Instead of traversing a list of paragraphs, mark_attr_ends() now
[sgt/halibut] / misc.c
1 /*
2 * misc.c: miscellaneous useful items
3 */
4
5 #include <stdarg.h>
6 #include "halibut.h"
7
8 char *adv(char *s) {
9 return s + 1 + strlen(s);
10 }
11
12 struct stackTag {
13 void **data;
14 int sp;
15 int size;
16 };
17
18 stack stk_new(void) {
19 stack s;
20
21 s = mknew(struct stackTag);
22 s->sp = 0;
23 s->size = 0;
24 s->data = NULL;
25
26 return s;
27 }
28
29 void stk_free(stack s) {
30 sfree(s->data);
31 sfree(s);
32 }
33
34 void stk_push(stack s, void *item) {
35 if (s->size <= s->sp) {
36 s->size = s->sp + 32;
37 s->data = resize(s->data, s->size);
38 }
39 s->data[s->sp++] = item;
40 }
41
42 void *stk_pop(stack s) {
43 if (s->sp > 0)
44 return s->data[--s->sp];
45 else
46 return NULL;
47 }
48
49 void *stk_top(stack s) {
50 if (s->sp > 0)
51 return s->data[s->sp-1];
52 else
53 return NULL;
54 }
55
56 /*
57 * Small routines to amalgamate a string from an input source.
58 */
59 const rdstring empty_rdstring = {0, 0, NULL};
60 const rdstringc empty_rdstringc = {0, 0, NULL};
61
62 void rdadd(rdstring *rs, wchar_t c) {
63 if (rs->pos >= rs->size-1) {
64 rs->size = rs->pos + 128;
65 rs->text = resize(rs->text, rs->size);
66 }
67 rs->text[rs->pos++] = c;
68 rs->text[rs->pos] = 0;
69 }
70 void rdadds(rdstring *rs, wchar_t const *p) {
71 int len = ustrlen(p);
72 if (rs->pos >= rs->size - len) {
73 rs->size = rs->pos + len + 128;
74 rs->text = resize(rs->text, rs->size);
75 }
76 ustrcpy(rs->text + rs->pos, p);
77 rs->pos += len;
78 }
79 wchar_t *rdtrim(rdstring *rs) {
80 rs->text = resize(rs->text, rs->pos + 1);
81 return rs->text;
82 }
83
84 void rdaddc(rdstringc *rs, char c) {
85 if (rs->pos >= rs->size-1) {
86 rs->size = rs->pos + 128;
87 rs->text = resize(rs->text, rs->size);
88 }
89 rs->text[rs->pos++] = c;
90 rs->text[rs->pos] = 0;
91 }
92 void rdaddsc(rdstringc *rs, char const *p) {
93 int len = strlen(p);
94 if (rs->pos >= rs->size - len) {
95 rs->size = rs->pos + len + 128;
96 rs->text = resize(rs->text, rs->size);
97 }
98 strcpy(rs->text + rs->pos, p);
99 rs->pos += len;
100 }
101 char *rdtrimc(rdstringc *rs) {
102 rs->text = resize(rs->text, rs->pos + 1);
103 return rs->text;
104 }
105
106 static int compare_wordlists_literally(word *a, word *b) {
107 int t;
108 while (a && b) {
109 if (a->type != b->type)
110 return (a->type < b->type ? -1 : +1); /* FIXME? */
111 t = a->type;
112 if ((t != word_Normal && t != word_Code &&
113 t != word_WeakCode && t != word_Emph) ||
114 a->alt || b->alt) {
115 int c;
116 if (a->text && b->text) {
117 c = ustricmp(a->text, b->text);
118 if (c)
119 return c;
120 }
121 c = compare_wordlists_literally(a->alt, b->alt);
122 if (c)
123 return c;
124 a = a->next;
125 b = b->next;
126 } else {
127 wchar_t *ap = a->text, *bp = b->text;
128 while (*ap && *bp) {
129 wchar_t ac = utolower(*ap), bc = utolower(*bp);
130 if (ac != bc)
131 return (ac < bc ? -1 : +1);
132 if (!*++ap && a->next && a->next->type == t && !a->next->alt)
133 a = a->next, ap = a->text;
134 if (!*++bp && b->next && b->next->type == t && !b->next->alt)
135 b = b->next, bp = b->text;
136 }
137 if (*ap || *bp)
138 return (*ap ? +1 : -1);
139 a = a->next;
140 b = b->next;
141 }
142 }
143
144 if (a || b)
145 return (a ? +1 : -1);
146 else
147 return 0;
148 }
149
150 int compare_wordlists(word *a, word *b) {
151 /*
152 * First we compare only the alphabetic content of the word
153 * lists, with case not a factor. If that comes out equal,
154 * _then_ we compare the word lists literally.
155 */
156 struct {
157 word *w;
158 int i;
159 wchar_t c;
160 } pos[2];
161
162 pos[0].w = a;
163 pos[1].w = b;
164 pos[0].i = pos[1].i = 0;
165
166 while (1) {
167 /*
168 * Find the next alphabetic character in each word list.
169 */
170 int k;
171
172 for (k = 0; k < 2; k++) {
173 /*
174 * Advance until we hit either an alphabetic character
175 * or the end of the word list.
176 */
177 while (1) {
178 if (!pos[k].w) {
179 /* End of word list. */
180 pos[k].c = 0;
181 break;
182 } else if (!pos[k].w->text || !pos[k].w->text[pos[k].i]) {
183 /* No characters remaining in this word; move on. */
184 pos[k].w = pos[k].w->next;
185 pos[k].i = 0;
186 } else if (!uisalpha(pos[k].w->text[pos[k].i])) {
187 /* This character isn't alphabetic; move on. */
188 pos[k].i++;
189 } else {
190 /* We have an alphabetic! Lowercase it and continue. */
191 pos[k].c = utolower(pos[k].w->text[pos[k].i]);
192 break;
193 }
194 }
195 }
196
197 if (pos[0].c < pos[1].c)
198 return -1;
199 else if (pos[0].c > pos[1].c)
200 return +1;
201
202 if (!pos[0].c)
203 break; /* they're equal */
204
205 pos[0].i++;
206 pos[1].i++;
207 }
208
209 /*
210 * If we reach here, the strings were alphabetically equal, so
211 * compare in more detail.
212 */
213 return compare_wordlists_literally(a, b);
214 }
215
216 void mark_attr_ends(word *words)
217 {
218 word *w, *wp;
219
220 wp = NULL;
221 for (w = words; w; w = w->next) {
222 if (isattr(w->type)) {
223 int before = (wp && isattr(wp->type) &&
224 sameattr(wp->type, w->type));
225 int after = (w->next && isattr(w->next->type) &&
226 sameattr(w->next->type, w->type));
227 w->aux |= (before ?
228 (after ? attr_Always : attr_Last) :
229 (after ? attr_First : attr_Only));
230 }
231 wp = w;
232 }
233 }
234
235 /*
236 * This function implements the optimal paragraph wrapping
237 * algorithm, pretty much as used in TeX. A cost function is
238 * defined for each line of the wrapped paragraph (typically some
239 * convex function of the difference between the line's length and
240 * its desired length), and a dynamic programming approach is used
241 * to optimise globally across all possible layouts of the
242 * paragraph to find the one with the minimum total cost.
243 *
244 * The function as implemented here gives a choice of two options
245 * for the cost function:
246 *
247 * - If `natural_space' is zero, then the algorithm attempts to
248 * make each line the maximum possible width (either `width' or
249 * `subsequentwidth' depending on whether it's the first line of
250 * the paragraph or not), and the cost function is simply the
251 * square of the unused space at the end of each line. This is a
252 * simple mechanism suitable for use in fixed-pitch environments
253 * such as plain text displayed on a terminal.
254 *
255 * - However, if `natural_space' is positive, the algorithm
256 * assumes the medium is fully graphical and that the width of
257 * space characters can be adjusted finely, and it attempts to
258 * make each _space character_ the width given in
259 * `natural_space'. (The provided width function should return
260 * the _minimum_ acceptable width of a space character in this
261 * case.) Therefore, the cost function for a line is dependent
262 * on the number of spaces on that line as well as the amount by
263 * which the line width differs from the optimum.
264 */
265 wrappedline *wrap_para(word *text, int width, int subsequentwidth,
266 int (*widthfn)(void *, word *), void *ctx,
267 int natural_space) {
268 wrappedline *head = NULL, **ptr = &head;
269 int nwords, wordsize;
270 struct wrapword {
271 word *begin, *end;
272 int width;
273 int spacewidth;
274 int cost;
275 int nwords;
276 } *wrapwords;
277 int i, j, n;
278
279 /*
280 * Break the line up into wrappable components.
281 */
282 nwords = wordsize = 0;
283 wrapwords = NULL;
284 while (text) {
285 if (nwords >= wordsize) {
286 wordsize = nwords + 64;
287 wrapwords = srealloc(wrapwords, wordsize * sizeof(*wrapwords));
288 }
289 wrapwords[nwords].width = 0;
290 wrapwords[nwords].begin = text;
291 while (text) {
292 wrapwords[nwords].width += widthfn(ctx, text);
293 wrapwords[nwords].end = text->next;
294 if (text->next && (text->next->type == word_WhiteSpace ||
295 text->next->type == word_EmphSpace ||
296 text->breaks))
297 break;
298 text = text->next;
299 }
300 if (text && text->next && (text->next->type == word_WhiteSpace ||
301 text->next->type == word_EmphSpace)) {
302 wrapwords[nwords].spacewidth = widthfn(ctx, text->next);
303 text = text->next;
304 } else {
305 wrapwords[nwords].spacewidth = 0;
306 }
307 nwords++;
308 if (text)
309 text = text->next;
310 }
311
312 /*
313 * Perform the dynamic wrapping algorithm: work backwards from
314 * nwords-1, determining the optimal wrapping for each terminal
315 * subsequence of the paragraph.
316 */
317 for (i = nwords; i-- ;) {
318 int best = -1;
319 int bestcost = 0;
320 int cost;
321 int linelen = 0, spacewidth = 0, minspacewidth = 0;
322 int nspaces;
323 int thiswidth = (i == 0 ? width : subsequentwidth);
324
325 j = 0;
326 nspaces = 0;
327 while (i+j < nwords) {
328 /*
329 * See what happens if we put j+1 words on this line.
330 */
331 if (spacewidth) {
332 nspaces++;
333 minspacewidth = spacewidth;
334 }
335 linelen += spacewidth + wrapwords[i+j].width;
336 spacewidth = wrapwords[i+j].spacewidth;
337 j++;
338 if (linelen > thiswidth) {
339 /*
340 * If we're over the width limit, abandon ship,
341 * _unless_ there is no best-effort yet (which will
342 * only happen if the first word is too long all by
343 * itself).
344 */
345 if (best > 0)
346 break;
347 }
348
349 /*
350 * Compute the cost of this line. The method of doing
351 * this differs hugely depending on whether
352 * natural_space is nonzero or not.
353 */
354 if (natural_space) {
355 if (!nspaces && linelen > thiswidth) {
356 /*
357 * Special case: if there are no spaces at all
358 * on the line because one single word is too
359 * long for its line, cost is zero because
360 * there's nothing we can do about it anyway.
361 */
362 cost = 0;
363 } else {
364 int shortfall = thiswidth - linelen;
365 int spaceextra = shortfall / (nspaces ? nspaces : 1);
366 int spaceshortfall = natural_space -
367 (minspacewidth + spaceextra);
368
369 if (i+j == nwords && spaceshortfall < 0) {
370 /*
371 * Special case: on the very last line of
372 * the paragraph, we don't score penalty
373 * points for having to _stretch_ the line,
374 * since we won't stretch it anyway.
375 * However, we score penalties as normal
376 * for having to squeeze it.
377 */
378 cost = 0;
379 } else {
380 /*
381 * Squaring this number is tricky since
382 * it's liable to be quite big. Let's
383 * divide it through by 256.
384 */
385 int x = spaceshortfall >> 8;
386 int xf = spaceshortfall & 0xFF;
387
388 /*
389 * Not counting strange variable-fixed-
390 * point oddities, we are computing
391 *
392 * (x+xf)^2 = x^2 + 2*x*xf + xf*xf
393 *
394 * except that _our_ xf is 256 times the
395 * one listed there.
396 */
397
398 cost = x * x;
399 cost += (2 * x * xf) >> 8;
400 }
401 }
402 } else {
403 if (i+j == nwords) {
404 /*
405 * Special case: if we're at the very end of the
406 * paragraph, we don't score penalty points for the
407 * white space left on the line.
408 */
409 cost = 0;
410 } else {
411 cost = (thiswidth-linelen) * (thiswidth-linelen);
412 }
413 }
414
415 /*
416 * Add in the cost of wrapping all lines after this
417 * point too.
418 */
419 if (i+j < nwords)
420 cost += wrapwords[i+j].cost;
421
422 /*
423 * We compare bestcost >= cost, not bestcost > cost,
424 * because in cases where the costs are identical we
425 * want to try to look like the greedy algorithm,
426 * because readers are likely to have spent a lot of
427 * time looking at greedy-wrapped paragraphs and
428 * there's no point violating the Principle of Least
429 * Surprise if it doesn't actually gain anything.
430 */
431 if (best < 0 || bestcost >= cost) {
432 bestcost = cost;
433 best = j;
434 }
435 }
436 /*
437 * Now we know the optimal answer for this terminal
438 * subsequence, so put it in wrapwords.
439 */
440 wrapwords[i].cost = bestcost;
441 wrapwords[i].nwords = best;
442 }
443
444 /*
445 * We've wrapped the paragraph. Now build the output
446 * `wrappedline' list.
447 */
448 i = 0;
449 while (i < nwords) {
450 wrappedline *w = mknew(wrappedline);
451 *ptr = w;
452 ptr = &w->next;
453 w->next = NULL;
454
455 n = wrapwords[i].nwords;
456 w->begin = wrapwords[i].begin;
457 w->end = wrapwords[i+n-1].end;
458
459 /*
460 * Count along the words to find nspaces and shortfall.
461 */
462 w->nspaces = 0;
463 w->shortfall = width;
464 for (j = 0; j < n; j++) {
465 w->shortfall -= wrapwords[i+j].width;
466 if (j < n-1 && wrapwords[i+j].spacewidth) {
467 w->nspaces++;
468 w->shortfall -= wrapwords[i+j].spacewidth;
469 }
470 }
471 i += n;
472 }
473
474 sfree(wrapwords);
475
476 return head;
477 }
478
479 void wrap_free(wrappedline *w) {
480 while (w) {
481 wrappedline *t = w->next;
482 sfree(w);
483 w = t;
484 }
485 }
486
487 void cmdline_cfg_add(paragraph *cfg, char *string)
488 {
489 wchar_t *ustring;
490 int upos, ulen, pos, len;
491
492 ulen = 0;
493 while (cfg->keyword[ulen])
494 ulen += 1 + ustrlen(cfg->keyword+ulen);
495 len = 0;
496 while (cfg->origkeyword[len])
497 len += 1 + strlen(cfg->origkeyword+len);
498
499 ustring = ufroma_locale_dup(string);
500
501 upos = ulen;
502 ulen += 2 + ustrlen(ustring);
503 cfg->keyword = resize(cfg->keyword, ulen);
504 ustrcpy(cfg->keyword+upos, ustring);
505 cfg->keyword[ulen-1] = L'\0';
506
507 pos = len;
508 len += 2 + strlen(string);
509 cfg->origkeyword = resize(cfg->origkeyword, len);
510 strcpy(cfg->origkeyword+pos, string);
511 cfg->origkeyword[len-1] = '\0';
512
513 sfree(ustring);
514 }
515
516 paragraph *cmdline_cfg_new(void)
517 {
518 paragraph *p;
519
520 p = mknew(paragraph);
521 memset(p, 0, sizeof(*p));
522 p->type = para_Config;
523 p->next = NULL;
524 p->fpos.filename = "<command line>";
525 p->fpos.line = p->fpos.col = -1;
526 p->keyword = ustrdup(L"\0");
527 p->origkeyword = dupstr("\0");
528
529 return p;
530 }
531
532 paragraph *cmdline_cfg_simple(char *string, ...)
533 {
534 va_list ap;
535 char *s;
536 paragraph *p;
537
538 p = cmdline_cfg_new();
539 cmdline_cfg_add(p, string);
540
541 va_start(ap, string);
542 while ((s = va_arg(ap, char *)) != NULL)
543 cmdline_cfg_add(p, s);
544 va_end(ap);
545
546 return p;
547 }