Update crypto code from Catacomb 2.3.0.1-45-g9c14.
[secnet] / f25519.c
1 /* -*-c-*-
2 *
3 * Arithmetic modulo 2^255 - 19
4 *
5 * (c) 2017 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of secnet.
11 * See README for full list of copyright holders.
12 *
13 * secnet is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version d of the License, or
16 * (at your option) any later version.
17 *
18 * secnet is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * version 3 along with secnet; if not, see
25 * https://www.gnu.org/licenses/gpl.html.
26 *
27 * This file was originally part of Catacomb, but has been automatically
28 * modified for incorporation into secnet: see `import-catacomb-crypto'
29 * for details.
30 *
31 * Catacomb is free software; you can redistribute it and/or modify
32 * it under the terms of the GNU Library General Public License as
33 * published by the Free Software Foundation; either version 2 of the
34 * License, or (at your option) any later version.
35 *
36 * Catacomb is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU Library General Public License for more details.
40 *
41 * You should have received a copy of the GNU Library General Public
42 * License along with Catacomb; if not, write to the Free
43 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
44 * MA 02111-1307, USA.
45 */
46
47 /*----- Header files ------------------------------------------------------*/
48
49 #include "f25519.h"
50
51 /*----- Basic setup -------------------------------------------------------*/
52
53 /* Elements x of GF(2^255 - 19) are represented by ten signed integers x_i: x
54 * = SUM_{0<=i<10} x_i 2^ceil(51i/2), mostly following Bernstein's original
55 * paper.
56 */
57
58 typedef int32 piece; typedef int64 dblpiece;
59 typedef uint32 upiece; typedef uint64 udblpiece;
60 #define P p26
61 #define PIECEWD(i) ((i)%2 ? 25 : 26)
62 #define NPIECE 10
63
64 #define M26 0x03ffffffu
65 #define M25 0x01ffffffu
66 #define B26 0x04000000u
67 #define B25 0x02000000u
68 #define B24 0x01000000u
69
70 #define PIECES(v) v##0, v##1, v##2, v##3, v##4, v##5, v##6, v##7, v##8, v##9
71 #define FETCH(v, w) do { \
72 v##0 = (w)->P[0]; v##1 = (w)->P[1]; \
73 v##2 = (w)->P[2]; v##3 = (w)->P[3]; \
74 v##4 = (w)->P[4]; v##5 = (w)->P[5]; \
75 v##6 = (w)->P[6]; v##7 = (w)->P[7]; \
76 v##8 = (w)->P[8]; v##9 = (w)->P[9]; \
77 } while (0)
78 #define STASH(w, v) do { \
79 (w)->P[0] = v##0; (w)->P[1] = v##1; \
80 (w)->P[2] = v##2; (w)->P[3] = v##3; \
81 (w)->P[4] = v##4; (w)->P[5] = v##5; \
82 (w)->P[6] = v##6; (w)->P[7] = v##7; \
83 (w)->P[8] = v##8; (w)->P[9] = v##9; \
84 } while (0)
85
86 /*----- Debugging machinery -----------------------------------------------*/
87
88 #if defined(F25519_DEBUG)
89
90 #include <stdio.h>
91
92 #include "mp.h"
93 #include "mptext.h"
94
95 static mp *get_2p255m91(void)
96 {
97 mpw w19 = 19;
98 mp *p = MP_NEW, m19;
99
100 p = mp_setbit(p, MP_ZERO, 255);
101 mp_build(&m19, &w19, &w19 + 1);
102 p = mp_sub(p, p, &m19);
103 return (p);
104 }
105
106 DEF_FDUMP(fdump, piece, PIECEWD, NPIECE, 32, get_2p255m91())
107
108 #endif
109
110 /*----- Loading and storing -----------------------------------------------*/
111
112 /* --- @f25519_load@ --- *
113 *
114 * Arguments: @f25519 *z@ = where to store the result
115 * @const octet xv[32]@ = source to read
116 *
117 * Returns: ---
118 *
119 * Use: Reads an element of %$\gf{2^{255} - 19}$% in external
120 * representation from @xv@ and stores it in @z@.
121 *
122 * External representation is little-endian base-256. Some
123 * elements have multiple encodings, which are not produced by
124 * correct software; use of noncanonical encodings is not an
125 * error, and toleration of them is considered a performance
126 * feature.
127 */
128
129 void f25519_load(f25519 *z, const octet xv[32])
130 {
131
132 uint32 xw0 = LOAD32_L(xv + 0), xw1 = LOAD32_L(xv + 4),
133 xw2 = LOAD32_L(xv + 8), xw3 = LOAD32_L(xv + 12),
134 xw4 = LOAD32_L(xv + 16), xw5 = LOAD32_L(xv + 20),
135 xw6 = LOAD32_L(xv + 24), xw7 = LOAD32_L(xv + 28);
136 piece PIECES(x), b, c;
137
138 /* First, split the 32-bit words into the irregularly-sized pieces we need
139 * for the field representation. These pieces are all positive. We'll do
140 * the sign correction afterwards.
141 *
142 * It may be that the top bit of the input is set. Avoid trouble by
143 * folding that back round into the bottom piece of the representation.
144 *
145 * Here, we briefly have 0 <= x_0 < 2^26 + 19, but will resolve this later.
146 * Otherwise, we have 0 <= x_{2i} < 2^26, and 0 <= x_{2i+1} < 2^25.
147 */
148 x0 = ((xw0 << 0)&0x03ffffff) + 19*((xw7 >> 31)&0x00000001);
149 x1 = ((xw1 << 6)&0x01ffffc0) | ((xw0 >> 26)&0x0000003f);
150 x2 = ((xw2 << 13)&0x03ffe000) | ((xw1 >> 19)&0x00001fff);
151 x3 = ((xw3 << 19)&0x01f80000) | ((xw2 >> 13)&0x0007ffff);
152 x4 = ((xw3 >> 6)&0x03ffffff);
153 x5 = (xw4 << 0)&0x01ffffff;
154 x6 = ((xw5 << 7)&0x03ffff80) | ((xw4 >> 25)&0x0000007f);
155 x7 = ((xw6 << 13)&0x01ffe000) | ((xw5 >> 19)&0x00001fff);
156 x8 = ((xw7 << 20)&0x03f00000) | ((xw6 >> 12)&0x000fffff);
157 x9 = ((xw7 >> 6)&0x01ffffff);
158
159 /* Next, we convert these pieces into a roughly balanced signed
160 * representation. For each piece, check to see if its top bit is set. If
161 * it is, then lend a bit to the next piece over. For x_9, this needs to
162 * be carried around, which is a little fiddly. In particular, we delay
163 * the carry until after all of the pieces have been balanced. If we don't
164 * do this, then we have to do a more expensive test for nonzeroness to
165 * decide whether to lend a bit leftwards rather than just testing a single
166 * bit.
167 *
168 * This fixes up the anomalous size of x_0: the loan of a bit becomes an
169 * actual carry if x_0 >= 2^26. By the end, then, we have:
170 *
171 * { 2^25 if i even
172 * |x_i| <= {
173 * { 2^24 if i odd
174 *
175 * Note that we don't try for a canonical representation here: both upper
176 * and lower bounds are achievable.
177 *
178 * All of the x_i at this point are positive, so we don't need to do
179 * anything wierd when masking them.
180 */
181 b = x9&B24; c = 19&((b >> 19) - (b >> 24)); x9 -= b << 1;
182 b = x8&B25; x9 += b >> 25; x8 -= b << 1;
183 b = x7&B24; x8 += b >> 24; x7 -= b << 1;
184 b = x6&B25; x7 += b >> 25; x6 -= b << 1;
185 b = x5&B24; x6 += b >> 24; x5 -= b << 1;
186 b = x4&B25; x5 += b >> 25; x4 -= b << 1;
187 b = x3&B24; x4 += b >> 24; x3 -= b << 1;
188 b = x2&B25; x3 += b >> 25; x2 -= b << 1;
189 b = x1&B24; x2 += b >> 24; x1 -= b << 1;
190 b = x0&B25; x1 += (b >> 25) + (x0 >> 26); x0 = (x0&M26) - (b << 1);
191 x0 += c;
192
193 /* And with that, we're done. */
194 STASH(z, x);
195 }
196
197 /* --- @f25519_store@ --- *
198 *
199 * Arguments: @octet zv[32]@ = where to write the result
200 * @const f25519 *x@ = the field element to write
201 *
202 * Returns: ---
203 *
204 * Use: Stores a field element in the given octet vector in external
205 * representation. A canonical encoding is always stored, so,
206 * in particular, the top bit of @xv[31]@ is always left clear.
207 */
208
209 void f25519_store(octet zv[32], const f25519 *x)
210 {
211
212 piece PIECES(x), PIECES(y), c, d;
213 uint32 zw0, zw1, zw2, zw3, zw4, zw5, zw6, zw7;
214 mask32 m;
215
216 FETCH(x, x);
217
218 /* First, propagate the carries throughout the pieces. By the end of this,
219 * we'll have all of the pieces canonically sized and positive, and maybe
220 * there'll be (signed) carry out. The carry c is in { -1, 0, +1 }, and
221 * the remaining value will be in the half-open interval [0, 2^255). The
222 * whole represented value is then x + 2^255 c.
223 *
224 * It's worth paying careful attention to the bounds. We assume that we
225 * start out with |x_i| <= 2^30. We start by cutting off and reducing the
226 * carry c_9 from the topmost piece, x_9. This leaves 0 <= x_9 < 2^25; and
227 * we'll have |c_9| <= 2^5. We multiply this by 19 and we'll add it onto
228 * x_0 and propagate the carries: but what bounds can we calculate on x
229 * before this?
230 *
231 * Let o_i = floor(51 i/2). We have X_i = SUM_{0<=j<i} x_j 2^{o_i}, so
232 * x = X_10. We see, inductively, that |X_i| < 2^{31+o_{i-1}}: X_0 = 0;
233 * |x_i| <= 2^30; and |X_{i+1}| = |X_i + x_i 2^{o_i}| <= |X_i| + 2^{30+o_i}
234 * < 2^{31+o_i}. Then x = X_9 + 2^230 x_9, and we have better bounds for
235 * x_9, so
236 *
237 * -2^235 < x + 19 c_9 < 2^255 + 2^235
238 *
239 * Here, the x_i are signed, so we must be cautious about bithacking them.
240 */
241 c = ASR(piece, x9, 25); x9 = (upiece)x9&M25;
242 x0 += 19*c; c = ASR(piece, x0, 26); x0 = (upiece)x0&M26;
243 x1 += c; c = ASR(piece, x1, 25); x1 = (upiece)x1&M25;
244 x2 += c; c = ASR(piece, x2, 26); x2 = (upiece)x2&M26;
245 x3 += c; c = ASR(piece, x3, 25); x3 = (upiece)x3&M25;
246 x4 += c; c = ASR(piece, x4, 26); x4 = (upiece)x4&M26;
247 x5 += c; c = ASR(piece, x5, 25); x5 = (upiece)x5&M25;
248 x6 += c; c = ASR(piece, x6, 26); x6 = (upiece)x6&M26;
249 x7 += c; c = ASR(piece, x7, 25); x7 = (upiece)x7&M25;
250 x8 += c; c = ASR(piece, x8, 26); x8 = (upiece)x8&M26;
251 x9 += c; c = ASR(piece, x9, 25); x9 = (upiece)x9&M25;
252
253 /* Now we have a slightly fiddly job to do. If c = +1, or if c = 0 and
254 * x >= 2^255 - 19, then we should subtract 2^255 - 19 from the whole
255 * value; if c = -1 then we should add 2^255 - 19; and otherwise we should
256 * do nothing.
257 *
258 * But conditional behaviour is bad, m'kay. So here's what we do instead.
259 *
260 * The first job is to sort out what we wanted to do. If c = -1 then we
261 * want to (a) invert the constant addend and (b) feed in a carry-in;
262 * otherwise, we don't.
263 */
264 m = SIGN(c);
265 d = m&1;
266
267 /* Now do the addition/subtraction. Remember that all of the x_i are
268 * nonnegative, so shifting and masking are safe and easy.
269 */
270 d += x0 + (19 ^ (M26&m)); y0 = d&M26; d >>= 26;
271 d += x1 + (M25&m); y1 = d&M25; d >>= 25;
272 d += x2 + (M26&m); y2 = d&M26; d >>= 26;
273 d += x3 + (M25&m); y3 = d&M25; d >>= 25;
274 d += x4 + (M26&m); y4 = d&M26; d >>= 26;
275 d += x5 + (M25&m); y5 = d&M25; d >>= 25;
276 d += x6 + (M26&m); y6 = d&M26; d >>= 26;
277 d += x7 + (M25&m); y7 = d&M25; d >>= 25;
278 d += x8 + (M26&m); y8 = d&M26; d >>= 26;
279 d += x9 + (M25&m); y9 = d&M25; d >>= 25;
280
281 /* The final carry-out is in d; since we only did addition, and the x_i are
282 * nonnegative, then d is in { 0, 1 }. We want to keep y, rather than x,
283 * if (a) c /= 0 (in which case we know that the old value was
284 * unsatisfactory), or (b) if d = 1 (in which case, if c = 0, we know that
285 * the subtraction didn't cause a borrow, so we must be in the case where
286 * 2^255 - 19 <= x < 2^255).
287 */
288 m = NONZEROP(c) | ~NONZEROP(d - 1);
289 x0 = (y0&m) | (x0&~m); x1 = (y1&m) | (x1&~m);
290 x2 = (y2&m) | (x2&~m); x3 = (y3&m) | (x3&~m);
291 x4 = (y4&m) | (x4&~m); x5 = (y5&m) | (x5&~m);
292 x6 = (y6&m) | (x6&~m); x7 = (y7&m) | (x7&~m);
293 x8 = (y8&m) | (x8&~m); x9 = (y9&m) | (x9&~m);
294
295 /* Extract 32-bit words from the value. */
296 zw0 = ((x0 >> 0)&0x03ffffff) | (((uint32)x1 << 26)&0xfc000000);
297 zw1 = ((x1 >> 6)&0x0007ffff) | (((uint32)x2 << 19)&0xfff80000);
298 zw2 = ((x2 >> 13)&0x00001fff) | (((uint32)x3 << 13)&0xffffe000);
299 zw3 = ((x3 >> 19)&0x0000003f) | (((uint32)x4 << 6)&0xffffffc0);
300 zw4 = ((x5 >> 0)&0x01ffffff) | (((uint32)x6 << 25)&0xfe000000);
301 zw5 = ((x6 >> 7)&0x0007ffff) | (((uint32)x7 << 19)&0xfff80000);
302 zw6 = ((x7 >> 13)&0x00000fff) | (((uint32)x8 << 12)&0xfffff000);
303 zw7 = ((x8 >> 20)&0x0000003f) | (((uint32)x9 << 6)&0x7fffffc0);
304
305 /* Store the result as an octet string. */
306 STORE32_L(zv + 0, zw0); STORE32_L(zv + 4, zw1);
307 STORE32_L(zv + 8, zw2); STORE32_L(zv + 12, zw3);
308 STORE32_L(zv + 16, zw4); STORE32_L(zv + 20, zw5);
309 STORE32_L(zv + 24, zw6); STORE32_L(zv + 28, zw7);
310 }
311
312 /* --- @f25519_set@ --- *
313 *
314 * Arguments: @f25519 *z@ = where to write the result
315 * @int a@ = a small-ish constant
316 *
317 * Returns: ---
318 *
319 * Use: Sets @z@ to equal @a@.
320 */
321
322 void f25519_set(f25519 *x, int a)
323 {
324 unsigned i;
325
326 x->P[0] = a;
327 for (i = 1; i < NPIECE; i++) x->P[i] = 0;
328 }
329
330 /*----- Basic arithmetic --------------------------------------------------*/
331
332 /* --- @f25519_add@ --- *
333 *
334 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
335 * @const f25519 *x, *y@ = two operands
336 *
337 * Returns: ---
338 *
339 * Use: Set @z@ to the sum %$x + y$%.
340 */
341
342 void f25519_add(f25519 *z, const f25519 *x, const f25519 *y)
343 {
344 z->P[0] = x->P[0] + y->P[0]; z->P[1] = x->P[1] + y->P[1];
345 z->P[2] = x->P[2] + y->P[2]; z->P[3] = x->P[3] + y->P[3];
346 z->P[4] = x->P[4] + y->P[4]; z->P[5] = x->P[5] + y->P[5];
347 z->P[6] = x->P[6] + y->P[6]; z->P[7] = x->P[7] + y->P[7];
348 z->P[8] = x->P[8] + y->P[8]; z->P[9] = x->P[9] + y->P[9];
349 }
350
351 /* --- @f25519_sub@ --- *
352 *
353 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
354 * @const f25519 *x, *y@ = two operands
355 *
356 * Returns: ---
357 *
358 * Use: Set @z@ to the difference %$x - y$%.
359 */
360
361 void f25519_sub(f25519 *z, const f25519 *x, const f25519 *y)
362 {
363 z->P[0] = x->P[0] - y->P[0]; z->P[1] = x->P[1] - y->P[1];
364 z->P[2] = x->P[2] - y->P[2]; z->P[3] = x->P[3] - y->P[3];
365 z->P[4] = x->P[4] - y->P[4]; z->P[5] = x->P[5] - y->P[5];
366 z->P[6] = x->P[6] - y->P[6]; z->P[7] = x->P[7] - y->P[7];
367 z->P[8] = x->P[8] - y->P[8]; z->P[9] = x->P[9] - y->P[9];
368 }
369
370 /* --- @f25519_neg@ --- *
371 *
372 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
373 * @const f25519 *x@ = an operand
374 *
375 * Returns: ---
376 *
377 * Use: Set @z = -x@.
378 */
379
380 void f25519_neg(f25519 *z, const f25519 *x)
381 {
382 z->P[0] = -x->P[0]; z->P[1] = -x->P[1];
383 z->P[2] = -x->P[2]; z->P[3] = -x->P[3];
384 z->P[4] = -x->P[4]; z->P[5] = -x->P[5];
385 z->P[6] = -x->P[6]; z->P[7] = -x->P[7];
386 z->P[8] = -x->P[8]; z->P[9] = -x->P[9];
387 }
388
389 /*----- Constant-time utilities -------------------------------------------*/
390
391 /* --- @f25519_pick2@ --- *
392 *
393 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
394 * @const f25519 *x, *y@ = two operands
395 * @uint32 m@ = a mask
396 *
397 * Returns: ---
398 *
399 * Use: If @m@ is zero, set @z = y@; if @m@ is all-bits-set, then set
400 * @z = x@. If @m@ has some other value, then scramble @z@ in
401 * an unhelpful way.
402 */
403
404 void f25519_pick2(f25519 *z, const f25519 *x, const f25519 *y, uint32 m)
405 {
406 mask32 mm = FIX_MASK32(m);
407
408 z->P[0] = PICK2(x->P[0], y->P[0], mm);
409 z->P[1] = PICK2(x->P[1], y->P[1], mm);
410 z->P[2] = PICK2(x->P[2], y->P[2], mm);
411 z->P[3] = PICK2(x->P[3], y->P[3], mm);
412 z->P[4] = PICK2(x->P[4], y->P[4], mm);
413 z->P[5] = PICK2(x->P[5], y->P[5], mm);
414 z->P[6] = PICK2(x->P[6], y->P[6], mm);
415 z->P[7] = PICK2(x->P[7], y->P[7], mm);
416 z->P[8] = PICK2(x->P[8], y->P[8], mm);
417 z->P[9] = PICK2(x->P[9], y->P[9], mm);
418 }
419
420 /* --- @f25519_pickn@ --- *
421 *
422 * Arguments: @f25519 *z@ = where to put the result
423 * @const f25519 *v@ = a table of entries
424 * @size_t n@ = the number of entries in @v@
425 * @size_t i@ = an index
426 *
427 * Returns: ---
428 *
429 * Use: If @0 <= i < n < 32@ then set @z = v[i]@. If @n >= 32@ then
430 * do something unhelpful; otherwise, if @i >= n@ then set @z@
431 * to zero.
432 */
433
434 void f25519_pickn(f25519 *z, const f25519 *v, size_t n, size_t i)
435 {
436 uint32 b = (uint32)1 << (31 - i);
437 mask32 m;
438
439 z->P[0] = z->P[1] = z->P[2] = z->P[3] = z->P[4] =
440 z->P[5] = z->P[6] = z->P[7] = z->P[8] = z->P[9] = 0;
441 while (n--) {
442 m = SIGN(b);
443 CONDPICK(z->P[0], v->P[0], m);
444 CONDPICK(z->P[1], v->P[1], m);
445 CONDPICK(z->P[2], v->P[2], m);
446 CONDPICK(z->P[3], v->P[3], m);
447 CONDPICK(z->P[4], v->P[4], m);
448 CONDPICK(z->P[5], v->P[5], m);
449 CONDPICK(z->P[6], v->P[6], m);
450 CONDPICK(z->P[7], v->P[7], m);
451 CONDPICK(z->P[8], v->P[8], m);
452 CONDPICK(z->P[9], v->P[9], m);
453 v++; b <<= 1;
454 }
455 }
456
457 /* --- @f25519_condswap@ --- *
458 *
459 * Arguments: @f25519 *x, *y@ = two operands
460 * @uint32 m@ = a mask
461 *
462 * Returns: ---
463 *
464 * Use: If @m@ is zero, do nothing; if @m@ is all-bits-set, then
465 * exchange @x@ and @y@. If @m@ has some other value, then
466 * scramble @x@ and @y@ in an unhelpful way.
467 */
468
469 void f25519_condswap(f25519 *x, f25519 *y, uint32 m)
470 {
471 mask32 mm = FIX_MASK32(m);
472
473 CONDSWAP(x->P[0], y->P[0], mm);
474 CONDSWAP(x->P[1], y->P[1], mm);
475 CONDSWAP(x->P[2], y->P[2], mm);
476 CONDSWAP(x->P[3], y->P[3], mm);
477 CONDSWAP(x->P[4], y->P[4], mm);
478 CONDSWAP(x->P[5], y->P[5], mm);
479 CONDSWAP(x->P[6], y->P[6], mm);
480 CONDSWAP(x->P[7], y->P[7], mm);
481 CONDSWAP(x->P[8], y->P[8], mm);
482 CONDSWAP(x->P[9], y->P[9], mm);
483 }
484
485 /* --- @f25519_condneg@ --- *
486 *
487 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
488 * @const f25519 *x@ = an operand
489 * @uint32 m@ = a mask
490 *
491 * Returns: ---
492 *
493 * Use: If @m@ is zero, set @z = x@; if @m@ is all-bits-set, then set
494 * @z = -x@. If @m@ has some other value then scramble @z@ in
495 * an unhelpful way.
496 */
497
498 void f25519_condneg(f25519 *z, const f25519 *x, uint32 m)
499 {
500 mask32 m_xor = FIX_MASK32(m);
501 piece m_add = m&1;
502 # define CONDNEG(x) (((x) ^ m_xor) + m_add)
503
504 z->P[0] = CONDNEG(x->P[0]);
505 z->P[1] = CONDNEG(x->P[1]);
506 z->P[2] = CONDNEG(x->P[2]);
507 z->P[3] = CONDNEG(x->P[3]);
508 z->P[4] = CONDNEG(x->P[4]);
509 z->P[5] = CONDNEG(x->P[5]);
510 z->P[6] = CONDNEG(x->P[6]);
511 z->P[7] = CONDNEG(x->P[7]);
512 z->P[8] = CONDNEG(x->P[8]);
513 z->P[9] = CONDNEG(x->P[9]);
514
515 #undef CONDNEG
516 }
517
518 /*----- Multiplication ----------------------------------------------------*/
519
520 /* Let B = 2^63 - 1 be the largest value such that +B and -B can be
521 * represented in a double-precision piece. On entry, it must be the case
522 * that |X_i| <= M <= B - 2^25 for some M. If this is the case, then, on
523 * exit, we will have |Z_i| <= 2^25 + 19 M/2^25.
524 */
525 #define CARRYSTEP(z, x, m, b, f, xx, n) do { \
526 (z) = (dblpiece)((udblpiece)(x)&(m)) - (b) + \
527 (f)*ASR(dblpiece, (xx), (n)); \
528 } while (0)
529 #define CARRY_REDUCE(z, x) do { \
530 dblpiece PIECES(_t); \
531 \
532 /* Bias the input pieces. This keeps the carries and so on centred \
533 * around zero rather than biased positive. \
534 */ \
535 _t0 = (x##0) + B25; _t1 = (x##1) + B24; \
536 _t2 = (x##2) + B25; _t3 = (x##3) + B24; \
537 _t4 = (x##4) + B25; _t5 = (x##5) + B24; \
538 _t6 = (x##6) + B25; _t7 = (x##7) + B24; \
539 _t8 = (x##8) + B25; _t9 = (x##9) + B24; \
540 \
541 /* Calculate the reduced pieces. Careful with the bithacking. */ \
542 CARRYSTEP(z##0, _t0, M26, B25, 19, _t9, 25); \
543 CARRYSTEP(z##1, _t1, M25, B24, 1, _t0, 26); \
544 CARRYSTEP(z##2, _t2, M26, B25, 1, _t1, 25); \
545 CARRYSTEP(z##3, _t3, M25, B24, 1, _t2, 26); \
546 CARRYSTEP(z##4, _t4, M26, B25, 1, _t3, 25); \
547 CARRYSTEP(z##5, _t5, M25, B24, 1, _t4, 26); \
548 CARRYSTEP(z##6, _t6, M26, B25, 1, _t5, 25); \
549 CARRYSTEP(z##7, _t7, M25, B24, 1, _t6, 26); \
550 CARRYSTEP(z##8, _t8, M26, B25, 1, _t7, 25); \
551 CARRYSTEP(z##9, _t9, M25, B24, 1, _t8, 26); \
552 } while (0)
553
554 /* --- @f25519_mulconst@ --- *
555 *
556 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
557 * @const f25519 *x@ = an operand
558 * @long a@ = a small-ish constant; %$|a| < 2^{20}$%.
559 *
560 * Returns: ---
561 *
562 * Use: Set @z@ to the product %$a x$%.
563 */
564
565 void f25519_mulconst(f25519 *z, const f25519 *x, long a)
566 {
567
568 piece PIECES(x);
569 dblpiece PIECES(z), aa = a;
570
571 FETCH(x, x);
572
573 /* Suppose that |x_i| <= 2^27, and |a| <= 2^23. Then we'll have
574 * |z_i| <= 2^50.
575 */
576 z0 = aa*x0; z1 = aa*x1; z2 = aa*x2; z3 = aa*x3; z4 = aa*x4;
577 z5 = aa*x5; z6 = aa*x6; z7 = aa*x7; z8 = aa*x8; z9 = aa*x9;
578
579 /* Following `CARRY_REDUCE', we'll have |z_i| <= 2^26. */
580 CARRY_REDUCE(z, z);
581 STASH(z, z);
582 }
583
584 /* --- @f25519_mul@ --- *
585 *
586 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
587 * @const f25519 *x, *y@ = two operands
588 *
589 * Returns: ---
590 *
591 * Use: Set @z@ to the product %$x y$%.
592 */
593
594 void f25519_mul(f25519 *z, const f25519 *x, const f25519 *y)
595 {
596
597 piece PIECES(x), PIECES(y);
598 dblpiece PIECES(z);
599 unsigned i;
600
601 FETCH(x, x); FETCH(y, y);
602
603 /* Suppose that |x_i|, |y_i| <= 2^27. Then we'll have
604 *
605 * |z_0| <= 267*2^54
606 * |z_1| <= 154*2^54
607 * |z_2| <= 213*2^54
608 * |z_3| <= 118*2^54
609 * |z_4| <= 159*2^54
610 * |z_5| <= 82*2^54
611 * |z_6| <= 105*2^54
612 * |z_7| <= 46*2^54
613 * |z_8| <= 51*2^54
614 * |z_9| <= 10*2^54
615 *
616 * all of which are less than 2^63 - 2^25.
617 */
618
619 #define M(a, b) ((dblpiece)(a)*(b))
620 z0 = M(x0, y0) +
621 19*(M(x2, y8) + M(x4, y6) + M(x6, y4) + M(x8, y2)) +
622 38*(M(x1, y9) + M(x3, y7) + M(x5, y5) + M(x7, y3) + M(x9, y1));
623 z1 = M(x0, y1) + M(x1, y0) +
624 19*(M(x2, y9) + M(x3, y8) + M(x4, y7) + M(x5, y6) +
625 M(x6, y5) + M(x7, y4) + M(x8, y3) + M(x9, y2));
626 z2 = M(x0, y2) + M(x2, y0) +
627 2* M(x1, y1) +
628 19*(M(x4, y8) + M(x6, y6) + M(x8, y4)) +
629 38*(M(x3, y9) + M(x5, y7) + M(x7, y5) + M(x9, y3));
630 z3 = M(x0, y3) + M(x1, y2) + M(x2, y1) + M(x3, y0) +
631 19*(M(x4, y9) + M(x5, y8) + M(x6, y7) +
632 M(x7, y6) + M(x8, y5) + M(x9, y4));
633 z4 = M(x0, y4) + M(x2, y2) + M(x4, y0) +
634 2*(M(x1, y3) + M(x3, y1)) +
635 19*(M(x6, y8) + M(x8, y6)) +
636 38*(M(x5, y9) + M(x7, y7) + M(x9, y5));
637 z5 = M(x0, y5) + M(x1, y4) + M(x2, y3) +
638 M(x3, y2) + M(x4, y1) + M(x5, y0) +
639 19*(M(x6, y9) + M(x7, y8) + M(x8, y7) + M(x9, y6));
640 z6 = M(x0, y6) + M(x2, y4) + M(x4, y2) + M(x6, y0) +
641 2*(M(x1, y5) + M(x3, y3) + M(x5, y1)) +
642 19* M(x8, y8) +
643 38*(M(x7, y9) + M(x9, y7));
644 z7 = M(x0, y7) + M(x1, y6) + M(x2, y5) + M(x3, y4) +
645 M(x4, y3) + M(x5, y2) + M(x6, y1) + M(x7, y0) +
646 19*(M(x8, y9) + M(x9, y8));
647 z8 = M(x0, y8) + M(x2, y6) + M(x4, y4) + M(x6, y2) + M(x8, y0) +
648 2*(M(x1, y7) + M(x3, y5) + M(x5, y3) + M(x7, y1)) +
649 38* M(x9, y9);
650 z9 = M(x0, y9) + M(x1, y8) + M(x2, y7) + M(x3, y6) + M(x4, y5) +
651 M(x5, y4) + M(x6, y3) + M(x7, y2) + M(x8, y1) + M(x9, y0);
652 #undef M
653
654 /* From above, we have |z_i| <= 2^63 - 2^25. A pass of `CARRY_REDUCE' will
655 * leave |z_i| <= 2^38 + 2^25; and a second pass will leave |z_i| <= 2^25 +
656 * 2^13, which is comfortable for an addition prior to the next
657 * multiplication.
658 */
659 for (i = 0; i < 2; i++) CARRY_REDUCE(z, z);
660 STASH(z, z);
661 }
662
663 /* --- @f25519_sqr@ --- *
664 *
665 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
666 * @const f25519 *x@ = an operand
667 *
668 * Returns: ---
669 *
670 * Use: Set @z@ to the square %$x^2$%.
671 */
672
673 void f25519_sqr(f25519 *z, const f25519 *x)
674 {
675
676 piece PIECES(x);
677 dblpiece PIECES(z);
678 unsigned i;
679
680 FETCH(x, x);
681
682 /* See `f25519_mul' for bounds. */
683
684 #define M(a, b) ((dblpiece)(a)*(b))
685 z0 = M(x0, x0) +
686 38*(M(x2, x8) + M(x4, x6) + M(x5, x5)) +
687 76*(M(x1, x9) + M(x3, x7));
688 z1 = 2* M(x0, x1) +
689 38*(M(x2, x9) + M(x3, x8) + M(x4, x7) + M(x5, x6));
690 z2 = 2*(M(x0, x2) + M(x1, x1)) +
691 19* M(x6, x6) +
692 38* M(x4, x8) +
693 76*(M(x3, x9) + M(x5, x7));
694 z3 = 2*(M(x0, x3) + M(x1, x2)) +
695 38*(M(x4, x9) + M(x5, x8) + M(x6, x7));
696 z4 = M(x2, x2) +
697 2* M(x0, x4) +
698 4* M(x1, x3) +
699 38*(M(x6, x8) + M(x7, x7)) +
700 76* M(x5, x9);
701 z5 = 2*(M(x0, x5) + M(x1, x4) + M(x2, x3)) +
702 38*(M(x6, x9) + M(x7, x8));
703 z6 = 2*(M(x0, x6) + M(x2, x4) + M(x3, x3)) +
704 4* M(x1, x5) +
705 19* M(x8, x8) +
706 76* M(x7, x9);
707 z7 = 2*(M(x0, x7) + M(x1, x6) + M(x2, x5) + M(x3, x4)) +
708 38* M(x8, x9);
709 z8 = M(x4, x4) +
710 2*(M(x0, x8) + M(x2, x6)) +
711 4*(M(x1, x7) + M(x3, x5)) +
712 38* M(x9, x9);
713 z9 = 2*(M(x0, x9) + M(x1, x8) + M(x2, x7) + M(x3, x6) + M(x4, x5));
714 #undef M
715
716 /* See `f25519_mul' for details. */
717 for (i = 0; i < 2; i++) CARRY_REDUCE(z, z);
718 STASH(z, z);
719 }
720
721 /*----- More complicated things -------------------------------------------*/
722
723 /* --- @f25519_inv@ --- *
724 *
725 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
726 * @const f25519 *x@ = an operand
727 *
728 * Returns: ---
729 *
730 * Use: Stores in @z@ the multiplicative inverse %$x^{-1}$%. If
731 * %$x = 0$% then @z@ is set to zero. This is considered a
732 * feature.
733 */
734
735 void f25519_inv(f25519 *z, const f25519 *x)
736 {
737 f25519 t, u, t2, t11, t2p10m1, t2p50m1;
738 unsigned i;
739
740 #define SQRN(z, x, n) do { \
741 f25519_sqr((z), (x)); \
742 for (i = 1; i < (n); i++) f25519_sqr((z), (z)); \
743 } while (0)
744
745 /* Calculate x^-1 = x^(p - 2) = x^(2^255 - 21), which also handles x = 0 as
746 * intended. The addition chain here is from Bernstein's implementation; I
747 * couldn't find a better one.
748 */ /* step | value */
749 f25519_sqr(&t2, x); /* 1 | 2 */
750 SQRN(&u, &t2, 2); /* 3 | 8 */
751 f25519_mul(&t, &u, x); /* 4 | 9 */
752 f25519_mul(&t11, &t, &t2); /* 5 | 11 = 2^5 - 21 */
753 f25519_sqr(&u, &t11); /* 6 | 22 */
754 f25519_mul(&t, &t, &u); /* 7 | 31 = 2^5 - 1 */
755 SQRN(&u, &t, 5); /* 12 | 2^10 - 2^5 */
756 f25519_mul(&t2p10m1, &t, &u); /* 13 | 2^10 - 1 */
757 SQRN(&u, &t2p10m1, 10); /* 23 | 2^20 - 2^10 */
758 f25519_mul(&t, &t2p10m1, &u); /* 24 | 2^20 - 1 */
759 SQRN(&u, &t, 20); /* 44 | 2^40 - 2^20 */
760 f25519_mul(&t, &t, &u); /* 45 | 2^40 - 1 */
761 SQRN(&u, &t, 10); /* 55 | 2^50 - 2^10 */
762 f25519_mul(&t2p50m1, &t2p10m1, &u); /* 56 | 2^50 - 1 */
763 SQRN(&u, &t2p50m1, 50); /* 106 | 2^100 - 2^50 */
764 f25519_mul(&t, &t2p50m1, &u); /* 107 | 2^100 - 1 */
765 SQRN(&u, &t, 100); /* 207 | 2^200 - 2^100 */
766 f25519_mul(&t, &t, &u); /* 208 | 2^200 - 1 */
767 SQRN(&u, &t, 50); /* 258 | 2^250 - 2^50 */
768 f25519_mul(&t, &t2p50m1, &u); /* 259 | 2^250 - 1 */
769 SQRN(&u, &t, 5); /* 264 | 2^255 - 2^5 */
770 f25519_mul(z, &u, &t11); /* 265 | 2^255 - 21 */
771
772 #undef SQRN
773 }
774
775 /* --- @f25519_quosqrt@ --- *
776 *
777 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
778 * @const f25519 *x, *y@ = two operands
779 *
780 * Returns: Zero if successful, @-1@ if %$x/y$% is not a square.
781 *
782 * Use: Stores in @z@ the one of the square roots %$\pm\sqrt{x/y}$%.
783 * If %$x = y = 0% then the result is zero; if %$y = 0$% but %$x
784 * \ne 0$% then the operation fails. If you wanted a specific
785 * square root then you'll have to pick it yourself.
786 */
787
788 static const piece sqrtm1_pieces[NPIECE] = {
789 -32595792, -7943725, 9377950, 3500415, 12389472,
790 -272473, -25146209, -2005654, 326686, 11406482
791 };
792 #define SQRTM1 ((const f25519 *)sqrtm1_pieces)
793
794 int f25519_quosqrt(f25519 *z, const f25519 *x, const f25519 *y)
795 {
796 f25519 t, u, w, beta, xy3, t2p50m1;
797 octet xb[32], b0[32], b1[32];
798 int32 rc = -1;
799 mask32 m;
800 unsigned i;
801
802 #define SQRN(z, x, n) do { \
803 f25519_sqr((z), (x)); \
804 for (i = 1; i < (n); i++) f25519_sqr((z), (z)); \
805 } while (0)
806
807 /* This is a bit tricky; the algorithm is from Bernstein, Duif, Lange,
808 * Schwabe, and Yang, `High-speed high-security signatures', 2011-09-26,
809 * https://ed25519.cr.yp.to/ed25519-20110926.pdf.
810 *
811 * First of all, a complicated exponentation. The addition chain here is
812 * mine. We start with some preliminary values.
813 */ /* step | value */
814 SQRN(&u, y, 1); /* 1 | 0, 2 */
815 f25519_mul(&t, &u, y); /* 2 | 0, 3 */
816 f25519_mul(&xy3, &t, x); /* 3 | 1, 3 */
817 SQRN(&u, &u, 1); /* 4 | 0, 4 */
818 f25519_mul(&w, &u, &xy3); /* 5 | 1, 7 */
819
820 /* And now we calculate w^((p - 5)/8) = w^(252 - 3). */
821 SQRN(&u, &w, 1); /* 6 | 2 */
822 f25519_mul(&t, &w, &u); /* 7 | 3 */
823 SQRN(&u, &t, 1); /* 8 | 6 */
824 f25519_mul(&t, &u, &w); /* 9 | 7 */
825 SQRN(&u, &t, 3); /* 12 | 56 */
826 f25519_mul(&t, &t, &u); /* 13 | 63 = 2^6 - 1 */
827 SQRN(&u, &t, 6); /* 19 | 2^12 - 2^6 */
828 f25519_mul(&t, &t, &u); /* 20 | 2^12 - 1 */
829 SQRN(&u, &t, 12); /* 32 | 2^24 - 2^12 */
830 f25519_mul(&t, &t, &u); /* 33 | 2^24 - 1 */
831 SQRN(&u, &t, 1); /* 34 | 2^25 - 2 */
832 f25519_mul(&t, &u, &w); /* 35 | 2^25 - 1 */
833 SQRN(&u, &t, 25); /* 60 | 2^50 - 2^25 */
834 f25519_mul(&t2p50m1, &t, &u); /* 61 | 2^50 - 1 */
835 SQRN(&u, &t2p50m1, 50); /* 111 | 2^100 - 2^50 */
836 f25519_mul(&t, &t2p50m1, &u); /* 112 | 2^100 - 1 */
837 SQRN(&u, &t, 100); /* 212 | 2^200 - 2^100 */
838 f25519_mul(&t, &t, &u); /* 213 | 2^200 - 1 */
839 SQRN(&u, &t, 50); /* 263 | 2^250 - 2^50 */
840 f25519_mul(&t, &t2p50m1, &u); /* 264 | 2^250 - 1 */
841 SQRN(&u, &t, 2); /* 266 | 2^252 - 4 */
842 f25519_mul(&t, &u, &w); /* 267 | 2^252 - 3 */
843
844 /* And finally... */
845 f25519_mul(&beta, &t, &xy3); /* 268 | ... */
846
847 /* Now we have beta = (x y^3) (x y^7)^((p - 5)/8) = (x/y)^((p + 3)/8), and
848 * we're ready to finish the computation. Suppose that alpha^2 = u/w.
849 * Then beta^4 = (x/y)^((p + 3)/2) = alpha^(p + 3) = alpha^4 = (x/y)^2, so
850 * we have beta^2 = ±x/y. If y beta^2 = x then beta is the one we wanted;
851 * if -y beta^2 = x, then we want beta sqrt(-1), which we already know. Of
852 * course, it might not match either, in which case we fail.
853 *
854 * The easiest way to compare is to encode. This isn't as wasteful as it
855 * sounds: the hard part is normalizing the representations, which we have
856 * to do anyway.
857 */
858 f25519_sqr(&t, &beta);
859 f25519_mul(&t, &t, y);
860 f25519_neg(&u, &t);
861 f25519_store(xb, x);
862 f25519_store(b0, &t);
863 f25519_store(b1, &u);
864 f25519_mul(&u, &beta, SQRTM1);
865
866 m = -consttime_memeq(b0, xb, 32);
867 rc = PICK2(0, rc, m);
868 f25519_pick2(z, &beta, &u, m);
869 m = -consttime_memeq(b1, xb, 32);
870 rc = PICK2(0, rc, m);
871
872 /* And we're done. */
873 return (rc);
874 }
875
876 /*----- That's all, folks -------------------------------------------------*/