Added an info(1) backend, which constructs .info files directly
[sgt/halibut] / misc.c
1 /*
2 * misc.c: miscellaneous useful items
3 */
4
5 #include "halibut.h"
6
7 struct stackTag {
8 void **data;
9 int sp;
10 int size;
11 };
12
13 stack stk_new(void) {
14 stack s;
15
16 s = mknew(struct stackTag);
17 s->sp = 0;
18 s->size = 0;
19 s->data = NULL;
20
21 return s;
22 }
23
24 void stk_free(stack s) {
25 sfree(s->data);
26 sfree(s);
27 }
28
29 void stk_push(stack s, void *item) {
30 if (s->size <= s->sp) {
31 s->size = s->sp + 32;
32 s->data = resize(s->data, s->size);
33 }
34 s->data[s->sp++] = item;
35 }
36
37 void *stk_pop(stack s) {
38 if (s->sp > 0)
39 return s->data[--s->sp];
40 else
41 return NULL;
42 }
43
44 void *stk_top(stack s) {
45 if (s->sp > 0)
46 return s->data[s->sp-1];
47 else
48 return NULL;
49 }
50
51 /*
52 * Small routines to amalgamate a string from an input source.
53 */
54 const rdstring empty_rdstring = {0, 0, NULL};
55 const rdstringc empty_rdstringc = {0, 0, NULL};
56
57 void rdadd(rdstring *rs, wchar_t c) {
58 if (rs->pos >= rs->size-1) {
59 rs->size = rs->pos + 128;
60 rs->text = resize(rs->text, rs->size);
61 }
62 rs->text[rs->pos++] = c;
63 rs->text[rs->pos] = 0;
64 }
65 void rdadds(rdstring *rs, wchar_t const *p) {
66 int len = ustrlen(p);
67 if (rs->pos >= rs->size - len) {
68 rs->size = rs->pos + len + 128;
69 rs->text = resize(rs->text, rs->size);
70 }
71 ustrcpy(rs->text + rs->pos, p);
72 rs->pos += len;
73 }
74 wchar_t *rdtrim(rdstring *rs) {
75 rs->text = resize(rs->text, rs->pos + 1);
76 return rs->text;
77 }
78
79 void rdaddc(rdstringc *rs, char c) {
80 if (rs->pos >= rs->size-1) {
81 rs->size = rs->pos + 128;
82 rs->text = resize(rs->text, rs->size);
83 }
84 rs->text[rs->pos++] = c;
85 rs->text[rs->pos] = 0;
86 }
87 void rdaddsc(rdstringc *rs, char const *p) {
88 int len = strlen(p);
89 if (rs->pos >= rs->size - len) {
90 rs->size = rs->pos + len + 128;
91 rs->text = resize(rs->text, rs->size);
92 }
93 strcpy(rs->text + rs->pos, p);
94 rs->pos += len;
95 }
96 char *rdtrimc(rdstringc *rs) {
97 rs->text = resize(rs->text, rs->pos + 1);
98 return rs->text;
99 }
100
101 static int compare_wordlists_literally(word *a, word *b) {
102 int t;
103 while (a && b) {
104 if (a->type != b->type)
105 return (a->type < b->type ? -1 : +1); /* FIXME? */
106 t = a->type;
107 if ((t != word_Normal && t != word_Code &&
108 t != word_WeakCode && t != word_Emph) ||
109 a->alt || b->alt) {
110 int c;
111 if (a->text && b->text) {
112 c = ustricmp(a->text, b->text);
113 if (c)
114 return c;
115 }
116 c = compare_wordlists_literally(a->alt, b->alt);
117 if (c)
118 return c;
119 a = a->next;
120 b = b->next;
121 } else {
122 wchar_t *ap = a->text, *bp = b->text;
123 while (*ap && *bp) {
124 wchar_t ac = utolower(*ap), bc = utolower(*bp);
125 if (ac != bc)
126 return (ac < bc ? -1 : +1);
127 if (!*++ap && a->next && a->next->type == t && !a->next->alt)
128 a = a->next, ap = a->text;
129 if (!*++bp && b->next && b->next->type == t && !b->next->alt)
130 b = b->next, bp = b->text;
131 }
132 if (*ap || *bp)
133 return (*ap ? +1 : -1);
134 a = a->next;
135 b = b->next;
136 }
137 }
138
139 if (a || b)
140 return (a ? +1 : -1);
141 else
142 return 0;
143 }
144
145 int compare_wordlists(word *a, word *b) {
146 /*
147 * First we compare only the alphabetic content of the word
148 * lists, with case not a factor. If that comes out equal,
149 * _then_ we compare the word lists literally.
150 */
151 struct {
152 word *w;
153 int i;
154 wchar_t c;
155 } pos[2];
156
157 pos[0].w = a;
158 pos[1].w = b;
159 pos[0].i = pos[1].i = 0;
160
161 while (1) {
162 /*
163 * Find the next alphabetic character in each word list.
164 */
165 int k;
166
167 for (k = 0; k < 2; k++) {
168 /*
169 * Advance until we hit either an alphabetic character
170 * or the end of the word list.
171 */
172 while (1) {
173 if (!pos[k].w) {
174 /* End of word list. */
175 pos[k].c = 0;
176 break;
177 } else if (!pos[k].w->text || !pos[k].w->text[pos[k].i]) {
178 /* No characters remaining in this word; move on. */
179 pos[k].w = pos[k].w->next;
180 pos[k].i = 0;
181 } else if (!uisalpha(pos[k].w->text[pos[k].i])) {
182 /* This character isn't alphabetic; move on. */
183 pos[k].i++;
184 } else {
185 /* We have an alphabetic! Lowercase it and continue. */
186 pos[k].c = utolower(pos[k].w->text[pos[k].i]);
187 break;
188 }
189 }
190 }
191
192 if (pos[0].c < pos[1].c)
193 return -1;
194 else if (pos[0].c > pos[1].c)
195 return +1;
196
197 if (!pos[0].c)
198 break; /* they're equal */
199
200 pos[0].i++;
201 pos[1].i++;
202 }
203
204 /*
205 * If we reach here, the strings were alphabetically equal, so
206 * compare in more detail.
207 */
208 return compare_wordlists_literally(a, b);
209 }
210
211 void mark_attr_ends(paragraph *sourceform) {
212 paragraph *p;
213 word *w, *wp;
214 for (p = sourceform; p; p = p->next) {
215 wp = NULL;
216 for (w = p->words; w; w = w->next) {
217 if (isattr(w->type)) {
218 int before = (wp && isattr(wp->type) &&
219 sameattr(wp->type, w->type));
220 int after = (w->next && isattr(w->next->type) &&
221 sameattr(w->next->type, w->type));
222 w->aux |= (before ?
223 (after ? attr_Always : attr_Last) :
224 (after ? attr_First : attr_Only));
225 }
226 wp = w;
227 }
228 }
229 }
230
231 wrappedline *wrap_para(word *text, int width, int subsequentwidth,
232 int (*widthfn)(word *)) {
233 wrappedline *head = NULL, **ptr = &head;
234 int nwords, wordsize;
235 struct wrapword {
236 word *begin, *end;
237 int width;
238 int spacewidth;
239 int cost;
240 int nwords;
241 } *wrapwords;
242 int i, j, n;
243
244 /*
245 * Break the line up into wrappable components.
246 */
247 nwords = wordsize = 0;
248 wrapwords = NULL;
249 while (text) {
250 if (nwords >= wordsize) {
251 wordsize = nwords + 64;
252 wrapwords = srealloc(wrapwords, wordsize * sizeof(*wrapwords));
253 }
254 wrapwords[nwords].width = 0;
255 wrapwords[nwords].begin = text;
256 while (text) {
257 wrapwords[nwords].width += widthfn(text);
258 wrapwords[nwords].end = text->next;
259 if (text->next && (text->next->type == word_WhiteSpace ||
260 text->next->type == word_EmphSpace ||
261 text->breaks))
262 break;
263 text = text->next;
264 }
265 if (text && text->next && (text->next->type == word_WhiteSpace ||
266 text->next->type == word_EmphSpace)) {
267 wrapwords[nwords].spacewidth = widthfn(text->next);
268 text = text->next;
269 } else {
270 wrapwords[nwords].spacewidth = 0;
271 }
272 nwords++;
273 if (text)
274 text = text->next;
275 }
276
277 /*
278 * Perform the dynamic wrapping algorithm: work backwards from
279 * nwords-1, determining the optimal wrapping for each terminal
280 * subsequence of the paragraph.
281 */
282 for (i = nwords; i-- ;) {
283 int best = -1;
284 int bestcost = 0;
285 int cost;
286 int linelen = 0, spacewidth = 0;
287 int seenspace;
288 int thiswidth = (i == 0 ? width : subsequentwidth);
289
290 j = 0;
291 seenspace = 0;
292 while (i+j < nwords) {
293 /*
294 * See what happens if we put j+1 words on this line.
295 */
296 if (spacewidth)
297 seenspace = 1;
298 linelen += spacewidth + wrapwords[i+j].width;
299 spacewidth = wrapwords[i+j].spacewidth;
300 j++;
301 if (linelen > thiswidth) {
302 /*
303 * If we're over the width limit, abandon ship,
304 * _unless_ there is no best-effort yet (which will
305 * only happen if the first word is too long all by
306 * itself).
307 */
308 if (best > 0)
309 break;
310 }
311 if (i+j == nwords) {
312 /*
313 * Special case: if we're at the very end of the
314 * paragraph, we don't score penalty points for the
315 * white space left on the line.
316 */
317 cost = 0;
318 } else {
319 cost = (thiswidth-linelen) * (thiswidth-linelen);
320 cost += wrapwords[i+j].cost;
321 }
322 /*
323 * We compare bestcost >= cost, not bestcost > cost,
324 * because in cases where the costs are identical we
325 * want to try to look like the greedy algorithm,
326 * because readers are likely to have spent a lot of
327 * time looking at greedy-wrapped paragraphs and
328 * there's no point violating the Principle of Least
329 * Surprise if it doesn't actually gain anything.
330 */
331 if (best < 0 || bestcost >= cost) {
332 bestcost = cost;
333 best = j;
334 }
335 }
336 /*
337 * Now we know the optimal answer for this terminal
338 * subsequence, so put it in wrapwords.
339 */
340 wrapwords[i].cost = bestcost;
341 wrapwords[i].nwords = best;
342 }
343
344 /*
345 * We've wrapped the paragraph. Now build the output
346 * `wrappedline' list.
347 */
348 i = 0;
349 while (i < nwords) {
350 wrappedline *w = mknew(wrappedline);
351 *ptr = w;
352 ptr = &w->next;
353 w->next = NULL;
354
355 n = wrapwords[i].nwords;
356 w->begin = wrapwords[i].begin;
357 w->end = wrapwords[i+n-1].end;
358
359 /*
360 * Count along the words to find nspaces and shortfall.
361 */
362 w->nspaces = 0;
363 w->shortfall = width;
364 for (j = 0; j < n; j++) {
365 w->shortfall -= wrapwords[i+j].width;
366 if (j < n-1 && wrapwords[i+j].spacewidth) {
367 w->nspaces++;
368 w->shortfall -= wrapwords[i+j].spacewidth;
369 }
370 }
371 i += n;
372 }
373
374 sfree(wrapwords);
375
376 return head;
377 }
378
379 void wrap_free(wrappedline *w) {
380 while (w) {
381 wrappedline *t = w->next;
382 sfree(w);
383 w = t;
384 }
385 }