ec-field-test.c: Make the field-element type use internal format.
[secnet] / ec-field-test.c
1 /*
2 * ec-field-test.c: test harness for elliptic-curve field arithmetic
3 *
4 * (The implementations originally came with different test arrangements,
5 * with complicated external dependencies. This file replicates the original
6 * tests, but without the dependencies.)
7 */
8 /*
9 * This file is Free Software. It was originally written for secnet.
10 *
11 * Copyright 2017 Mark Wooding
12 *
13 * You may redistribute secnet as a whole and/or modify it under the
14 * terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 3, or (at your option) any
16 * later version.
17 *
18 * You may redistribute this file and/or modify it under the terms of
19 * the GNU General Public License as published by the Free Software
20 * Foundation; either version 2, or (at your option) any later
21 * version.
22 *
23 * This software is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this software; if not, see
30 * https://www.gnu.org/licenses/gpl.html.
31 */
32
33 #include <stdio.h>
34
35 #include "secnet.h"
36
37 #include "f25519.h"
38 #include "fgoldi.h"
39
40 #define f25519_FESZ 32u
41 #define fgoldi_FESZ 56u
42
43 #define GLUE(x, y) GLUE_(x, y)
44 #define GLUE_(x, y) x##y
45 #define FIELDOP(op) GLUE(FIELD, _##op)
46
47 #define REG_MEMBERS \
48 struct { FIELD x; int ok; } fe;
49 #include "crypto-test.h"
50
51 enum {
52 RZ, RZ0 = RZ, RZ1, RXX = RZ0, RYY = RZ1, NROUT,
53 RM = NROUT, RI = RM, RN = RM,
54 RU, RV, RW, RX, RY, RA,
55 RV0 = RU, RV31 = RV0 + 31,
56 NREG
57 };
58
59 static void init_fe(union regval *v) { v->fe.ok = 1; }
60
61 static void parse_fe(union regval *v, char *p)
62 {
63 octet buf[FIELDOP(FESZ)];
64 size_t n = strlen(p);
65 size_t sz = sizeof(buf);
66
67 if (!*p)
68 v->fe.ok = 0;
69 else {
70 if (sz > n/2) sz = n/2;
71 parse_hex(buf, sz, p); memset(buf + sz, 0, sizeof(buf) - sz);
72 FIELDOP(load)(&v->fe.x, buf);
73 }
74 }
75
76 static void dump_fe(FILE *fp, const union regval *v)
77 {
78 octet buf[FIELDOP(FESZ)];
79
80 if (!v->fe.ok)
81 fprintf(fp, "nil\n");
82 else {
83 FIELDOP(store)(buf, &v->fe.x);
84 dump_hex(fp, buf, sizeof(buf));
85 }
86 }
87
88 static int eq_fe(const union regval *v0, const union regval *v1)
89 {
90 octet buf0[FIELDOP(FESZ)], buf1[FIELDOP(FESZ)];
91
92 if (!v0->fe.ok)
93 return (!v1->fe.ok);
94 else if (!v1->fe.ok)
95 return (0);
96 else {
97 FIELDOP(store)(buf0, &v0->fe.x);
98 FIELDOP(store)(buf1, &v1->fe.x);
99 return (memcmp(buf0, buf1, sizeof(buf0)) == 0);
100 }
101 }
102
103 static const struct regty regty_fe = {
104 init_fe,
105 parse_fe,
106 dump_fe,
107 eq_fe,
108 trivial_regty_release
109 };
110
111 #define BINOP(op) \
112 static void test_##op(struct reg *out, \
113 const struct reg *in, void *ctx) \
114 { FIELDOP(op)(&out[RZ].v.fe.x, &in[RX].v.fe.x, &in[RY].v.fe.x); }
115
116 #define UNOP(op) \
117 static void test_##op(struct reg *out, \
118 const struct reg *in, void *ctx) \
119 { FIELDOP(op)(&out[RZ].v.fe.x, &in[RX].v.fe.x); }
120
121 BINOP(add)
122 BINOP(sub)
123 BINOP(mul)
124 UNOP(neg)
125 UNOP(sqr)
126 UNOP(inv)
127
128 static void test_condneg(struct reg *out, const struct reg *in, void *ctx)
129 { FIELDOP(condneg)(&out[RZ].v.fe.x, &in[RX].v.fe.x, in[RM].v.u); }
130
131 static void test_mulconst(struct reg *out, const struct reg *in, void *ctx)
132 { FIELDOP(mulconst)(&out[RZ].v.fe.x, &in[RX].v.fe.x, in[RA].v.i); }
133
134 static void test_condswap(struct reg *out, const struct reg *in, void *ctx)
135 {
136 FIELD *x = &out[RXX].v.fe.x, *y = &out[RYY].v.fe.x;
137 *x = in[RX].v.fe.x; *y = in[RY].v.fe.x;
138 FIELDOP(condswap)(x, y, in[RM].v.u);
139 }
140
141 static void test_pick2(struct reg *out, const struct reg *in, void *ctx)
142 {
143 FIELDOP(pick2)(&out[RZ].v.fe.x,
144 &in[RX].v.fe.x, &in[RY].v.fe.x, in[RM].v.u);
145 }
146
147 static void test_pickn(struct reg *out, const struct reg *in, void *ctx)
148 {
149 FIELD v[32];
150 unsigned n;
151
152 for (n = 0; in[RV0 + n].f&REGF_LIVE; n++) v[n] = in[RV0 + n].v.fe.x;
153 FIELDOP(pickn)(&out[RZ].v.fe.x, v, n, in[RI].v.u);
154 }
155
156 static void test_quosqrt(struct reg *out, const struct reg *in, void *ctx)
157 {
158 if (FIELDOP(quosqrt)(&out[RZ0].v.fe.x, &in[RX].v.fe.x, &in[RY].v.fe.x))
159 out[RZ0].v.fe.ok = 0;
160 }
161
162 static void run_quosqrt(struct test_state *state, const struct test *test)
163 {
164 test->fn(state->out, state->in, 0);
165
166 /* ..._quosqrt returns an arbitrary square root. The test vector
167 * contains both. We win if we match either.
168 *
169 * So: we always copy the expected Z1 into the computed-Z1 slot. If we
170 * got Z0 wrong, then the test will still fail. If we got Z0 right, then
171 * we'll pass. If our computed Z0 matches the expected Z1, then /also/
172 * pretend we computed Z0 as expected, and then we'll pass.
173 */
174 if (eq_fe(&state->in[RZ1].v, &state->out[RZ].v))
175 state->out[RZ0].v = state->in[RZ0].v;
176 state->out[RZ1].v = state->in[RZ1].v;
177 check_test_output(state, test);
178 }
179
180 static void test_sub_mulc_add_sub_mul(struct reg *out,
181 const struct reg *in, void *ctx)
182 {
183 FIELD t, u;
184
185 FIELDOP(sub)(&t, &in[RU].v.fe.x, &in[RV].v.fe.x);
186 FIELDOP(mulconst)(&t, &t, in[RA].v.i);
187 FIELDOP(add)(&t, &t, &in[RW].v.fe.x);
188 FIELDOP(sub)(&u, &in[RX].v.fe.x, &in[RY].v.fe.x);
189 FIELDOP(mul)(&out[RZ].v.fe.x, &t, &u);
190 }
191
192 #define REG_U { "u", RU, &regty_fe, 0 }
193 #define REG_V { "v", RV, &regty_fe, 0 }
194 #define REG_W { "w", RW, &regty_fe, 0 }
195 #define REG_X { "x", RX, &regty_fe, 0 }
196 #define REG_Y { "y", RY, &regty_fe, 0 }
197 #define REG_A { "a", RA, &regty_int, 0 }
198 #define REG_M { "m", RM, &regty_uint, 0 }
199 #define REG_I { "i", RI, &regty_uint, 0 }
200 #define REG_XX { "xx", RXX, &regty_fe, 0 }
201 #define REG_YY { "yy", RYY, &regty_fe, 0 }
202 #define REG_Z { "z", RZ, &regty_fe, 0 }
203 #define REG_Z0 { "z0", RZ0, &regty_fe, 0 }
204 #define REG_Z1 { "z1", RZ1, &regty_fe, 0 }
205 #define REG_BIGY { "Y", RY, &regty_fe, 0 }
206 #define REG_BIGZ { "Z", RZ, &regty_fe, 0 }
207 #define REG_N { "n", RN, &regty_uint, 0 }
208 #define REG_Vi(i) { "v[" # i "]", RV0 + i, &regty_fe, REGF_OPT }
209 #define REG_VV \
210 REG_Vi( 0), REG_Vi( 1), REG_Vi( 2), REG_Vi( 3), \
211 REG_Vi( 4), REG_Vi( 5), REG_Vi( 6), REG_Vi( 7), \
212 REG_Vi( 8), REG_Vi( 9), REG_Vi(10), REG_Vi(11), \
213 REG_Vi(12), REG_Vi(13), REG_Vi(14), REG_Vi(15), \
214 REG_Vi(16), REG_Vi(17), REG_Vi(18), REG_Vi(19), \
215 REG_Vi(20), REG_Vi(21), REG_Vi(22), REG_Vi(23), \
216 REG_Vi(24), REG_Vi(25), REG_Vi(26), REG_Vi(27), \
217 REG_Vi(28), REG_Vi(29), REG_Vi(30), REG_Vi(31)
218 static const struct regdef
219 unop_regs[] = { REG_X, REG_Z, REGLIST_END },
220 binop_regs[] = { REG_X, REG_Y, REG_Z, REGLIST_END },
221 condneg_regs[] = { REG_X, REG_M, REG_Z, REGLIST_END },
222 mulconst_regs[] = { REG_X, REG_A, REG_Z, REGLIST_END },
223 pick2_regs[] = { REG_X, REG_Y, REG_M, REG_Z, REGLIST_END },
224 pickn_regs[] = { REG_VV, REG_I, REG_Z, REGLIST_END },
225 condswap_regs[] = { REG_X, REG_Y, REG_M, REG_XX, REG_YY, REGLIST_END },
226 quosqrt_regs[] = { REG_X, REG_Y, REG_Z0, REG_Z1, REGLIST_END },
227 sub_mulc_add_sub_mul_regs[] =
228 { REG_U, REG_V, REG_A, REG_W, REG_X, REG_Y, REG_Z, REGLIST_END };
229
230 static const struct test tests[] = {
231 { "add", run_test, binop_regs, test_add },
232 { "sub", run_test, binop_regs, test_sub },
233 { "neg", run_test, unop_regs, test_neg },
234 { "condneg", run_test, condneg_regs, test_condneg },
235 { "condswap", run_test, condswap_regs, test_condswap },
236 { "mulconst", run_test, mulconst_regs, test_mulconst },
237 { "mul", run_test, binop_regs, test_mul },
238 { "sqr", run_test, unop_regs, test_sqr },
239 { "inv", run_test, unop_regs, test_inv },
240 { "pick2", run_test, pick2_regs, test_pick2 },
241 { "pickn", run_test, pickn_regs, test_pickn },
242 { "quosqrt", run_quosqrt, quosqrt_regs, test_quosqrt },
243 { "sub-mulc-add-sub-mul", run_test,
244 sub_mulc_add_sub_mul_regs, test_sub_mulc_add_sub_mul },
245 { 0 }
246 };
247
248 int main(void)
249 { return run_test_suite(NROUT, NREG, sizeof(struct reg), tests, stdin); }