rsa.c: Replace the magic length 1024 with a (larger) constant.
[secnet] / rsa.c
1 /* This file is part of secnet, and is distributed under the terms of
2 the GNU General Public License version 2 or later.
3
4 Copyright (C) 1995-2002 Stephen Early
5 Copyright (C) 2001 Simon Tatham
6 Copyright (C) 2002 Ian Jackson
7 */
8
9 #include <stdio.h>
10 #include <string.h>
11 #include <gmp.h>
12 #include "secnet.h"
13 #include "util.h"
14
15 #define AUTHFILE_ID_STRING "SSH PRIVATE KEY FILE FORMAT 1.1\n"
16
17 #define mpp(s,n) do { char *p = mpz_get_str(NULL,16,n); printf("%s 0x%sL\n", s, p); free(p); } while (0)
18
19 struct rsapriv {
20 closure_t cl;
21 struct rsaprivkey_if ops;
22 struct cloc loc;
23 MP_INT n;
24 MP_INT p, dp;
25 MP_INT q, dq;
26 MP_INT w;
27 };
28 struct rsapub {
29 closure_t cl;
30 struct rsapubkey_if ops;
31 struct cloc loc;
32 MP_INT e;
33 MP_INT n;
34 };
35 /* Sign data. NB data must be smaller than modulus */
36
37 #define RSA_MAX_MODBYTES 2048
38 /* The largest modulus I've seen is 15360 bits, which works out at 1920
39 * bytes. Using keys this big is quite implausible, but it doesn't cost us
40 * much to support them.
41 */
42
43 static const char *hexchars="0123456789abcdef";
44
45 static void emsa_pkcs1(MP_INT *n, MP_INT *m,
46 const uint8_t *data, int32_t datalen)
47 {
48 char buff[2*RSA_MAX_MODBYTES + 1];
49 int msize, i;
50
51 /* RSA PKCS#1 v1.5 signature padding:
52 *
53 * <------------ msize hex digits ---------->
54 *
55 * 00 01 ff ff .... ff ff 00 vv vv vv .... vv
56 *
57 * <--- datalen -->
58 * bytes
59 * = datalen*2 hex digits
60 *
61 * NB that according to PKCS#1 v1.5 we're supposed to include a
62 * hash function OID in the data. We don't do that (because we
63 * don't have the hash function OID to hand here), thus violating
64 * the spec in a way that affects interop but not security.
65 *
66 * -iwj 17.9.2002
67 */
68
69 msize=mpz_sizeinbase(n, 16);
70
71 if (datalen*2+6>=msize) {
72 fatal("rsa_sign: message too big");
73 }
74
75 strcpy(buff,"0001");
76
77 for (i=0; i<datalen; i++) {
78 buff[msize+(-datalen+i)*2]=hexchars[(data[i]&0xf0)>>4];
79 buff[msize+(-datalen+i)*2+1]=hexchars[data[i]&0xf];
80 }
81
82 buff[msize-datalen*2-2]= '0';
83 buff[msize-datalen*2-1]= '0';
84
85 for (i=4; i<msize-datalen*2-2; i++)
86 buff[i]='f';
87
88 buff[msize]=0;
89
90 mpz_set_str(m, buff, 16);
91 }
92
93 static string_t rsa_sign(void *sst, uint8_t *data, int32_t datalen)
94 {
95 struct rsapriv *st=sst;
96 MP_INT a, b, u, v, tmp, tmp2;
97 string_t signature;
98
99 mpz_init(&a);
100 mpz_init(&b);
101
102 /* Construct the message representative. */
103 emsa_pkcs1(&st->n, &a, data, datalen);
104
105 /*
106 * Produce an RSA signature (a^d mod n) using the Chinese
107 * Remainder Theorem. We compute:
108 *
109 * u = a^dp mod p (== a^d mod p, since dp == d mod (p-1))
110 * v = a^dq mod q (== a^d mod q, similarly)
111 *
112 * We also know w == iqmp * q, which has the property that w ==
113 * 0 mod q and w == 1 mod p. So (1-w) has the reverse property
114 * (congruent to 0 mod p and to 1 mod q). Hence we now compute
115 *
116 * b = w * u + (1-w) * v
117 * = w * (u-v) + v
118 *
119 * so that b is congruent to a^d both mod p and mod q. Hence b,
120 * reduced mod n, is the required signature.
121 */
122 mpz_init(&tmp);
123 mpz_init(&tmp2);
124 mpz_init(&u);
125 mpz_init(&v);
126
127 mpz_powm(&u, &a, &st->dp, &st->p);
128 mpz_powm(&v, &a, &st->dq, &st->q);
129 mpz_sub(&tmp, &u, &v);
130 mpz_mul(&tmp2, &tmp, &st->w);
131 mpz_add(&tmp, &tmp2, &v);
132 mpz_mod(&b, &tmp, &st->n);
133
134 mpz_clear(&tmp);
135 mpz_clear(&tmp2);
136 mpz_clear(&u);
137 mpz_clear(&v);
138
139 signature=write_mpstring(&b);
140
141 mpz_clear(&b);
142 mpz_clear(&a);
143 return signature;
144 }
145
146 static rsa_checksig_fn rsa_sig_check;
147 static bool_t rsa_sig_check(void *sst, uint8_t *data, int32_t datalen,
148 cstring_t signature)
149 {
150 struct rsapub *st=sst;
151 MP_INT a, b, c;
152 bool_t ok;
153
154 mpz_init(&a);
155 mpz_init(&b);
156 mpz_init(&c);
157
158 emsa_pkcs1(&st->n, &a, data, datalen);
159
160 mpz_set_str(&b, signature, 16);
161
162 mpz_powm(&c, &b, &st->e, &st->n);
163
164 ok=(mpz_cmp(&a, &c)==0);
165
166 mpz_clear(&c);
167 mpz_clear(&b);
168 mpz_clear(&a);
169
170 return ok;
171 }
172
173 static list_t *rsapub_apply(closure_t *self, struct cloc loc, dict_t *context,
174 list_t *args)
175 {
176 struct rsapub *st;
177 item_t *i;
178 string_t e,n;
179
180 st=safe_malloc(sizeof(*st),"rsapub_apply");
181 st->cl.description="rsapub";
182 st->cl.type=CL_RSAPUBKEY;
183 st->cl.apply=NULL;
184 st->cl.interface=&st->ops;
185 st->ops.st=st;
186 st->ops.check=rsa_sig_check;
187 st->loc=loc;
188
189 i=list_elem(args,0);
190 if (i) {
191 if (i->type!=t_string) {
192 cfgfatal(i->loc,"rsa-public","first argument must be a string\n");
193 }
194 e=i->data.string;
195 if (mpz_init_set_str(&st->e,e,10)!=0) {
196 cfgfatal(i->loc,"rsa-public","encryption key \"%s\" is not a "
197 "decimal number string\n",e);
198 }
199 } else {
200 cfgfatal(loc,"rsa-public","you must provide an encryption key\n");
201 }
202
203 i=list_elem(args,1);
204 if (i) {
205 if (i->type!=t_string) {
206 cfgfatal(i->loc,"rsa-public","second argument must be a string\n");
207 }
208 n=i->data.string;
209 if (mpz_init_set_str(&st->n,n,10)!=0) {
210 cfgfatal(i->loc,"rsa-public","modulus \"%s\" is not a decimal "
211 "number string\n",n);
212 }
213 } else {
214 cfgfatal(loc,"rsa-public","you must provide a modulus\n");
215 }
216 return new_closure(&st->cl);
217 }
218
219 static uint32_t keyfile_get_int(struct cloc loc, FILE *f)
220 {
221 uint32_t r;
222 r=fgetc(f)<<24;
223 r|=fgetc(f)<<16;
224 r|=fgetc(f)<<8;
225 r|=fgetc(f);
226 cfgfile_postreadcheck(loc,f);
227 return r;
228 }
229
230 static uint16_t keyfile_get_short(struct cloc loc, FILE *f)
231 {
232 uint16_t r;
233 r=fgetc(f)<<8;
234 r|=fgetc(f);
235 cfgfile_postreadcheck(loc,f);
236 return r;
237 }
238
239 static list_t *rsapriv_apply(closure_t *self, struct cloc loc, dict_t *context,
240 list_t *args)
241 {
242 struct rsapriv *st;
243 FILE *f;
244 cstring_t filename;
245 item_t *i;
246 long length;
247 uint8_t *b, *c;
248 int cipher_type;
249 MP_INT e,d,iqmp,tmp,tmp2,tmp3;
250 bool_t valid;
251
252 st=safe_malloc(sizeof(*st),"rsapriv_apply");
253 st->cl.description="rsapriv";
254 st->cl.type=CL_RSAPRIVKEY;
255 st->cl.apply=NULL;
256 st->cl.interface=&st->ops;
257 st->ops.st=st;
258 st->ops.sign=rsa_sign;
259 st->loc=loc;
260
261 /* Argument is filename pointing to SSH1 private key file */
262 i=list_elem(args,0);
263 if (i) {
264 if (i->type!=t_string) {
265 cfgfatal(i->loc,"rsa-public","first argument must be a string\n");
266 }
267 filename=i->data.string;
268 } else {
269 filename=NULL; /* Make compiler happy */
270 cfgfatal(loc,"rsa-private","you must provide a filename\n");
271 }
272
273 f=fopen(filename,"rb");
274 if (!f) {
275 if (just_check_config) {
276 Message(M_WARNING,"rsa-private (%s:%d): cannot open keyfile "
277 "\"%s\"; assuming it's valid while we check the "
278 "rest of the configuration\n",loc.file,loc.line,filename);
279 goto assume_valid;
280 } else {
281 fatal_perror("rsa-private (%s:%d): cannot open file \"%s\"",
282 loc.file,loc.line,filename);
283 }
284 }
285
286 /* Check that the ID string is correct */
287 length=strlen(AUTHFILE_ID_STRING)+1;
288 b=safe_malloc(length,"rsapriv_apply");
289 if (fread(b,length,1,f)!=1 || memcmp(b,AUTHFILE_ID_STRING,length)!=0) {
290 cfgfatal_maybefile(f,loc,"rsa-private","failed to read magic ID"
291 " string from SSH1 private keyfile \"%s\"\n",
292 filename);
293 }
294 free(b);
295
296 cipher_type=fgetc(f);
297 keyfile_get_int(loc,f); /* "Reserved data" */
298 if (cipher_type != 0) {
299 cfgfatal(loc,"rsa-private","we don't support encrypted keyfiles\n");
300 }
301
302 /* Read the public key */
303 keyfile_get_int(loc,f); /* Not sure what this is */
304 length=(keyfile_get_short(loc,f)+7)/8;
305 if (length>RSA_MAX_MODBYTES) {
306 cfgfatal(loc,"rsa-private","implausible length %ld for modulus\n",
307 length);
308 }
309 b=safe_malloc(length,"rsapriv_apply");
310 if (fread(b,length,1,f) != 1) {
311 cfgfatal_maybefile(f,loc,"rsa-private","error reading modulus\n");
312 }
313 mpz_init(&st->n);
314 read_mpbin(&st->n,b,length);
315 free(b);
316 length=(keyfile_get_short(loc,f)+7)/8;
317 if (length>RSA_MAX_MODBYTES) {
318 cfgfatal(loc,"rsa-private","implausible length %ld for e\n",length);
319 }
320 b=safe_malloc(length,"rsapriv_apply");
321 if (fread(b,length,1,f)!=1) {
322 cfgfatal_maybefile(f,loc,"rsa-private","error reading e\n");
323 }
324 mpz_init(&e);
325 read_mpbin(&e,b,length);
326 free(b);
327
328 length=keyfile_get_int(loc,f);
329 if (length>1024) {
330 cfgfatal(loc,"rsa-private","implausibly long (%ld) key comment\n",
331 length);
332 }
333 c=safe_malloc(length+1,"rsapriv_apply");
334 if (fread(c,length,1,f)!=1) {
335 cfgfatal_maybefile(f,loc,"rsa-private","error reading key comment\n");
336 }
337 c[length]=0;
338
339 /* Check that the next two pairs of characters are identical - the
340 keyfile is not encrypted, so they should be */
341
342 if (keyfile_get_short(loc,f) != keyfile_get_short(loc,f)) {
343 cfgfatal(loc,"rsa-private","corrupt keyfile\n");
344 }
345
346 /* Read d */
347 length=(keyfile_get_short(loc,f)+7)/8;
348 if (length>RSA_MAX_MODBYTES) {
349 cfgfatal(loc,"rsa-private","implausibly long (%ld) decryption key\n",
350 length);
351 }
352 b=safe_malloc(length,"rsapriv_apply");
353 if (fread(b,length,1,f)!=1) {
354 cfgfatal_maybefile(f,loc,"rsa-private",
355 "error reading decryption key\n");
356 }
357 mpz_init(&d);
358 read_mpbin(&d,b,length);
359 free(b);
360 /* Read iqmp (inverse of q mod p) */
361 length=(keyfile_get_short(loc,f)+7)/8;
362 if (length>RSA_MAX_MODBYTES) {
363 cfgfatal(loc,"rsa-private","implausibly long (%ld)"
364 " iqmp auxiliary value\n", length);
365 }
366 b=safe_malloc(length,"rsapriv_apply");
367 if (fread(b,length,1,f)!=1) {
368 cfgfatal_maybefile(f,loc,"rsa-private",
369 "error reading decryption key\n");
370 }
371 mpz_init(&iqmp);
372 read_mpbin(&iqmp,b,length);
373 free(b);
374 /* Read q (the smaller of the two primes) */
375 length=(keyfile_get_short(loc,f)+7)/8;
376 if (length>RSA_MAX_MODBYTES) {
377 cfgfatal(loc,"rsa-private","implausibly long (%ld) q value\n",
378 length);
379 }
380 b=safe_malloc(length,"rsapriv_apply");
381 if (fread(b,length,1,f)!=1) {
382 cfgfatal_maybefile(f,loc,"rsa-private",
383 "error reading q value\n");
384 }
385 mpz_init(&st->q);
386 read_mpbin(&st->q,b,length);
387 free(b);
388 /* Read p (the larger of the two primes) */
389 length=(keyfile_get_short(loc,f)+7)/8;
390 if (length>RSA_MAX_MODBYTES) {
391 cfgfatal(loc,"rsa-private","implausibly long (%ld) p value\n",
392 length);
393 }
394 b=safe_malloc(length,"rsapriv_apply");
395 if (fread(b,length,1,f)!=1) {
396 cfgfatal_maybefile(f,loc,"rsa-private",
397 "error reading p value\n");
398 }
399 mpz_init(&st->p);
400 read_mpbin(&st->p,b,length);
401 free(b);
402
403 if (fclose(f)!=0) {
404 fatal_perror("rsa-private (%s:%d): fclose",loc.file,loc.line);
405 }
406
407 /*
408 * Now verify the validity of the key, and set up the auxiliary
409 * values for fast CRT signing.
410 */
411 valid=False;
412 i=list_elem(args,1);
413 mpz_init(&tmp);
414 mpz_init(&tmp2);
415 mpz_init(&tmp3);
416 if (i && i->type==t_bool && i->data.bool==False) {
417 Message(M_INFO,"rsa-private (%s:%d): skipping RSA key validity "
418 "check\n",loc.file,loc.line);
419 } else {
420 /* Verify that p*q is equal to n. */
421 mpz_mul(&tmp, &st->p, &st->q);
422 if (mpz_cmp(&tmp, &st->n) != 0)
423 goto done_checks;
424
425 /*
426 * Verify that d*e is congruent to 1 mod (p-1), and mod
427 * (q-1). This is equivalent to it being congruent to 1 mod
428 * lambda(n) = lcm(p-1,q-1). The usual `textbook' condition,
429 * that d e == 1 (mod (p-1)(q-1)) is sufficient, but not
430 * actually necessary.
431 */
432 mpz_mul(&tmp, &d, &e);
433 mpz_sub_ui(&tmp2, &st->p, 1);
434 mpz_mod(&tmp3, &tmp, &tmp2);
435 if (mpz_cmp_si(&tmp3, 1) != 0)
436 goto done_checks;
437 mpz_sub_ui(&tmp2, &st->q, 1);
438 mpz_mod(&tmp3, &tmp, &tmp2);
439 if (mpz_cmp_si(&tmp3, 1) != 0)
440 goto done_checks;
441
442 /* Verify that q*iqmp is congruent to 1 mod p. */
443 mpz_mul(&tmp, &st->q, &iqmp);
444 mpz_mod(&tmp2, &tmp, &st->p);
445 if (mpz_cmp_si(&tmp2, 1) != 0)
446 goto done_checks;
447 }
448 /* Now we know the key is valid (or we don't care). */
449 valid = True;
450
451 /*
452 * Now we compute auxiliary values dp, dq and w to allow us
453 * to use the CRT optimisation when signing.
454 *
455 * dp == d mod (p-1) so that a^dp == a^d mod p, for all a
456 * dq == d mod (q-1) similarly mod q
457 * w == iqmp * q so that w == 0 mod q, and w == 1 mod p
458 */
459 mpz_init(&st->dp);
460 mpz_init(&st->dq);
461 mpz_init(&st->w);
462 mpz_sub_ui(&tmp, &st->p, 1);
463 mpz_mod(&st->dp, &d, &tmp);
464 mpz_sub_ui(&tmp, &st->q, 1);
465 mpz_mod(&st->dq, &d, &tmp);
466 mpz_mul(&st->w, &iqmp, &st->q);
467
468 done_checks:
469 if (!valid) {
470 cfgfatal(loc,"rsa-private","file \"%s\" does not contain a "
471 "valid RSA key!\n",filename);
472 }
473 mpz_clear(&tmp);
474 mpz_clear(&tmp2);
475 mpz_clear(&tmp3);
476
477 free(c);
478 mpz_clear(&e);
479 mpz_clear(&d);
480 mpz_clear(&iqmp);
481
482 assume_valid:
483 return new_closure(&st->cl);
484 }
485
486 void rsa_module(dict_t *dict)
487 {
488 add_closure(dict,"rsa-private",rsapriv_apply);
489 add_closure(dict,"rsa-public",rsapub_apply);
490 }