Update crypto code from Catacomb 2.3.0.1-45-g9c14.
[secnet] / fgoldi.c
1 /* -*-c-*-
2 *
3 * Arithmetic in the Goldilocks field GF(2^448 - 2^224 - 1)
4 *
5 * (c) 2017 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of secnet.
11 * See README for full list of copyright holders.
12 *
13 * secnet is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version d of the License, or
16 * (at your option) any later version.
17 *
18 * secnet is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * version 3 along with secnet; if not, see
25 * https://www.gnu.org/licenses/gpl.html.
26 *
27 * This file was originally part of Catacomb, but has been automatically
28 * modified for incorporation into secnet: see `import-catacomb-crypto'
29 * for details.
30 *
31 * Catacomb is free software; you can redistribute it and/or modify
32 * it under the terms of the GNU Library General Public License as
33 * published by the Free Software Foundation; either version 2 of the
34 * License, or (at your option) any later version.
35 *
36 * Catacomb is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU Library General Public License for more details.
40 *
41 * You should have received a copy of the GNU Library General Public
42 * License along with Catacomb; if not, write to the Free
43 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
44 * MA 02111-1307, USA.
45 */
46
47 /*----- Header files ------------------------------------------------------*/
48
49 #include "fgoldi.h"
50
51 /*----- Basic setup -------------------------------------------------------*
52 *
53 * Let φ = 2^224; then p = φ^2 - φ - 1, and, in GF(p), we have φ^2 = φ + 1
54 * (hence the name).
55 */
56
57 /* We represent an element of GF(p) as 16 28-bit signed integer pieces x_i:
58 * x = SUM_{0<=i<16} x_i 2^(28i).
59 */
60
61 typedef int32 piece; typedef int64 dblpiece;
62 typedef uint32 upiece; typedef uint64 udblpiece;
63 #define PIECEWD(i) 28
64 #define NPIECE 16
65 #define P p28
66
67 #define B28 0x10000000u
68 #define B27 0x08000000u
69 #define M28 0x0fffffffu
70 #define M27 0x07ffffffu
71 #define M32 0xffffffffu
72
73 /*----- Debugging machinery -----------------------------------------------*/
74
75 #if defined(FGOLDI_DEBUG)
76
77 #include <stdio.h>
78
79 #include "mp.h"
80 #include "mptext.h"
81
82 static mp *get_pgoldi(void)
83 {
84 mp *p = MP_NEW, *t = MP_NEW;
85
86 p = mp_setbit(p, MP_ZERO, 448);
87 t = mp_setbit(t, MP_ZERO, 224);
88 p = mp_sub(p, p, t);
89 p = mp_sub(p, p, MP_ONE);
90 mp_drop(t);
91 return (p);
92 }
93
94 DEF_FDUMP(fdump, piece, PIECEWD, NPIECE, 56, get_pgoldi())
95
96 #endif
97
98 /*----- Loading and storing -----------------------------------------------*/
99
100 /* --- @fgoldi_load@ --- *
101 *
102 * Arguments: @fgoldi *z@ = where to store the result
103 * @const octet xv[56]@ = source to read
104 *
105 * Returns: ---
106 *
107 * Use: Reads an element of %$\gf{2^{448} - 2^{224} - 19}$% in
108 * external representation from @xv@ and stores it in @z@.
109 *
110 * External representation is little-endian base-256. Some
111 * elements have multiple encodings, which are not produced by
112 * correct software; use of noncanonical encodings is not an
113 * error, and toleration of them is considered a performance
114 * feature.
115 */
116
117 void fgoldi_load(fgoldi *z, const octet xv[56])
118 {
119
120 unsigned i;
121 uint32 xw[14];
122 piece b, c;
123
124 /* First, read the input value as words. */
125 for (i = 0; i < 14; i++) xw[i] = LOAD32_L(xv + 4*i);
126
127 /* Extract unsigned 28-bit pieces from the words. */
128 z->P[ 0] = (xw[ 0] >> 0)&M28;
129 z->P[ 7] = (xw[ 6] >> 4)&M28;
130 z->P[ 8] = (xw[ 7] >> 0)&M28;
131 z->P[15] = (xw[13] >> 4)&M28;
132 for (i = 1; i < 7; i++) {
133 z->P[i + 0] = ((xw[i + 0] << (4*i)) | (xw[i - 1] >> (32 - 4*i)))&M28;
134 z->P[i + 8] = ((xw[i + 7] << (4*i)) | (xw[i + 6] >> (32 - 4*i)))&M28;
135 }
136
137 /* Convert the nonnegative pieces into a balanced signed representation, so
138 * each piece ends up in the interval |z_i| <= 2^27. For each piece, if
139 * its top bit is set, lend a bit leftwards; in the case of z_15, reduce
140 * this bit by adding it onto z_0 and z_8, since this is the φ^2 bit, and
141 * φ^2 = φ + 1. We delay this carry until after all of the pieces have
142 * been balanced. If we don't do this, then we have to do a more expensive
143 * test for nonzeroness to decide whether to lend a bit leftwards rather
144 * than just testing a single bit.
145 *
146 * Note that we don't try for a canonical representation here: both upper
147 * and lower bounds are achievable.
148 */
149 b = z->P[15]&B27; z->P[15] -= b << 1; c = b >> 27;
150 for (i = NPIECE - 1; i--; )
151 { b = z->P[i]&B27; z->P[i] -= b << 1; z->P[i + 1] += b >> 27; }
152 z->P[0] += c; z->P[8] += c;
153 }
154
155 /* --- @fgoldi_store@ --- *
156 *
157 * Arguments: @octet zv[56]@ = where to write the result
158 * @const fgoldi *x@ = the field element to write
159 *
160 * Returns: ---
161 *
162 * Use: Stores a field element in the given octet vector in external
163 * representation. A canonical encoding is always stored.
164 */
165
166 void fgoldi_store(octet zv[56], const fgoldi *x)
167 {
168
169 piece y[NPIECE], yy[NPIECE], c, d;
170 uint32 u, v;
171 mask32 m;
172 unsigned i;
173
174 for (i = 0; i < NPIECE; i++) y[i] = x->P[i];
175
176 /* First, propagate the carries. By the end of this, we'll have all of the
177 * the pieces canonically sized and positive, and maybe there'll be
178 * (signed) carry out. The carry c is in { -1, 0, +1 }, and the remaining
179 * value will be in the half-open interval [0, φ^2). The whole represented
180 * value is then y + φ^2 c.
181 *
182 * Assume that we start out with |y_i| <= 2^30. We start off by cutting
183 * off and reducing the carry c_15 from the topmost piece, y_15. This
184 * leaves 0 <= y_15 < 2^28; and we'll have |c_15| <= 4. We'll add this
185 * onto y_0 and y_8, and propagate the carries. It's very clear that we'll
186 * end up with |y + (φ + 1) c_15 - φ^2/2| << φ^2.
187 *
188 * Here, the y_i are signed, so we must be cautious about bithacking them.
189 */
190 c = ASR(piece, y[15], 28); y[15] = (upiece)y[15]&M28; y[8] += c;
191 for (i = 0; i < NPIECE; i++)
192 { y[i] += c; c = ASR(piece, y[i], 28); y[i] = (upiece)y[i]&M28; }
193
194 /* Now we have a slightly fiddly job to do. If c = +1, or if c = 0 and
195 * y >= p, then we should subtract p from the whole value; if c = -1 then
196 * we should add p; and otherwise we should do nothing.
197 *
198 * But conditional behaviour is bad, m'kay. So here's what we do instead.
199 *
200 * The first job is to sort out what we wanted to do. If c = -1 then we
201 * want to (a) invert the constant addend and (b) feed in a carry-in;
202 * otherwise, we don't.
203 */
204 m = SIGN(c)&M28;
205 d = m&1;
206
207 /* Now do the addition/subtraction. Remember that all of the y_i are
208 * nonnegative, so shifting and masking are safe and easy.
209 */
210 d += y[0] + (1 ^ m); yy[0] = d&M28; d >>= 28;
211 for (i = 1; i < 8; i++)
212 { d += y[i] + m; yy[i] = d&M28; d >>= 28; }
213 d += y[8] + (1 ^ m); yy[8] = d&M28; d >>= 28;
214 for (i = 9; i < 16; i++)
215 { d += y[i] + m; yy[i] = d&M28; d >>= 28; }
216
217 /* The final carry-out is in d; since we only did addition, and the y_i are
218 * nonnegative, then d is in { 0, 1 }. We want to keep y', rather than y,
219 * if (a) c /= 0 (in which case we know that the old value was
220 * unsatisfactory), or (b) if d = 1 (in which case, if c = 0, we know that
221 * the subtraction didn't cause a borrow, so we must be in the case where
222 * p <= y < φ^2.
223 */
224 m = NONZEROP(c) | ~NONZEROP(d - 1);
225 for (i = 0; i < NPIECE; i++) y[i] = (yy[i]&m) | (y[i]&~m);
226
227 /* Extract 32-bit words from the value. */
228 for (i = 0; i < 7; i++) {
229 u = ((y[i + 0] >> (4*i)) | ((uint32)y[i + 1] << (28 - 4*i)))&M32;
230 v = ((y[i + 8] >> (4*i)) | ((uint32)y[i + 9] << (28 - 4*i)))&M32;
231 STORE32_L(zv + 4*i, u);
232 STORE32_L(zv + 4*i + 28, v);
233 }
234 }
235
236 /* --- @fgoldi_set@ --- *
237 *
238 * Arguments: @fgoldi *z@ = where to write the result
239 * @int a@ = a small-ish constant
240 *
241 * Returns: ---
242 *
243 * Use: Sets @z@ to equal @a@.
244 */
245
246 void fgoldi_set(fgoldi *x, int a)
247 {
248 unsigned i;
249
250 x->P[0] = a;
251 for (i = 1; i < NPIECE; i++) x->P[i] = 0;
252 }
253
254 /*----- Basic arithmetic --------------------------------------------------*/
255
256 /* --- @fgoldi_add@ --- *
257 *
258 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
259 * @const fgoldi *x, *y@ = two operands
260 *
261 * Returns: ---
262 *
263 * Use: Set @z@ to the sum %$x + y$%.
264 */
265
266 void fgoldi_add(fgoldi *z, const fgoldi *x, const fgoldi *y)
267 {
268 unsigned i;
269 for (i = 0; i < NPIECE; i++) z->P[i] = x->P[i] + y->P[i];
270 }
271
272 /* --- @fgoldi_sub@ --- *
273 *
274 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
275 * @const fgoldi *x, *y@ = two operands
276 *
277 * Returns: ---
278 *
279 * Use: Set @z@ to the difference %$x - y$%.
280 */
281
282 void fgoldi_sub(fgoldi *z, const fgoldi *x, const fgoldi *y)
283 {
284 unsigned i;
285 for (i = 0; i < NPIECE; i++) z->P[i] = x->P[i] - y->P[i];
286 }
287
288 /*----- Constant-time utilities -------------------------------------------*/
289
290 /* --- @fgoldi_condswap@ --- *
291 *
292 * Arguments: @fgoldi *x, *y@ = two operands
293 * @uint32 m@ = a mask
294 *
295 * Returns: ---
296 *
297 * Use: If @m@ is zero, do nothing; if @m@ is all-bits-set, then
298 * exchange @x@ and @y@. If @m@ has some other value, then
299 * scramble @x@ and @y@ in an unhelpful way.
300 */
301
302 void fgoldi_condswap(fgoldi *x, fgoldi *y, uint32 m)
303 {
304 unsigned i;
305 mask32 mm = FIX_MASK32(m);
306
307 for (i = 0; i < NPIECE; i++) CONDSWAP(x->P[i], y->P[i], mm);
308 }
309
310 /*----- Multiplication ----------------------------------------------------*/
311
312 /* Let B = 2^63 - 1 be the largest value such that +B and -B can be
313 * represented in a double-precision piece. On entry, it must be the case
314 * that |X_i| <= M <= B - 2^27 for some M. If this is the case, then, on
315 * exit, we will have |Z_i| <= 2^27 + M/2^27.
316 */
317 #define CARRY_REDUCE(z, x) do { \
318 dblpiece _t[NPIECE], _c; \
319 unsigned _i; \
320 \
321 /* Bias the input pieces. This keeps the carries and so on centred \
322 * around zero rather than biased positive. \
323 */ \
324 for (_i = 0; _i < NPIECE; _i++) _t[_i] = (x)[_i] + B27; \
325 \
326 /* Calculate the reduced pieces. Careful with the bithacking. */ \
327 _c = ASR(dblpiece, _t[15], 28); \
328 (z)[0] = (dblpiece)((udblpiece)_t[0]&M28) - B27 + _c; \
329 for (_i = 1; _i < NPIECE; _i++) { \
330 (z)[_i] = (dblpiece)((udblpiece)_t[_i]&M28) - B27 + \
331 ASR(dblpiece, _t[_i - 1], 28); \
332 } \
333 (z)[8] += _c; \
334 } while (0)
335
336 /* --- @fgoldi_mulconst@ --- *
337 *
338 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@)
339 * @const fgoldi *x@ = an operand
340 * @long a@ = a small-ish constant; %$|a| < 2^{20}$%.
341 *
342 * Returns: ---
343 *
344 * Use: Set @z@ to the product %$a x$%.
345 */
346
347 void fgoldi_mulconst(fgoldi *z, const fgoldi *x, long a)
348 {
349 unsigned i;
350 dblpiece zz[NPIECE], aa = a;
351
352 for (i = 0; i < NPIECE; i++) zz[i] = aa*x->P[i];
353 CARRY_REDUCE(z->P, zz);
354 }
355
356 /* --- @fgoldi_mul@ --- *
357 *
358 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
359 * @const fgoldi *x, *y@ = two operands
360 *
361 * Returns: ---
362 *
363 * Use: Set @z@ to the product %$x y$%.
364 */
365
366 void fgoldi_mul(fgoldi *z, const fgoldi *x, const fgoldi *y)
367 {
368 dblpiece zz[NPIECE], u[NPIECE];
369 piece ab[NPIECE/2], cd[NPIECE/2];
370 const piece
371 *a = x->P + NPIECE/2, *b = x->P,
372 *c = y->P + NPIECE/2, *d = y->P;
373 unsigned i, j;
374
375 # define M(x,i, y,j) ((dblpiece)(x)[i]*(y)[j])
376
377 /* Behold the magic.
378 *
379 * Write x = a φ + b, and y = c φ + d. Then x y = a c φ^2 +
380 * (a d + b c) φ + b d. Karatsuba and Ofman observed that a d + b c =
381 * (a + b) (c + d) - a c - b d, saving a multiplication, and Hamburg chose
382 * the prime p so that φ^2 = φ + 1. So
383 *
384 * x y = ((a + b) (c + d) - b d) φ + a c + b d
385 */
386
387 for (i = 0; i < NPIECE; i++) zz[i] = 0;
388
389 /* Our first job will be to calculate (1 - φ) b d, and write the result
390 * into z. As we do this, an interesting thing will happen. Write
391 * b d = u φ + v; then (1 - φ) b d = u φ + v - u φ^2 - v φ = (1 - φ) v - u.
392 * So, what we do is to write the product end-swapped and negated, and then
393 * we'll subtract the (negated, remember) high half from the low half.
394 */
395 for (i = 0; i < NPIECE/2; i++) {
396 for (j = 0; j < NPIECE/2 - i; j++)
397 zz[i + j + NPIECE/2] -= M(b,i, d,j);
398 for (; j < NPIECE/2; j++)
399 zz[i + j - NPIECE/2] -= M(b,i, d,j);
400 }
401 for (i = 0; i < NPIECE/2; i++)
402 zz[i] -= zz[i + NPIECE/2];
403
404 /* Next, we add on a c. There are no surprises here. */
405 for (i = 0; i < NPIECE/2; i++)
406 for (j = 0; j < NPIECE/2; j++)
407 zz[i + j] += M(a,i, c,j);
408
409 /* Now, calculate a + b and c + d. */
410 for (i = 0; i < NPIECE/2; i++)
411 { ab[i] = a[i] + b[i]; cd[i] = c[i] + d[i]; }
412
413 /* Finally (for the multiplication) we must add on (a + b) (c + d) φ.
414 * Write (a + b) (c + d) as u φ + v; then we actually want u φ^2 + v φ =
415 * v φ + (1 + φ) u. We'll store u in a temporary place and add it on
416 * twice.
417 */
418 for (i = 0; i < NPIECE; i++) u[i] = 0;
419 for (i = 0; i < NPIECE/2; i++) {
420 for (j = 0; j < NPIECE/2 - i; j++)
421 zz[i + j + NPIECE/2] += M(ab,i, cd,j);
422 for (; j < NPIECE/2; j++)
423 u[i + j - NPIECE/2] += M(ab,i, cd,j);
424 }
425 for (i = 0; i < NPIECE/2; i++)
426 { zz[i] += u[i]; zz[i + NPIECE/2] += u[i]; }
427
428 #undef M
429
430 /* That wraps it up for the multiplication. Let's figure out some bounds.
431 * Fortunately, Karatsuba is a polynomial identity, so all of the pieces
432 * end up the way they'd be if we'd done the thing the easy way, which
433 * simplifies the analysis. Suppose we started with |x_i|, |y_i| <= 9/5
434 * 2^28. The overheads in the result are given by the coefficients of
435 *
436 * ((u^16 - 1)/(u - 1))^2 mod u^16 - u^8 - 1
437 *
438 * the greatest of which is 38. So |z_i| <= 38*81/25*2^56 < 2^63.
439 *
440 * Anyway, a round of `CARRY_REDUCE' will leave us with |z_i| < 2^27 +
441 * 2^36; and a second round will leave us with |z_i| < 2^27 + 512.
442 */
443 for (i = 0; i < 2; i++) CARRY_REDUCE(zz, zz);
444 for (i = 0; i < NPIECE; i++) z->P[i] = zz[i];
445 }
446
447 /* --- @fgoldi_sqr@ --- *
448 *
449 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@ or @y@)
450 * @const fgoldi *x@ = an operand
451 *
452 * Returns: ---
453 *
454 * Use: Set @z@ to the square %$x^2$%.
455 */
456
457 void fgoldi_sqr(fgoldi *z, const fgoldi *x)
458 {
459
460 dblpiece zz[NPIECE], u[NPIECE];
461 piece ab[NPIECE];
462 const piece *a = x->P + NPIECE/2, *b = x->P;
463 unsigned i, j;
464
465 # define M(x,i, y,j) ((dblpiece)(x)[i]*(y)[j])
466
467 /* The magic is basically the same as `fgoldi_mul' above. We write
468 * x = a φ + b and use Karatsuba and the special prime shape. This time,
469 * we have
470 *
471 * x^2 = ((a + b)^2 - b^2) φ + a^2 + b^2
472 */
473
474 for (i = 0; i < NPIECE; i++) zz[i] = 0;
475
476 /* Our first job will be to calculate (1 - φ) b^2, and write the result
477 * into z. Again, this interacts pleasantly with the prime shape.
478 */
479 for (i = 0; i < NPIECE/4; i++) {
480 zz[2*i + NPIECE/2] -= M(b,i, b,i);
481 for (j = i + 1; j < NPIECE/2 - i; j++)
482 zz[i + j + NPIECE/2] -= 2*M(b,i, b,j);
483 for (; j < NPIECE/2; j++)
484 zz[i + j - NPIECE/2] -= 2*M(b,i, b,j);
485 }
486 for (; i < NPIECE/2; i++) {
487 zz[2*i - NPIECE/2] -= M(b,i, b,i);
488 for (j = i + 1; j < NPIECE/2; j++)
489 zz[i + j - NPIECE/2] -= 2*M(b,i, b,j);
490 }
491 for (i = 0; i < NPIECE/2; i++)
492 zz[i] -= zz[i + NPIECE/2];
493
494 /* Next, we add on a^2. There are no surprises here. */
495 for (i = 0; i < NPIECE/2; i++) {
496 zz[2*i] += M(a,i, a,i);
497 for (j = i + 1; j < NPIECE/2; j++)
498 zz[i + j] += 2*M(a,i, a,j);
499 }
500
501 /* Now, calculate a + b. */
502 for (i = 0; i < NPIECE/2; i++)
503 ab[i] = a[i] + b[i];
504
505 /* Finally (for the multiplication) we must add on (a + b)^2 φ.
506 * Write (a + b)^2 as u φ + v; then we actually want (u + v) φ + u. We'll
507 * store u in a temporary place and add it on twice.
508 */
509 for (i = 0; i < NPIECE; i++) u[i] = 0;
510 for (i = 0; i < NPIECE/4; i++) {
511 zz[2*i + NPIECE/2] += M(ab,i, ab,i);
512 for (j = i + 1; j < NPIECE/2 - i; j++)
513 zz[i + j + NPIECE/2] += 2*M(ab,i, ab,j);
514 for (; j < NPIECE/2; j++)
515 u[i + j - NPIECE/2] += 2*M(ab,i, ab,j);
516 }
517 for (; i < NPIECE/2; i++) {
518 u[2*i - NPIECE/2] += M(ab,i, ab,i);
519 for (j = i + 1; j < NPIECE/2; j++)
520 u[i + j - NPIECE/2] += 2*M(ab,i, ab,j);
521 }
522 for (i = 0; i < NPIECE/2; i++)
523 { zz[i] += u[i]; zz[i + NPIECE/2] += u[i]; }
524
525 #undef M
526
527 /* Finally, carrying. */
528 for (i = 0; i < 2; i++) CARRY_REDUCE(zz, zz);
529 for (i = 0; i < NPIECE; i++) z->P[i] = zz[i];
530 }
531
532 /*----- More advanced operations ------------------------------------------*/
533
534 /* --- @fgoldi_inv@ --- *
535 *
536 * Arguments: @fgoldi *z@ = where to put the result (may alias @x@)
537 * @const fgoldi *x@ = an operand
538 *
539 * Returns: ---
540 *
541 * Use: Stores in @z@ the multiplicative inverse %$x^{-1}$%. If
542 * %$x = 0$% then @z@ is set to zero. This is considered a
543 * feature.
544 */
545
546 void fgoldi_inv(fgoldi *z, const fgoldi *x)
547 {
548 fgoldi t, u;
549 unsigned i;
550
551 #define SQRN(z, x, n) do { \
552 fgoldi_sqr((z), (x)); \
553 for (i = 1; i < (n); i++) fgoldi_sqr((z), (z)); \
554 } while (0)
555
556 /* Calculate x^-1 = x^(p - 2) = x^(2^448 - 2^224 - 3), which also handles
557 * x = 0 as intended. The addition chain is home-made.
558 */ /* step | value */
559 fgoldi_sqr(&u, x); /* 1 | 2 */
560 fgoldi_mul(&t, &u, x); /* 2 | 3 */
561 SQRN(&u, &t, 2); /* 4 | 12 */
562 fgoldi_mul(&t, &u, &t); /* 5 | 15 */
563 SQRN(&u, &t, 4); /* 9 | 240 */
564 fgoldi_mul(&u, &u, &t); /* 10 | 255 = 2^8 - 1 */
565 SQRN(&u, &u, 4); /* 14 | 2^12 - 16 */
566 fgoldi_mul(&t, &u, &t); /* 15 | 2^12 - 1 */
567 SQRN(&u, &t, 12); /* 27 | 2^24 - 2^12 */
568 fgoldi_mul(&u, &u, &t); /* 28 | 2^24 - 1 */
569 SQRN(&u, &u, 12); /* 40 | 2^36 - 2^12 */
570 fgoldi_mul(&t, &u, &t); /* 41 | 2^36 - 1 */
571 fgoldi_sqr(&t, &t); /* 42 | 2^37 - 2 */
572 fgoldi_mul(&t, &t, x); /* 43 | 2^37 - 1 */
573 SQRN(&u, &t, 37); /* 80 | 2^74 - 2^37 */
574 fgoldi_mul(&u, &u, &t); /* 81 | 2^74 - 1 */
575 SQRN(&u, &u, 37); /* 118 | 2^111 - 2^37 */
576 fgoldi_mul(&t, &u, &t); /* 119 | 2^111 - 1 */
577 SQRN(&u, &t, 111); /* 230 | 2^222 - 2^111 */
578 fgoldi_mul(&t, &u, &t); /* 231 | 2^222 - 1 */
579 fgoldi_sqr(&u, &t); /* 232 | 2^223 - 2 */
580 fgoldi_mul(&u, &u, x); /* 233 | 2^223 - 1 */
581 SQRN(&u, &u, 223); /* 456 | 2^446 - 2^223 */
582 fgoldi_mul(&t, &u, &t); /* 457 | 2^446 - 2^222 - 1 */
583 SQRN(&t, &t, 2); /* 459 | 2^448 - 2^224 - 4 */
584 fgoldi_mul(z, &t, x); /* 460 | 2^448 - 2^224 - 3 */
585
586 #undef SQRN
587 }
588
589 /*----- That's all, folks -------------------------------------------------*/