577static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
578 node234 *src, *dest;
579 int i, srclen, adjust;
580
581 src = n->kids[ki];
582 dest = n->kids[ki+1];
583
584 LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
585 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
586 n,
587 n->kids[0], n->counts[0], n->elems[0],
588 n->kids[1], n->counts[1], n->elems[1],
589 n->kids[2], n->counts[2], n->elems[2],
590 n->kids[3], n->counts[3]));
591 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
592 src,
593 src->kids[0], src->counts[0], src->elems[0],
594 src->kids[1], src->counts[1], src->elems[1],
595 src->kids[2], src->counts[2], src->elems[2],
596 src->kids[3], src->counts[3]));
597 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
598 dest,
599 dest->kids[0], dest->counts[0], dest->elems[0],
600 dest->kids[1], dest->counts[1], dest->elems[1],
601 dest->kids[2], dest->counts[2], dest->elems[2],
602 dest->kids[3], dest->counts[3]));
603 /*
604 * Move over the rest of the destination node to make space.
605 */
606 dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
607 dest->elems[2] = dest->elems[1];
608 dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
609 dest->elems[1] = dest->elems[0];
610 dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
611
612 /* which element to move over */
613 i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
614
615 dest->elems[0] = n->elems[ki];
616 n->elems[ki] = src->elems[i];
617 src->elems[i] = NULL;
618
619 dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
620 src->kids[i+1] = NULL; src->counts[i+1] = 0;
621
622 if (dest->kids[0]) dest->kids[0]->parent = dest;
623
624 adjust = dest->counts[0] + 1;
625
626 n->counts[ki] -= adjust;
627 n->counts[ki+1] += adjust;
628
629 srclen = n->counts[ki];
630
631 if (k) {
632 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
633 if ((*k) == ki && (*index) > srclen) {
634 (*index) -= srclen + 1;
635 (*k)++;
636 } else if ((*k) == ki+1) {
637 (*index) += adjust;
638 }
639 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
640 }
641
642 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
643 n,
644 n->kids[0], n->counts[0], n->elems[0],
645 n->kids[1], n->counts[1], n->elems[1],
646 n->kids[2], n->counts[2], n->elems[2],
647 n->kids[3], n->counts[3]));
648 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
649 src,
650 src->kids[0], src->counts[0], src->elems[0],
651 src->kids[1], src->counts[1], src->elems[1],
652 src->kids[2], src->counts[2], src->elems[2],
653 src->kids[3], src->counts[3]));
654 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
655 dest,
656 dest->kids[0], dest->counts[0], dest->elems[0],
657 dest->kids[1], dest->counts[1], dest->elems[1],
658 dest->kids[2], dest->counts[2], dest->elems[2],
659 dest->kids[3], dest->counts[3]));
660}
661
662/*
663 * Tree transformation used in delete and split: move a subtree
664 * left, from child ki of a node to the previous child. Update k
665 * and index so that they still point to the same place in the
666 * transformed tree. Assumes the destination child is not full, and
667 * that the source child does have a subtree to spare. Can cope if
668 * the destination child is undersized.
669 *
670 * . B . . C .
671 * / \ -> / \
672 * a A b c C d D e [more] a A b B c d D e [more]
673 *
674 * . A . . B .
675 * / \ -> / \
676 * a b B c C d [more] a A b c C d [more]
677 */
678static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
679 node234 *src, *dest;
680 int i, adjust;
681
682 src = n->kids[ki];
683 dest = n->kids[ki-1];
684
685 LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
686 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
687 n,
688 n->kids[0], n->counts[0], n->elems[0],
689 n->kids[1], n->counts[1], n->elems[1],
690 n->kids[2], n->counts[2], n->elems[2],
691 n->kids[3], n->counts[3]));
692 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
693 dest,
694 dest->kids[0], dest->counts[0], dest->elems[0],
695 dest->kids[1], dest->counts[1], dest->elems[1],
696 dest->kids[2], dest->counts[2], dest->elems[2],
697 dest->kids[3], dest->counts[3]));
698 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
699 src,
700 src->kids[0], src->counts[0], src->elems[0],
701 src->kids[1], src->counts[1], src->elems[1],
702 src->kids[2], src->counts[2], src->elems[2],
703 src->kids[3], src->counts[3]));
704
705 /* where in dest to put it */
706 i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
707 dest->elems[i] = n->elems[ki-1];
708 n->elems[ki-1] = src->elems[0];
709
710 dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
711
712 if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
713
714 /*
715 * Move over the rest of the source node.
716 */
717 src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
718 src->elems[0] = src->elems[1];
719 src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
720 src->elems[1] = src->elems[2];
721 src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
722 src->elems[2] = NULL;
723 src->kids[3] = NULL; src->counts[3] = 0;
724
725 adjust = dest->counts[i+1] + 1;
726
727 n->counts[ki] -= adjust;
728 n->counts[ki-1] += adjust;
729
730 if (k) {
731 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
732 if ((*k) == ki) {
733 (*index) -= adjust;
734 if ((*index) < 0) {
735 (*index) += n->counts[ki-1] + 1;
736 (*k)--;
737 }
738 }
739 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
740 }
741
742 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
743 n,
744 n->kids[0], n->counts[0], n->elems[0],
745 n->kids[1], n->counts[1], n->elems[1],
746 n->kids[2], n->counts[2], n->elems[2],
747 n->kids[3], n->counts[3]));
748 LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
749 dest,
750 dest->kids[0], dest->counts[0], dest->elems[0],
751 dest->kids[1], dest->counts[1], dest->elems[1],
752 dest->kids[2], dest->counts[2], dest->elems[2],
753 dest->kids[3], dest->counts[3]));
754 LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
755 src,
756 src->kids[0], src->counts[0], src->elems[0],
757 src->kids[1], src->counts[1], src->elems[1],
758 src->kids[2], src->counts[2], src->elems[2],
759 src->kids[3], src->counts[3]));
760}
761
762/*
763 * Tree transformation used in delete and split: merge child nodes
764 * ki and ki+1 of a node. Update k and index so that they still
765 * point to the same place in the transformed tree. Assumes both
766 * children _are_ sufficiently small.
767 *
768 * . B . .
769 * / \ -> |
770 * a A b c C d a A b B c C d
771 *
772 * This routine can also cope with either child being undersized:
773 *
774 * . A . .
775 * / \ -> |
776 * a b B c a A b B c
777 *
778 * . A . .
779 * / \ -> |
780 * a b B c C d a A b B c C d
781 */
782static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
783 node234 *left, *right;
784 int i, leftlen, rightlen, lsize, rsize;
785
786 left = n->kids[ki]; leftlen = n->counts[ki];
787 right = n->kids[ki+1]; rightlen = n->counts[ki+1];
788
789 LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
790 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
791 n,
792 n->kids[0], n->counts[0], n->elems[0],
793 n->kids[1], n->counts[1], n->elems[1],
794 n->kids[2], n->counts[2], n->elems[2],
795 n->kids[3], n->counts[3]));
796 LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
797 left,
798 left->kids[0], left->counts[0], left->elems[0],
799 left->kids[1], left->counts[1], left->elems[1],
800 left->kids[2], left->counts[2], left->elems[2],
801 left->kids[3], left->counts[3]));
802 LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
803 right,
804 right->kids[0], right->counts[0], right->elems[0],
805 right->kids[1], right->counts[1], right->elems[1],
806 right->kids[2], right->counts[2], right->elems[2],
807 right->kids[3], right->counts[3]));
808
809 assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
810 lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
811 rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
812
813 left->elems[lsize] = n->elems[ki];
814
815 for (i = 0; i < rsize+1; i++) {
816 left->kids[lsize+1+i] = right->kids[i];
817 left->counts[lsize+1+i] = right->counts[i];
818 if (left->kids[lsize+1+i])
819 left->kids[lsize+1+i]->parent = left;
820 if (i < rsize)
821 left->elems[lsize+1+i] = right->elems[i];
822 }
823
824 n->counts[ki] += rightlen + 1;
825
826 sfree(right);
827
828 /*
829 * Move the rest of n up by one.
830 */
831 for (i = ki+1; i < 3; i++) {
832 n->kids[i] = n->kids[i+1];
833 n->counts[i] = n->counts[i+1];
834 }
835 for (i = ki; i < 2; i++) {
836 n->elems[i] = n->elems[i+1];
837 }
838 n->kids[3] = NULL;
839 n->counts[3] = 0;
840 n->elems[2] = NULL;
841
842 if (k) {
843 LOG((" before: k,index = %d,%d\n", (*k), (*index)));
844 if ((*k) == ki+1) {
845 (*k)--;
846 (*index) += leftlen + 1;
847 } else if ((*k) > ki+1) {
848 (*k)--;
849 }
850 LOG((" after: k,index = %d,%d\n", (*k), (*index)));
851 }
852
853 LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
854 n,
855 n->kids[0], n->counts[0], n->elems[0],
856 n->kids[1], n->counts[1], n->elems[1],
857 n->kids[2], n->counts[2], n->elems[2],
858 n->kids[3], n->counts[3]));
859 LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
860 left,
861 left->kids[0], left->counts[0], left->elems[0],
862 left->kids[1], left->counts[1], left->elems[1],
863 left->kids[2], left->counts[2], left->elems[2],
864 left->kids[3], left->counts[3]));
865
866}
867
868/*
869 * Delete an element e in a 2-3-4 tree. Does not free the element,
870 * merely removes all links to it from the tree nodes.
871 */
872static void *delpos234_internal(tree234 *t, int index) {
873 node234 *n;
874 void *retval;
875 int ki, i;
876
877 retval = NULL;
878
879 n = t->root; /* by assumption this is non-NULL */
880 LOG(("deleting item %d from tree %p\n", index, t));
881 while (1) {
882 node234 *sub;
883
884 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
885 n,
886 n->kids[0], n->counts[0], n->elems[0],
887 n->kids[1], n->counts[1], n->elems[1],
888 n->kids[2], n->counts[2], n->elems[2],
889 n->kids[3], n->counts[3],
890 index));
891 if (index <= n->counts[0]) {
892 ki = 0;
893 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
894 ki = 1;
895 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
896 ki = 2;
897 } else if (index -= n->counts[2]+1, index <= n->counts[3]) {
898 ki = 3;
899 } else {
900 assert(0); /* can't happen */
901 }
902
903 if (!n->kids[0])
904 break; /* n is a leaf node; we're here! */
905
906 /*
907 * Check to see if we've found our target element. If so,
908 * we must choose a new target (we'll use the old target's
909 * successor, which will be in a leaf), move it into the
910 * place of the old one, continue down to the leaf and
911 * delete the old copy of the new target.
912 */
913 if (index == n->counts[ki]) {
914 node234 *m;
915 LOG((" found element in internal node, index %d\n", ki));
916 assert(n->elems[ki]); /* must be a kid _before_ an element */
917 ki++; index = 0;
918 for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
919 continue;
920 LOG((" replacing with element \"%s\" from leaf node %p\n",
921 m->elems[0], m));
922 retval = n->elems[ki-1];
923 n->elems[ki-1] = m->elems[0];
924 }
925
926 /*
927 * Recurse down to subtree ki. If it has only one element,
928 * we have to do some transformation to start with.
929 */
930 LOG((" moving to subtree %d\n", ki));
931 sub = n->kids[ki];
932 if (!sub->elems[1]) {
933 LOG((" subtree has only one element!\n"));
934 if (ki > 0 && n->kids[ki-1]->elems[1]) {
935 /*
936 * Child ki has only one element, but child
937 * ki-1 has two or more. So we need to move a
938 * subtree from ki-1 to ki.
939 */
940 trans234_subtree_right(n, ki-1, &ki, &index);
941 } else if (ki < 3 && n->kids[ki+1] &&
942 n->kids[ki+1]->elems[1]) {
943 /*
944 * Child ki has only one element, but ki+1 has
945 * two or more. Move a subtree from ki+1 to ki.
946 */
947 trans234_subtree_left(n, ki+1, &ki, &index);
948 } else {
949 /*
950 * ki is small with only small neighbours. Pick a
951 * neighbour and merge with it.
952 */
953 trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
954 sub = n->kids[ki];
955
956 if (!n->elems[0]) {
957 /*
958 * The root is empty and needs to be
959 * removed.
960 */
961 LOG((" shifting root!\n"));
962 t->root = sub;
963 sub->parent = NULL;
964 sfree(n);
965 n = NULL;
966 }
967 }
968 }
969
970 if (n)
971 n->counts[ki]--;
972 n = sub;
973 }
974
975 /*
976 * Now n is a leaf node, and ki marks the element number we
977 * want to delete. We've already arranged for the leaf to be
978 * bigger than minimum size, so let's just go to it.
979 */
980 assert(!n->kids[0]);
981 if (!retval)
982 retval = n->elems[ki];
983
984 for (i = ki; i < 2 && n->elems[i+1]; i++)
985 n->elems[i] = n->elems[i+1];
986 n->elems[i] = NULL;
987
988 /*
989 * It's just possible that we have reduced the leaf to zero
990 * size. This can only happen if it was the root - so destroy
991 * it and make the tree empty.
992 */
993 if (!n->elems[0]) {
994 LOG((" removed last element in tree, destroying empty root\n"));
995 assert(n == t->root);
996 sfree(n);
997 t->root = NULL;
998 }
999
1000 return retval; /* finished! */
1001}
1002void *delpos234(tree234 *t, int index) {
1003 if (index < 0 || index >= countnode234(t->root))
1004 return NULL;
1005 return delpos234_internal(t, index);
1006}
1007void *del234(tree234 *t, void *e) {
1008 int index;
1009 if (!findrelpos234(t, e, NULL, REL234_EQ, &index))
1010 return NULL; /* it wasn't in there anyway */
1011 return delpos234_internal(t, index); /* it's there; delete it. */
1012}
1013
1014/*
1015 * Join two subtrees together with a separator element between
1016 * them, given their relative height.
1017 *
1018 * (Height<0 means the left tree is shorter, >0 means the right
1019 * tree is shorter, =0 means (duh) they're equal.)
1020 *
1021 * It is assumed that any checks needed on the ordering criterion
1022 * have _already_ been done.
1023 *
1024 * The value returned in `height' is 0 or 1 depending on whether the
1025 * resulting tree is the same height as the original larger one, or
1026 * one higher.
1027 */
1028static node234 *join234_internal(node234 *left, void *sep,
1029 node234 *right, int *height) {
1030 node234 *root, *node;
1031 int relht = *height;
1032 int ki;
1033
1034 LOG((" join: joining %p \"%s\" %p, relative height is %d\n",
1035 left, sep, right, relht));
1036 if (relht == 0) {
1037 /*
1038 * The trees are the same height. Create a new one-element
1039 * root containing the separator and pointers to the two
1040 * nodes.
1041 */
1042 node234 *newroot;
1043 newroot = mknew(node234);
1044 newroot->kids[0] = left; newroot->counts[0] = countnode234(left);
1045 newroot->elems[0] = sep;
1046 newroot->kids[1] = right; newroot->counts[1] = countnode234(right);
1047 newroot->elems[1] = NULL;
1048 newroot->kids[2] = NULL; newroot->counts[2] = 0;
1049 newroot->elems[2] = NULL;
1050 newroot->kids[3] = NULL; newroot->counts[3] = 0;
1051 newroot->parent = NULL;
1052 if (left) left->parent = newroot;
1053 if (right) right->parent = newroot;
1054 *height = 1;
1055 LOG((" join: same height, brand new root\n"));
1056 return newroot;
1057 }
1058
1059 /*
1060 * This now works like the addition algorithm on the larger
1061 * tree. We're replacing a single kid pointer with two kid
1062 * pointers separated by an element; if that causes the node to
1063 * overload, we split it in two, move a separator element up to
1064 * the next node, and repeat.
1065 */
1066 if (relht < 0) {
1067 /*
1068 * Left tree is shorter. Search down the right tree to find
1069 * the pointer we're inserting at.
1070 */
1071 node = root = right;
1072 while (++relht < 0) {
1073 node = node->kids[0];
1074 }
1075 ki = 0;
1076 right = node->kids[ki];
1077 } else {
1078 /*
1079 * Right tree is shorter; search down the left to find the
1080 * pointer we're inserting at.
1081 */
1082 node = root = left;
1083 while (--relht > 0) {
1084 if (node->elems[2])
1085 node = node->kids[3];
1086 else if (node->elems[1])
1087 node = node->kids[2];
1088 else
1089 node = node->kids[1];
1090 }
1091 if (node->elems[2])
1092 ki = 3;
1093 else if (node->elems[1])
1094 ki = 2;
1095 else
1096 ki = 1;
1097 left = node->kids[ki];
1098 }
1099
1100 /*
1101 * Now proceed as for addition.
1102 */
1103 *height = add234_insert(left, sep, right, &root, node, ki);
1104
1105 return root;
1106}
1107static int height234(tree234 *t) {
1108 int level = 0;
1109 node234 *n = t->root;
1110 while (n) {
1111 level++;
1112 n = n->kids[0];
1113 }
1114 return level;
1115}
1116tree234 *join234(tree234 *t1, tree234 *t2) {
1117 int size2 = countnode234(t2->root);
1118 if (size2 > 0) {
1119 void *element;
1120 int relht;
1121
1122 if (t1->cmp) {
1123 element = index234(t2, 0);
1124 element = findrelpos234(t1, element, NULL, REL234_GE, NULL);
1125 if (element)
1126 return NULL;
1127 }
1128
1129 element = delpos234(t2, 0);
1130 relht = height234(t1) - height234(t2);
1131 t1->root = join234_internal(t1->root, element, t2->root, &relht);
1132 t2->root = NULL;
1133 }
1134 return t1;
1135}
1136tree234 *join234r(tree234 *t1, tree234 *t2) {
1137 int size1 = countnode234(t1->root);
1138 if (size1 > 0) {
1139 void *element;
1140 int relht;
1141
1142 if (t2->cmp) {
1143 element = index234(t1, size1-1);
1144 element = findrelpos234(t2, element, NULL, REL234_LE, NULL);
1145 if (element)
1146 return NULL;
1147 }
1148
1149 element = delpos234(t1, size1-1);
1150 relht = height234(t1) - height234(t2);
1151 t2->root = join234_internal(t1->root, element, t2->root, &relht);
1152 t1->root = NULL;
1153 }
1154 return t2;
1155}
1156
1157/*
1158 * Split out the first <index> elements in a tree and return a
1159 * pointer to the root node. Leave the root node of the remainder
1160 * in t.
1161 */
1162static node234 *split234_internal(tree234 *t, int index) {
1163 node234 *halves[2], *n, *sib, *sub;
1164 node234 *lparent, *rparent;
1165 int ki, pki, i, half, lcount, rcount;
1166
1167 n = t->root;
1168 LOG(("splitting tree %p at point %d\n", t, index));
1169
1170 /*
1171 * Easy special cases. After this we have also dealt completely
1172 * with the empty-tree case and we can assume the root exists.
1173 */
1174 if (index == 0) /* return nothing */
1175 return NULL;
1176 if (index == countnode234(t->root)) { /* return the whole tree */
1177 node234 *ret = t->root;
1178 t->root = NULL;
1179 return ret;
1180 }
1181
1182 /*
1183 * Search down the tree to find the split point.
1184 */
1185 lparent = rparent = NULL;
1186 while (n) {
1187 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
1188 n,
1189 n->kids[0], n->counts[0], n->elems[0],
1190 n->kids[1], n->counts[1], n->elems[1],
1191 n->kids[2], n->counts[2], n->elems[2],
1192 n->kids[3], n->counts[3],
1193 index));
1194 lcount = index;
1195 rcount = countnode234(n) - lcount;
1196 if (index <= n->counts[0]) {
1197 ki = 0;
1198 } else if (index -= n->counts[0]+1, index <= n->counts[1]) {
1199 ki = 1;
1200 } else if (index -= n->counts[1]+1, index <= n->counts[2]) {
1201 ki = 2;
1202 } else {
1203 index -= n->counts[2]+1;
1204 ki = 3;
1205 }
1206
1207 LOG((" splitting at subtree %d\n", ki));
1208 sub = n->kids[ki];
1209
1210 LOG((" splitting at child index %d\n", ki));
1211
1212 /*
1213 * Split the node, put halves[0] on the right of the left
1214 * one and halves[1] on the left of the right one, put the
1215 * new node pointers in halves[0] and halves[1], and go up
1216 * a level.
1217 */
1218 sib = mknew(node234);
1219 for (i = 0; i < 3; i++) {
1220 if (i+ki < 3 && n->elems[i+ki]) {
1221 sib->elems[i] = n->elems[i+ki];
1222 sib->kids[i+1] = n->kids[i+ki+1];
1223 if (sib->kids[i+1]) sib->kids[i+1]->parent = sib;
1224 sib->counts[i+1] = n->counts[i+ki+1];
1225 n->elems[i+ki] = NULL;
1226 n->kids[i+ki+1] = NULL;
1227 n->counts[i+ki+1] = 0;
1228 } else {
1229 sib->elems[i] = NULL;
1230 sib->kids[i+1] = NULL;
1231 sib->counts[i+1] = 0;
1232 }
1233 }
1234 if (lparent) {
1235 lparent->kids[pki] = n;
1236 lparent->counts[pki] = lcount;
1237 n->parent = lparent;
1238 rparent->kids[0] = sib;
1239 rparent->counts[0] = rcount;
1240 sib->parent = rparent;
1241 } else {
1242 halves[0] = n;
1243 n->parent = NULL;
1244 halves[1] = sib;
1245 sib->parent = NULL;
1246 }
1247 lparent = n;
1248 rparent = sib;
1249 pki = ki;
1250 LOG((" left node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1251 n,
1252 n->kids[0], n->counts[0], n->elems[0],
1253 n->kids[1], n->counts[1], n->elems[1],
1254 n->kids[2], n->counts[2], n->elems[2],
1255 n->kids[3], n->counts[3]));
1256 LOG((" right node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1257 sib,
1258 sib->kids[0], sib->counts[0], sib->elems[0],
1259 sib->kids[1], sib->counts[1], sib->elems[1],
1260 sib->kids[2], sib->counts[2], sib->elems[2],
1261 sib->kids[3], sib->counts[3]));
1262
1263 n = sub;
1264 }
1265
1266 /*
1267 * We've come off the bottom here, so we've successfully split
1268 * the tree into two equally high subtrees. The only problem is
1269 * that some of the nodes down the fault line will be smaller
1270 * than the minimum permitted size. (Since this is a 2-3-4
1271 * tree, that means they'll be zero-element one-child nodes.)
1272 */
1273 LOG((" fell off bottom, lroot is %p, rroot is %p\n",
1274 halves[0], halves[1]));
1275 lparent->counts[pki] = rparent->counts[0] = 0;
1276 lparent->kids[pki] = rparent->kids[0] = NULL;
1277
1278 /*
1279 * So now we go back down the tree from each of the two roots,
1280 * fixing up undersize nodes.
1281 */
1282 for (half = 0; half < 2; half++) {
1283 /*
1284 * Remove the root if it's undersize (it will contain only
1285 * one child pointer, so just throw it away and replace it
1286 * with its child). This might happen several times.
1287 */
1288 while (halves[half] && !halves[half]->elems[0]) {
1289 LOG((" root %p is undersize, throwing away\n", halves[half]));
1290 halves[half] = halves[half]->kids[0];
1291 sfree(halves[half]->parent);
1292 halves[half]->parent = NULL;
1293 LOG((" new root is %p\n", halves[half]));
1294 }
1295
1296 n = halves[half];
1297 while (n) {
1298 void (*toward)(node234 *n, int ki, int *k, int *index);
1299 int ni, merge;
1300
1301 /*
1302 * Now we have a potentially undersize node on the
1303 * right (if half==0) or left (if half==1). Sort it
1304 * out, by merging with a neighbour or by transferring
1305 * subtrees over. At this time we must also ensure that
1306 * nodes are bigger than minimum, in case we need an
1307 * element to merge two nodes below.
1308 */
1309 LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
1310 n,
1311 n->kids[0], n->counts[0], n->elems[0],
1312 n->kids[1], n->counts[1], n->elems[1],
1313 n->kids[2], n->counts[2], n->elems[2],
1314 n->kids[3], n->counts[3]));
1315 if (half == 1) {
1316 ki = 0; /* the kid we're interested in */
1317 ni = 1; /* the neighbour */
1318 merge = 0; /* for merge: leftmost of the two */
1319 toward = trans234_subtree_left;
1320 } else {
1321 ki = (n->kids[3] ? 3 : n->kids[2] ? 2 : 1);
1322 ni = ki-1;
1323 merge = ni;
1324 toward = trans234_subtree_right;
1325 }
1326
1327 sub = n->kids[ki];
1328 if (sub && !sub->elems[1]) {
1329 /*
1330 * This node is undersized or minimum-size. If we
1331 * can merge it with its neighbour, we do so;
1332 * otherwise we must be able to transfer subtrees
1333 * over to it until it is greater than minimum
1334 * size.
1335 */
1336 int undersized = (!sub->elems[0]);
1337 LOG((" child %d is %ssize\n", ki,
1338 undersized ? "under" : "minimum-"));
1339 LOG((" neighbour is %s\n",
1340 n->kids[ni]->elems[2] ? "large" :
1341 n->kids[ni]->elems[1] ? "medium" : "small"));
1342 if (!n->kids[ni]->elems[1] ||
1343 (undersized && !n->kids[ni]->elems[2])) {
1344 /*
1345 * Neighbour is small, or possibly neighbour is
1346 * medium and we are undersize.
1347 */
1348 trans234_subtree_merge(n, merge, NULL, NULL);
1349 sub = n->kids[merge];
1350 if (!n->elems[0]) {
1351 /*
1352 * n is empty, and hence must have been the
1353 * root and needs to be removed.
1354 */
1355 assert(!n->parent);
1356 LOG((" shifting root!\n"));
1357 halves[half] = sub;
1358 halves[half]->parent = NULL;
1359 sfree(n);
1360 }
1361 } else {
1362 /* Neighbour is big enough to move trees over. */
1363 toward(n, ni, NULL, NULL);
1364 if (undersized)
1365 toward(n, ni, NULL, NULL);
1366 }
1367 }
1368 n = sub;
1369 }
1370 }
1371
1372 t->root = halves[1];
1373 return halves[0];
1374}
1375tree234 *splitpos234(tree234 *t, int index, int before) {
1376 tree234 *ret;
1377 node234 *n;
1378 int count;
1379
1380 count = countnode234(t->root);
1381 if (index < 0 || index > count)
1382 return NULL; /* error */
1383 ret = newtree234(t->cmp);
1384 n = split234_internal(t, index);
1385 if (before) {
1386 /* We want to return the ones before the index. */
1387 ret->root = n;
1388 } else {
1389 /*
1390 * We want to keep the ones before the index and return the
1391 * ones after.
1392 */
1393 ret->root = t->root;
1394 t->root = n;
1395 }
1396 return ret;
1397}
1398tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel) {
1399 int before;
1400 int index;
1401
1402 assert(rel != REL234_EQ);
1403
1404 if (rel == REL234_GT || rel == REL234_GE) {
1405 before = 1;
1406 rel = (rel == REL234_GT ? REL234_LE : REL234_LT);
1407 } else {
1408 before = 0;
1409 }
1410 if (!findrelpos234(t, e, cmp, rel, &index))
1411 index = 0;
1412
1413 return splitpos234(t, index+1, before);
1414}
1415
1416static node234 *copynode234(node234 *n, copyfn234 copyfn, void *copyfnstate) {
1417 int i;
1418 node234 *n2 = mknew(node234);
1419
1420 for (i = 0; i < 3; i++) {
1421 if (n->elems[i] && copyfn)
1422 n2->elems[i] = copyfn(copyfnstate, n->elems[i]);
1423 else
1424 n2->elems[i] = n->elems[i];
1425 }
1426
1427 for (i = 0; i < 4; i++) {
1428 if (n->kids[i]) {
1429 n2->kids[i] = copynode234(n->kids[i], copyfn, copyfnstate);
1430 n2->kids[i]->parent = n2;
1431 } else {
1432 n2->kids[i] = NULL;
1433 }
1434 n2->counts[i] = n->counts[i];
1435 }
1436
1437 return n2;
1438}
1439tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate) {
1440 tree234 *t2;
1441
1442 t2 = newtree234(t->cmp);
1443 t2->root = copynode234(t->root, copyfn, copyfnstate);
1444 t2->root->parent = NULL;
1445
1446 return t2;
1447}
1448
1449#ifdef TEST
1450
1451/*
1452 * Test code for the 2-3-4 tree. This code maintains an alternative
1453 * representation of the data in the tree, in an array (using the
1454 * obvious and slow insert and delete functions). After each tree
1455 * operation, the verify() function is called, which ensures all
1456 * the tree properties are preserved:
1457 * - node->child->parent always equals node
1458 * - tree->root->parent always equals NULL
1459 * - number of kids == 0 or number of elements + 1;
1460 * - tree has the same depth everywhere
1461 * - every node has at least one element
1462 * - subtree element counts are accurate
1463 * - any NULL kid pointer is accompanied by a zero count
1464 * - in a sorted tree: ordering property between elements of a
1465 * node and elements of its children is preserved
1466 * and also ensures the list represented by the tree is the same
1467 * list it should be. (This last check also doubly verifies the
1468 * ordering properties, because the `same list it should be' is by
1469 * definition correctly ordered. It also ensures all nodes are
1470 * distinct, because the enum functions would get caught in a loop
1471 * if not.)
1472 */
1473
1474#include <stdarg.h>
1475
1476#define srealloc realloc
1477
1478/*
1479 * Error reporting function.
1480 */
1481void error(char *fmt, ...) {
1482 va_list ap;
1483 printf("ERROR: ");
1484 va_start(ap, fmt);
1485 vfprintf(stdout, fmt, ap);
1486 va_end(ap);
1487 printf("\n");
1488}
1489
1490/* The array representation of the data. */
1491void **array;
1492int arraylen, arraysize;
1493cmpfn234 cmp;
1494
1495/* The tree representation of the same data. */
1496tree234 *tree;
1497
1498/*
1499 * Routines to provide a diagnostic printout of a tree. Currently
1500 * relies on every element in the tree being a one-character string
1501 * :-)
1502 */
1503typedef struct {
1504 char **levels;
1505} dispctx;
1506
1507int dispnode(node234 *n, int level, dispctx *ctx) {
1508 if (level == 0) {
1509 int xpos = strlen(ctx->levels[0]);
1510 int len;
1511
1512 if (n->elems[2])
1513 len = sprintf(ctx->levels[0]+xpos, " %s%s%s",
1514 n->elems[0], n->elems[1], n->elems[2]);
1515 else if (n->elems[1])
1516 len = sprintf(ctx->levels[0]+xpos, " %s%s",
1517 n->elems[0], n->elems[1]);
1518 else
1519 len = sprintf(ctx->levels[0]+xpos, " %s",
1520 n->elems[0]);
1521 return xpos + 1 + (len-1) / 2;
1522 } else {
1523 int xpos[4], nkids;
1524 int nodelen, mypos, myleft, x, i;
1525
1526 xpos[0] = dispnode(n->kids[0], level-3, ctx);
1527 xpos[1] = dispnode(n->kids[1], level-3, ctx);
1528 nkids = 2;
1529 if (n->kids[2]) {
1530 xpos[2] = dispnode(n->kids[2], level-3, ctx);
1531 nkids = 3;
1532 }
1533 if (n->kids[3]) {
1534 xpos[3] = dispnode(n->kids[3], level-3, ctx);
1535 nkids = 4;
1536 }
1537
1538 if (nkids == 4)
1539 mypos = (xpos[1] + xpos[2]) / 2;
1540 else if (nkids == 3)
1541 mypos = xpos[1];
1542 else
1543 mypos = (xpos[0] + xpos[1]) / 2;
1544 nodelen = nkids * 2 - 1;
1545 myleft = mypos - ((nodelen-1)/2);
1546 assert(myleft >= xpos[0]);
1547 assert(myleft + nodelen-1 <= xpos[nkids-1]);
1548
1549 x = strlen(ctx->levels[level]);
1550 while (x <= xpos[0] && x < myleft)
1551 ctx->levels[level][x++] = ' ';
1552 while (x < myleft)
1553 ctx->levels[level][x++] = '_';
1554 if (nkids==4)
1555 x += sprintf(ctx->levels[level]+x, ".%s.%s.%s.",
1556 n->elems[0], n->elems[1], n->elems[2]);
1557 else if (nkids==3)
1558 x += sprintf(ctx->levels[level]+x, ".%s.%s.",
1559 n->elems[0], n->elems[1]);
1560 else
1561 x += sprintf(ctx->levels[level]+x, ".%s.",
1562 n->elems[0]);
1563 while (x < xpos[nkids-1])
1564 ctx->levels[level][x++] = '_';
1565 ctx->levels[level][x] = '\0';
1566
1567 x = strlen(ctx->levels[level-1]);
1568 for (i = 0; i < nkids; i++) {
1569 int rpos, pos;
1570 rpos = xpos[i];
1571 if (i > 0 && i < nkids-1)
1572 pos = myleft + 2*i;
1573 else
1574 pos = rpos;
1575 if (rpos < pos)
1576 rpos++;
1577 while (x < pos && x < rpos)
1578 ctx->levels[level-1][x++] = ' ';
1579 if (x == pos)
1580 ctx->levels[level-1][x++] = '|';
1581 while (x < pos || x < rpos)
1582 ctx->levels[level-1][x++] = '_';
1583 if (x == pos)
1584 ctx->levels[level-1][x++] = '|';
1585 }
1586 ctx->levels[level-1][x] = '\0';
1587
1588 x = strlen(ctx->levels[level-2]);
1589 for (i = 0; i < nkids; i++) {
1590 int rpos = xpos[i];
1591
1592 while (x < rpos)
1593 ctx->levels[level-2][x++] = ' ';
1594 ctx->levels[level-2][x++] = '|';
1595 }
1596 ctx->levels[level-2][x] = '\0';
1597
1598 return mypos;
1599 }
1600}
1601
1602void disptree(tree234 *t) {
1603 dispctx ctx;
1604 char *leveldata;
1605 int width = count234(t);
1606 int ht = height234(t) * 3 - 2;
1607 int i;
1608
1609 if (!t->root) {
1610 printf("[empty tree]\n");
1611 }
1612
1613 leveldata = smalloc(ht * (width+2));
1614 ctx.levels = smalloc(ht * sizeof(char *));
1615 for (i = 0; i < ht; i++) {
1616 ctx.levels[i] = leveldata + i * (width+2);
1617 ctx.levels[i][0] = '\0';
1618 }
1619
1620 (void) dispnode(t->root, ht-1, &ctx);
1621
1622 for (i = ht; i-- ;)
1623 printf("%s\n", ctx.levels[i]);
1624
1625 sfree(ctx.levels);
1626 sfree(leveldata);
1627}
1628
1629typedef struct {
1630 int treedepth;
1631 int elemcount;
1632} chkctx;
1633
1634int chknode(chkctx *ctx, int level, node234 *node,
1635 void *lowbound, void *highbound) {
1636 int nkids, nelems;
1637 int i;
1638 int count;
1639
1640 /* Count the non-NULL kids. */
1641 for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);
1642 /* Ensure no kids beyond the first NULL are non-NULL. */
1643 for (i = nkids; i < 4; i++)
1644 if (node->kids[i]) {
1645 error("node %p: nkids=%d but kids[%d] non-NULL",
1646 node, nkids, i);
1647 } else if (node->counts[i]) {
1648 error("node %p: kids[%d] NULL but count[%d]=%d nonzero",
1649 node, i, i, node->counts[i]);
1650 }
1651
1652 /* Count the non-NULL elements. */
1653 for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);
1654 /* Ensure no elements beyond the first NULL are non-NULL. */
1655 for (i = nelems; i < 3; i++)
1656 if (node->elems[i]) {
1657 error("node %p: nelems=%d but elems[%d] non-NULL",
1658 node, nelems, i);
1659 }
1660
1661 if (nkids == 0) {
1662 /*
1663 * If nkids==0, this is a leaf node; verify that the tree
1664 * depth is the same everywhere.
1665 */
1666 if (ctx->treedepth < 0)
1667 ctx->treedepth = level; /* we didn't know the depth yet */
1668 else if (ctx->treedepth != level)
1669 error("node %p: leaf at depth %d, previously seen depth %d",
1670 node, level, ctx->treedepth);
1671 } else {
1672 /*
1673 * If nkids != 0, then it should be nelems+1, unless nelems
1674 * is 0 in which case nkids should also be 0 (and so we
1675 * shouldn't be in this condition at all).
1676 */
1677 int shouldkids = (nelems ? nelems+1 : 0);
1678 if (nkids != shouldkids) {
1679 error("node %p: %d elems should mean %d kids but has %d",
1680 node, nelems, shouldkids, nkids);
1681 }
1682 }
1683
1684 /*
1685 * nelems should be at least 1.
1686 */
1687 if (nelems == 0) {
1688 error("node %p: no elems", node, nkids);
1689 }
1690
1691 /*
1692 * Add nelems to the running element count of the whole tree.
1693 */
1694 ctx->elemcount += nelems;
1695
1696 /*
1697 * Check ordering property: all elements should be strictly >
1698 * lowbound, strictly < highbound, and strictly < each other in
1699 * sequence. (lowbound and highbound are NULL at edges of tree
1700 * - both NULL at root node - and NULL is considered to be <
1701 * everything and > everything. IYSWIM.)
1702 */
1703 if (cmp) {
1704 for (i = -1; i < nelems; i++) {
1705 void *lower = (i == -1 ? lowbound : node->elems[i]);
1706 void *higher = (i+1 == nelems ? highbound : node->elems[i+1]);
1707 if (lower && higher && cmp(lower, higher) >= 0) {
1708 error("node %p: kid comparison [%d=%s,%d=%s] failed",
1709 node, i, lower, i+1, higher);
1710 }
1711 }
1712 }
1713
1714 /*
1715 * Check parent pointers: all non-NULL kids should have a
1716 * parent pointer coming back to this node.
1717 */
1718 for (i = 0; i < nkids; i++)
1719 if (node->kids[i]->parent != node) {
1720 error("node %p kid %d: parent ptr is %p not %p",
1721 node, i, node->kids[i]->parent, node);
1722 }
1723
1724
1725 /*
1726 * Now (finally!) recurse into subtrees.
1727 */
1728 count = nelems;
1729
1730 for (i = 0; i < nkids; i++) {
1731 void *lower = (i == 0 ? lowbound : node->elems[i-1]);
1732 void *higher = (i >= nelems ? highbound : node->elems[i]);
1733 int subcount = chknode(ctx, level+1, node->kids[i], lower, higher);
1734 if (node->counts[i] != subcount) {
1735 error("node %p kid %d: count says %d, subtree really has %d",
1736 node, i, node->counts[i], subcount);
1737 }
1738 count += subcount;
1739 }
1740
1741 return count;
1742}
1743
1744void verifytree(tree234 *tree, void **array, int arraylen) {
1745 chkctx ctx;
1746 int i;
1747 void *p;
1748
1749 ctx.treedepth = -1; /* depth unknown yet */
1750 ctx.elemcount = 0; /* no elements seen yet */
1751 /*
1752 * Verify validity of tree properties.
1753 */
1754 if (tree->root) {
1755 if (tree->root->parent != NULL)
1756 error("root->parent is %p should be null", tree->root->parent);
1757 chknode(&ctx, 0, tree->root, NULL, NULL);
1758 }
1759 printf("tree depth: %d\n", ctx.treedepth);
1760 /*
1761 * Enumerate the tree and ensure it matches up to the array.
1762 */
1763 for (i = 0; NULL != (p = index234(tree, i)); i++) {
1764 if (i >= arraylen)
1765 error("tree contains more than %d elements", arraylen);
1766 if (array[i] != p)
1767 error("enum at position %d: array says %s, tree says %s",
1768 i, array[i], p);
1769 }
1770 if (ctx.elemcount != i) {
1771 error("tree really contains %d elements, enum gave %d",
1772 ctx.elemcount, i);
1773 }
1774 if (i < arraylen) {
1775 error("enum gave only %d elements, array has %d", i, arraylen);
1776 }
1777 i = count234(tree);
1778 if (ctx.elemcount != i) {
1779 error("tree really contains %d elements, count234 gave %d",
1780 ctx.elemcount, i);
1781 }
1782}
1783void verify(void) { verifytree(tree, array, arraylen); }
1784
1785void internal_addtest(void *elem, int index, void *realret) {
1786 int i, j;
1787 void *retval;
1788
1789 if (arraysize < arraylen+1) {
1790 arraysize = arraylen+1+256;
1791 array = (array == NULL ? smalloc(arraysize*sizeof(*array)) :
1792 srealloc(array, arraysize*sizeof(*array)));
1793 }
1794
1795 i = index;
1796 /* now i points to the first element >= elem */
1797 retval = elem; /* expect elem returned (success) */
1798 for (j = arraylen; j > i; j--)
1799 array[j] = array[j-1];
1800 array[i] = elem; /* add elem to array */
1801 arraylen++;
1802
1803 if (realret != retval) {
1804 error("add: retval was %p expected %p", realret, retval);
1805 }
1806
1807 verify();
1808}
1809
1810void addtest(void *elem) {
1811 int i;
1812 void *realret;
1813
1814 realret = add234(tree, elem);
1815
1816 i = 0;
1817 while (i < arraylen && cmp(elem, array[i]) > 0)
1818 i++;
1819 if (i < arraylen && !cmp(elem, array[i])) {
1820 void *retval = array[i]; /* expect that returned not elem */
1821 if (realret != retval) {
1822 error("add: retval was %p expected %p", realret, retval);
1823 }
1824 } else
1825 internal_addtest(elem, i, realret);
1826}
1827
1828void addpostest(void *elem, int i) {
1829 void *realret;
1830
1831 realret = addpos234(tree, elem, i);
1832
1833 internal_addtest(elem, i, realret);
1834}
1835
1836void delpostest(int i) {
1837 int index = i;
1838 void *elem = array[i], *ret;
1839
1840 /* i points to the right element */
1841 while (i < arraylen-1) {
1842 array[i] = array[i+1];
1843 i++;
1844 }
1845 arraylen--; /* delete elem from array */
1846
1847 if (tree->cmp)
1848 ret = del234(tree, elem);
1849 else
1850 ret = delpos234(tree, index);
1851
1852 if (ret != elem) {
1853 error("del returned %p, expected %p", ret, elem);
1854 }
1855
1856 verify();
1857}
1858
1859void deltest(void *elem) {
1860 int i;
1861
1862 i = 0;
1863 while (i < arraylen && cmp(elem, array[i]) > 0)
1864 i++;
1865 if (i >= arraylen || cmp(elem, array[i]) != 0)
1866 return; /* don't do it! */
1867 delpostest(i);
1868}
1869
1870/* A sample data set and test utility. Designed for pseudo-randomness,
1871 * and yet repeatability. */
1872
1873/*
1874 * This random number generator uses the `portable implementation'
1875 * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits;
1876 * change it if not.
1877 */
1878int randomnumber(unsigned *seed) {
1879 *seed *= 1103515245;
1880 *seed += 12345;
1881 return ((*seed) / 65536) % 32768;
1882}
1883
1884int mycmp(void *av, void *bv) {
1885 char const *a = (char const *)av;
1886 char const *b = (char const *)bv;
1887 return strcmp(a, b);
1888}
1889
1890#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
1891
1892char *strings[] = {
1893 "0", "2", "3", "I", "K", "d", "H", "J", "Q", "N", "n", "q", "j", "i",
1894 "7", "G", "F", "D", "b", "x", "g", "B", "e", "v", "V", "T", "f", "E",
1895 "S", "8", "A", "k", "X", "p", "C", "R", "a", "o", "r", "O", "Z", "u",
1896 "6", "1", "w", "L", "P", "M", "c", "U", "h", "9", "t", "5", "W", "Y",
1897 "m", "s", "l", "4",
1898#if 0
1899 "a", "ab", "absque", "coram", "de",
1900 "palam", "clam", "cum", "ex", "e",
1901 "sine", "tenus", "pro", "prae",
1902 "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",
1903 "penguin", "blancmange", "pangolin", "whale", "hedgehog",
1904 "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",
1905 "murfl", "spoo", "breen", "flarn", "octothorpe",
1906 "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",
1907 "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",
1908 "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",
1909 "wand", "ring", "amulet"
1910#endif
1911};
1912
1913#define NSTR lenof(strings)
1914
1915void findtest(void) {
1916 static const int rels[] = {
1917 REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT
1918 };
1919 static const char *const relnames[] = {
1920 "EQ", "GE", "LE", "LT", "GT"
1921 };
1922 int i, j, rel, index;
1923 char *p, *ret, *realret, *realret2;
1924 int lo, hi, mid, c;
1925
1926 for (i = 0; i < (int)NSTR; i++) {
1927 p = strings[i];
1928 for (j = 0; j < (int)(sizeof(rels)/sizeof(*rels)); j++) {
1929 rel = rels[j];
1930
1931 lo = 0; hi = arraylen-1;
1932 while (lo <= hi) {
1933 mid = (lo + hi) / 2;
1934 c = strcmp(p, array[mid]);
1935 if (c < 0)
1936 hi = mid-1;
1937 else if (c > 0)
1938 lo = mid+1;
1939 else
1940 break;
1941 }
1942
1943 if (c == 0) {
1944 if (rel == REL234_LT)
1945 ret = (mid > 0 ? array[--mid] : NULL);
1946 else if (rel == REL234_GT)
1947 ret = (mid < arraylen-1 ? array[++mid] : NULL);
1948 else
1949 ret = array[mid];
1950 } else {
1951 assert(lo == hi+1);
1952 if (rel == REL234_LT || rel == REL234_LE) {
1953 mid = hi;
1954 ret = (hi >= 0 ? array[hi] : NULL);
1955 } else if (rel == REL234_GT || rel == REL234_GE) {
1956 mid = lo;
1957 ret = (lo < arraylen ? array[lo] : NULL);
1958 } else
1959 ret = NULL;
1960 }
1961
1962 realret = findrelpos234(tree, p, NULL, rel, &index);
1963 if (realret != ret) {
1964 error("find(\"%s\",%s) gave %s should be %s",
1965 p, relnames[j], realret, ret);
1966 }
1967 if (realret && index != mid) {
1968 error("find(\"%s\",%s) gave %d should be %d",
1969 p, relnames[j], index, mid);
1970 }
1971 if (realret && rel == REL234_EQ) {
1972 realret2 = index234(tree, index);
1973 if (realret2 != realret) {
1974 error("find(\"%s\",%s) gave %s(%d) but %d -> %s",
1975 p, relnames[j], realret, index, index, realret2);
1976 }
1977 }
1978#if 0
1979 printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],
1980 realret, index);
1981#endif
1982 }
1983 }
1984
1985 realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);
1986 if (arraylen && (realret != array[0] || index != 0)) {
1987 error("find(NULL,GT) gave %s(%d) should be %s(0)",
1988 realret, index, array[0]);
1989 } else if (!arraylen && (realret != NULL)) {
1990 error("find(NULL,GT) gave %s(%d) should be NULL",
1991 realret, index);
1992 }
1993
1994 realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);
1995 if (arraylen && (realret != array[arraylen-1] || index != arraylen-1)) {
1996 error("find(NULL,LT) gave %s(%d) should be %s(0)",
1997 realret, index, array[arraylen-1]);
1998 } else if (!arraylen && (realret != NULL)) {
1999 error("find(NULL,LT) gave %s(%d) should be NULL",
2000 realret, index);
2001 }
2002}
2003
2004void splittest(tree234 *tree, void **array, int arraylen) {
2005 int i;
2006 tree234 *tree3, *tree4;
2007 for (i = 0; i <= arraylen; i++) {
2008 tree3 = copytree234(tree, NULL, NULL);
2009 tree4 = splitpos234(tree3, i, 0);
2010 verifytree(tree3, array, i);
2011 verifytree(tree4, array+i, arraylen-i);
2012 join234(tree3, tree4);
2013 freetree234(tree4); /* left empty by join */
2014 verifytree(tree3, array, arraylen);
2015 freetree234(tree3);
2016 }
2017}
2018
2019int main(void) {
2020 int in[NSTR];
2021 int i, j, k;
2022 int tworoot, tmplen;
2023 unsigned seed = 0;
2024 tree234 *tree2, *tree3, *tree4;
2025 int c;
2026
2027 setvbuf(stdout, NULL, _IOLBF, 0);
2028
2029 for (i = 0; i < (int)NSTR; i++) in[i] = 0;
2030 array = NULL;
2031 arraylen = arraysize = 0;
2032 tree = newtree234(mycmp);
2033 cmp = mycmp;
2034
2035 verify();
2036 for (i = 0; i < 10000; i++) {
2037 j = randomnumber(&seed);
2038 j %= NSTR;
2039 printf("trial: %d\n", i);
2040 if (in[j]) {
2041 printf("deleting %s (%d)\n", strings[j], j);
2042 deltest(strings[j]);
2043 in[j] = 0;
2044 } else {
2045 printf("adding %s (%d)\n", strings[j], j);
2046 addtest(strings[j]);
2047 in[j] = 1;
2048 }
2049 disptree(tree);
2050 findtest();
2051 }
2052
2053 while (arraylen > 0) {
2054 j = randomnumber(&seed);
2055 j %= arraylen;
2056 deltest(array[j]);
2057 }
2058
2059 freetree234(tree);
2060
2061 /*
2062 * Now try an unsorted tree. We don't really need to test
2063 * delpos234 because we know del234 is based on it, so it's
2064 * already been tested in the above sorted-tree code; but for
2065 * completeness we'll use it to tear down our unsorted tree
2066 * once we've built it.
2067 */
2068 tree = newtree234(NULL);
2069 cmp = NULL;
2070 verify();
2071 for (i = 0; i < 1000; i++) {
2072 printf("trial: %d\n", i);
2073 j = randomnumber(&seed);
2074 j %= NSTR;
2075 k = randomnumber(&seed);
2076 k %= count234(tree)+1;
2077 printf("adding string %s at index %d\n", strings[j], k);
2078 addpostest(strings[j], k);
2079 }
2080
2081 /*
2082 * While we have this tree in its full form, we'll take a copy
2083 * of it to use in split and join testing.
2084 */
2085 tree2 = copytree234(tree, NULL, NULL);
2086 verifytree(tree2, array, arraylen);/* check the copy is accurate */
2087 /*
2088 * Split tests. Split the tree at every possible point and
2089 * check the resulting subtrees.
2090 */
2091 tworoot = (!tree2->root->elems[1]);/* see if it has a 2-root */
2092 splittest(tree2, array, arraylen);
2093 /*
2094 * Now do the split test again, but on a tree that has a 2-root
2095 * (if the previous one didn't) or doesn't (if the previous one
2096 * did).
2097 */
2098 tmplen = arraylen;
2099 while ((!tree2->root->elems[1]) == tworoot) {
2100 delpos234(tree2, --tmplen);
2101 }
2102 printf("now trying splits on second tree\n");
2103 splittest(tree2, array, tmplen);
2104 freetree234(tree2);
2105
2106 /*
2107 * Back to the main testing of uncounted trees.
2108 */
2109 while (count234(tree) > 0) {
2110 printf("cleanup: tree size %d\n", count234(tree));
2111 j = randomnumber(&seed);
2112 j %= count234(tree);
2113 printf("deleting string %s from index %d\n", (char *)array[j], j);
2114 delpostest(j);
2115 }
2116 freetree234(tree);
2117
2118 /*
2119 * Finally, do some testing on split/join on _sorted_ trees. At
2120 * the same time, we'll be testing split on very small trees.
2121 */
2122 tree = newtree234(mycmp);
2123 cmp = mycmp;
2124 arraylen = 0;
2125 for (i = 0; i < 16; i++) {
2126 addtest(strings[i]);
2127 tree2 = copytree234(tree, NULL, NULL);
2128 splittest(tree2, array, arraylen);
2129 freetree234(tree2);
2130 }
2131 freetree234(tree);
2132
2133 /*
2134 * Test silly cases of join: join(emptytree, emptytree), and
2135 * also ensure join correctly spots when sorted trees fail the
2136 * ordering constraint.
2137 */
2138 tree = newtree234(mycmp);
2139 tree2 = newtree234(mycmp);
2140 tree3 = newtree234(mycmp);
2141 tree4 = newtree234(mycmp);
2142 assert(mycmp(strings[0], strings[1]) < 0); /* just in case :-) */
2143 add234(tree2, strings[1]);
2144 add234(tree4, strings[0]);
2145 array[0] = strings[0];
2146 array[1] = strings[1];
2147 verifytree(tree, array, 0);
2148 verifytree(tree2, array+1, 1);
2149 verifytree(tree3, array, 0);
2150 verifytree(tree4, array, 1);
2151
2152 /*
2153 * So:
2154 * - join(tree,tree3) should leave both tree and tree3 unchanged.
2155 * - joinr(tree,tree2) should leave both tree and tree2 unchanged.
2156 * - join(tree4,tree3) should leave both tree3 and tree4 unchanged.
2157 * - join(tree, tree2) should move the element from tree2 to tree.
2158 * - joinr(tree4, tree3) should move the element from tree4 to tree3.
2159 * - join(tree,tree3) should return NULL and leave both unchanged.
2160 * - join(tree3,tree) should work and create a bigger tree in tree3.
2161 */
2162 assert(tree == join234(tree, tree3));
2163 verifytree(tree, array, 0);
2164 verifytree(tree3, array, 0);
2165 assert(tree2 == join234r(tree, tree2));
2166 verifytree(tree, array, 0);
2167 verifytree(tree2, array+1, 1);
2168 assert(tree4 == join234(tree4, tree3));
2169 verifytree(tree3, array, 0);
2170 verifytree(tree4, array, 1);
2171 assert(tree == join234(tree, tree2));
2172 verifytree(tree, array+1, 1);
2173 verifytree(tree2, array, 0);
2174 assert(tree3 == join234r(tree4, tree3));
2175 verifytree(tree3, array, 1);
2176 verifytree(tree4, array, 0);
2177 assert(NULL == join234(tree, tree3));
2178 verifytree(tree, array+1, 1);
2179 verifytree(tree3, array, 1);
2180 assert(tree3 == join234(tree3, tree));
2181 verifytree(tree3, array, 2);
2182 verifytree(tree, array, 0);
2183
2184 return 0;
2185}
2186
2187#endif
2188
2189#if 0 /* sorted list of strings might be useful */
2190{
2191 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x",
2192}
2193#endif