@@@ testing
[secnet] / f25519.c
1 /*
2 * f25519.c: arithmetic modulo 2^255 - 19
3 */
4 /*
5 * This file is Free Software. It has been modified to as part of its
6 * incorporation into secnet.
7 *
8 * Copyright 2017 Mark Wooding
9 *
10 * You may redistribute this file and/or modify it under the terms of
11 * the permissive licence shown below.
12 *
13 * You may redistribute secnet as a whole and/or modify it under the
14 * terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 3, or (at your option) any
16 * later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, see
25 * https://www.gnu.org/licenses/gpl.html.
26 */
27 /*
28 * Imported from Catacomb, and modified for Secnet (2017-04-30):
29 *
30 * * Use `fake-mLib-bits.h' in place of the real <mLib/bits.h>.
31 *
32 * * Remove the 16/32-bit implementation, since C99 always has 64-bit
33 * arithmetic.
34 *
35 * * Remove the test rig code: a replacement is in a separate source file.
36 *
37 * * Disable some of the operations which aren't needed for X25519.
38 * (They're used for Ed25519, which we don't need.)
39 *
40 * The file's original comment headers are preserved below.
41 */
42 /* -*-c-*-
43 *
44 * Arithmetic modulo 2^255 - 19
45 *
46 * (c) 2017 Straylight/Edgeware
47 */
48
49 /*----- Licensing notice --------------------------------------------------*
50 *
51 * This file is part of Catacomb.
52 *
53 * Catacomb is free software; you can redistribute it and/or modify
54 * it under the terms of the GNU Library General Public License as
55 * published by the Free Software Foundation; either version 2 of the
56 * License, or (at your option) any later version.
57 *
58 * Catacomb is distributed in the hope that it will be useful,
59 * but WITHOUT ANY WARRANTY; without even the implied warranty of
60 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
61 * GNU Library General Public License for more details.
62 *
63 * You should have received a copy of the GNU Library General Public
64 * License along with Catacomb; if not, write to the Free
65 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
66 * MA 02111-1307, USA.
67 */
68
69 /*----- Header files ------------------------------------------------------*/
70
71 #include "f25519.h"
72
73 /*----- Basic setup -------------------------------------------------------*/
74
75 /* Elements x of GF(2^255 - 19) are represented by ten signed integers x_i: x
76 * = SUM_{0<=i<10} x_i 2^ceil(51i/2), mostly following Bernstein's original
77 * paper.
78 */
79
80 typedef int32 piece; typedef int64 dblpiece;
81 typedef uint32 upiece; typedef uint64 udblpiece;
82 #define P p26
83 #define PIECEWD(i) ((i)%2 ? 25 : 26)
84 #define NPIECE 10
85
86 #define M26 0x03ffffffu
87 #define M25 0x01ffffffu
88 #define B26 0x04000000u
89 #define B25 0x02000000u
90 #define B24 0x01000000u
91
92 #define PIECES(v) v##0, v##1, v##2, v##3, v##4, v##5, v##6, v##7, v##8, v##9
93 #define FETCH(v, w) do { \
94 v##0 = (w)->P[0]; v##1 = (w)->P[1]; \
95 v##2 = (w)->P[2]; v##3 = (w)->P[3]; \
96 v##4 = (w)->P[4]; v##5 = (w)->P[5]; \
97 v##6 = (w)->P[6]; v##7 = (w)->P[7]; \
98 v##8 = (w)->P[8]; v##9 = (w)->P[9]; \
99 } while (0)
100 #define STASH(w, v) do { \
101 (w)->P[0] = v##0; (w)->P[1] = v##1; \
102 (w)->P[2] = v##2; (w)->P[3] = v##3; \
103 (w)->P[4] = v##4; (w)->P[5] = v##5; \
104 (w)->P[6] = v##6; (w)->P[7] = v##7; \
105 (w)->P[8] = v##8; (w)->P[9] = v##9; \
106 } while (0)
107
108 /*----- Debugging machinery -----------------------------------------------*/
109
110 #if defined(F25519_DEBUG)
111
112 #include <stdio.h>
113
114 #include "mp.h"
115 #include "mptext.h"
116
117 static mp *get_2p255m91(void)
118 {
119 mpw w19 = 19;
120 mp *p = MP_NEW, m19;
121
122 p = mp_setbit(p, MP_ZERO, 255);
123 mp_build(&m19, &w19, &w19 + 1);
124 p = mp_sub(p, p, &m19);
125 return (p);
126 }
127
128 DEF_FDUMP(fdump, piece, PIECEWD, NPIECE, 32, get_2p255m91())
129
130 #endif
131
132 /*----- Loading and storing -----------------------------------------------*/
133
134 /* --- @f25519_load@ --- *
135 *
136 * Arguments: @f25519 *z@ = where to store the result
137 * @const octet xv[32]@ = source to read
138 *
139 * Returns: ---
140 *
141 * Use: Reads an element of %$\gf{2^{255} - 19}$% in external
142 * representation from @xv@ and stores it in @z@.
143 *
144 * External representation is little-endian base-256. Some
145 * elements have multiple encodings, which are not produced by
146 * correct software; use of noncanonical encodings is not an
147 * error, and toleration of them is considered a performance
148 * feature.
149 */
150
151 void f25519_load(f25519 *z, const octet xv[32])
152 {
153 uint32 xw0 = LOAD32_L(xv + 0), xw1 = LOAD32_L(xv + 4),
154 xw2 = LOAD32_L(xv + 8), xw3 = LOAD32_L(xv + 12),
155 xw4 = LOAD32_L(xv + 16), xw5 = LOAD32_L(xv + 20),
156 xw6 = LOAD32_L(xv + 24), xw7 = LOAD32_L(xv + 28);
157 piece PIECES(x), b, c;
158
159 /* First, split the 32-bit words into the irregularly-sized pieces we need
160 * for the field representation. These pieces are all positive. We'll do
161 * the sign correction afterwards.
162 *
163 * It may be that the top bit of the input is set. Avoid trouble by
164 * folding that back round into the bottom piece of the representation.
165 *
166 * Here, we briefly have 0 <= x_0 < 2^26 + 19, but will resolve this later.
167 * Otherwise, we have 0 <= x_{2i} < 2^26, and 0 <= x_{2i+1} < 2^25.
168 */
169 x0 = ((xw0 << 0)&0x03ffffff) + 19*((xw7 >> 31)&0x00000001);
170 x1 = ((xw1 << 6)&0x01ffffc0) | ((xw0 >> 26)&0x0000003f);
171 x2 = ((xw2 << 13)&0x03ffe000) | ((xw1 >> 19)&0x00001fff);
172 x3 = ((xw3 << 19)&0x01f80000) | ((xw2 >> 13)&0x0007ffff);
173 x4 = ((xw3 >> 6)&0x03ffffff);
174 x5 = (xw4 << 0)&0x01ffffff;
175 x6 = ((xw5 << 7)&0x03ffff80) | ((xw4 >> 25)&0x0000007f);
176 x7 = ((xw6 << 13)&0x01ffe000) | ((xw5 >> 19)&0x00001fff);
177 x8 = ((xw7 << 20)&0x03f00000) | ((xw6 >> 12)&0x000fffff);
178 x9 = ((xw7 >> 6)&0x01ffffff);
179
180 /* Next, we convert these pieces into a roughly balanced signed
181 * representation. For each piece, check to see if its top bit is set. If
182 * it is, then lend a bit to the next piece over. For x_9, this needs to
183 * be carried around, which is a little fiddly. In particular, we delay
184 * the carry until after all of the pieces have been balanced. If we don't
185 * do this, then we have to do a more expensive test for nonzeroness to
186 * decide whether to lend a bit leftwards rather than just testing a single
187 * bit.
188 *
189 * This fixes up the anomalous size of x_0: the loan of a bit becomes an
190 * actual carry if x_0 >= 2^26. By the end, then, we have:
191 *
192 * { 2^25 if i even
193 * |x_i| <= {
194 * { 2^24 if i odd
195 *
196 * Note that we don't try for a canonical representation here: both upper
197 * and lower bounds are achievable.
198 *
199 * All of the x_i at this point are positive, so we don't need to do
200 * anything wierd when masking them.
201 */
202 b = x9&B24; c = 19&((b >> 19) - (b >> 24)); x9 -= b << 1;
203 b = x8&B25; x9 += b >> 25; x8 -= b << 1;
204 b = x7&B24; x8 += b >> 24; x7 -= b << 1;
205 b = x6&B25; x7 += b >> 25; x6 -= b << 1;
206 b = x5&B24; x6 += b >> 24; x5 -= b << 1;
207 b = x4&B25; x5 += b >> 25; x4 -= b << 1;
208 b = x3&B24; x4 += b >> 24; x3 -= b << 1;
209 b = x2&B25; x3 += b >> 25; x2 -= b << 1;
210 b = x1&B24; x2 += b >> 24; x1 -= b << 1;
211 b = x0&B25; x1 += (b >> 25) + (x0 >> 26); x0 = (x0&M26) - (b << 1);
212 x0 += c;
213
214 /* And with that, we're done. */
215 STASH(z, x);
216 }
217
218 /* --- @f25519_store@ --- *
219 *
220 * Arguments: @octet zv[32]@ = where to write the result
221 * @const f25519 *x@ = the field element to write
222 *
223 * Returns: ---
224 *
225 * Use: Stores a field element in the given octet vector in external
226 * representation. A canonical encoding is always stored, so,
227 * in particular, the top bit of @xv[31]@ is always left clear.
228 */
229
230 void f25519_store(octet zv[32], const f25519 *x)
231 {
232 piece PIECES(x), PIECES(y), c, d;
233 uint32 zw0, zw1, zw2, zw3, zw4, zw5, zw6, zw7;
234 mask32 m;
235
236 FETCH(x, x);
237
238 /* First, propagate the carries throughout the pieces. By the end of this,
239 * we'll have all of the pieces canonically sized and positive, and maybe
240 * there'll be (signed) carry out. The carry c is in { -1, 0, +1 }, and
241 * the remaining value will be in the half-open interval [0, 2^255). The
242 * whole represented value is then x + 2^255 c.
243 *
244 * It's worth paying careful attention to the bounds. We assume that we
245 * start out with |x_i| <= 2^30. We start by cutting off and reducing the
246 * carry c_9 from the topmost piece, x_9. This leaves 0 <= x_9 < 2^25; and
247 * we'll have |c_9| <= 2^5. We multiply this by 19 and we'll add it onto
248 * x_0 and propagate the carries: but what bounds can we calculate on x
249 * before this?
250 *
251 * Let o_i = floor(51 i/2). We have X_i = SUM_{0<=j<i} x_j 2^{o_i}, so
252 * x = X_10. We see, inductively, that |X_i| < 2^{31+o_{i-1}}: X_0 = 0;
253 * |x_i| <= 2^30; and |X_{i+1}| = |X_i + x_i 2^{o_i}| <= |X_i| + 2^{30+o_i}
254 * < 2^{31+o_i}. Then x = X_9 + 2^230 x_9, and we have better bounds for
255 * x_9, so
256 *
257 * -2^235 < x + 19 c_9 < 2^255 + 2^235
258 *
259 * Here, the x_i are signed, so we must be cautious about bithacking them.
260 */
261 c = ASR(piece, x9, 25); x9 = (upiece)x9&M25;
262 x0 += 19*c; c = ASR(piece, x0, 26); x0 = (upiece)x0&M26;
263 x1 += c; c = ASR(piece, x1, 25); x1 = (upiece)x1&M25;
264 x2 += c; c = ASR(piece, x2, 26); x2 = (upiece)x2&M26;
265 x3 += c; c = ASR(piece, x3, 25); x3 = (upiece)x3&M25;
266 x4 += c; c = ASR(piece, x4, 26); x4 = (upiece)x4&M26;
267 x5 += c; c = ASR(piece, x5, 25); x5 = (upiece)x5&M25;
268 x6 += c; c = ASR(piece, x6, 26); x6 = (upiece)x6&M26;
269 x7 += c; c = ASR(piece, x7, 25); x7 = (upiece)x7&M25;
270 x8 += c; c = ASR(piece, x8, 26); x8 = (upiece)x8&M26;
271 x9 += c; c = ASR(piece, x9, 25); x9 = (upiece)x9&M25;
272
273 /* Now we have a slightly fiddly job to do. If c = +1, or if c = 0 and
274 * x >= 2^255 - 19, then we should subtract 2^255 - 19 from the whole
275 * value; if c = -1 then we should add 2^255 - 19; and otherwise we should
276 * do nothing.
277 *
278 * But conditional behaviour is bad, m'kay. So here's what we do instead.
279 *
280 * The first job is to sort out what we wanted to do. If c = -1 then we
281 * want to (a) invert the constant addend and (b) feed in a carry-in;
282 * otherwise, we don't.
283 */
284 m = SIGN(c);
285 d = m&1;
286
287 /* Now do the addition/subtraction. Remember that all of the x_i are
288 * nonnegative, so shifting and masking are safe and easy.
289 */
290 d += x0 + (19 ^ (M26&m)); y0 = d&M26; d >>= 26;
291 d += x1 + (M25&m); y1 = d&M25; d >>= 25;
292 d += x2 + (M26&m); y2 = d&M26; d >>= 26;
293 d += x3 + (M25&m); y3 = d&M25; d >>= 25;
294 d += x4 + (M26&m); y4 = d&M26; d >>= 26;
295 d += x5 + (M25&m); y5 = d&M25; d >>= 25;
296 d += x6 + (M26&m); y6 = d&M26; d >>= 26;
297 d += x7 + (M25&m); y7 = d&M25; d >>= 25;
298 d += x8 + (M26&m); y8 = d&M26; d >>= 26;
299 d += x9 + (M25&m); y9 = d&M25; d >>= 25;
300
301 /* The final carry-out is in d; since we only did addition, and the x_i are
302 * nonnegative, then d is in { 0, 1 }. We want to keep y, rather than x,
303 * if (a) c /= 0 (in which case we know that the old value was
304 * unsatisfactory), or (b) if d = 1 (in which case, if c = 0, we know that
305 * the subtraction didn't cause a borrow, so we must be in the case where
306 * 2^255 - 19 <= x < 2^255).
307 */
308 m = NONZEROP(c) | ~NONZEROP(d - 1);
309 x0 = (y0&m) | (x0&~m); x1 = (y1&m) | (x1&~m);
310 x2 = (y2&m) | (x2&~m); x3 = (y3&m) | (x3&~m);
311 x4 = (y4&m) | (x4&~m); x5 = (y5&m) | (x5&~m);
312 x6 = (y6&m) | (x6&~m); x7 = (y7&m) | (x7&~m);
313 x8 = (y8&m) | (x8&~m); x9 = (y9&m) | (x9&~m);
314
315 /* Extract 32-bit words from the value. */
316 zw0 = ((x0 >> 0)&0x03ffffff) | (((uint32)x1 << 26)&0xfc000000);
317 zw1 = ((x1 >> 6)&0x0007ffff) | (((uint32)x2 << 19)&0xfff80000);
318 zw2 = ((x2 >> 13)&0x00001fff) | (((uint32)x3 << 13)&0xffffe000);
319 zw3 = ((x3 >> 19)&0x0000003f) | (((uint32)x4 << 6)&0xffffffc0);
320 zw4 = ((x5 >> 0)&0x01ffffff) | (((uint32)x6 << 25)&0xfe000000);
321 zw5 = ((x6 >> 7)&0x0007ffff) | (((uint32)x7 << 19)&0xfff80000);
322 zw6 = ((x7 >> 13)&0x00000fff) | (((uint32)x8 << 12)&0xfffff000);
323 zw7 = ((x8 >> 20)&0x0000003f) | (((uint32)x9 << 6)&0x7fffffc0);
324
325 /* Store the result as an octet string. */
326 STORE32_L(zv + 0, zw0); STORE32_L(zv + 4, zw1);
327 STORE32_L(zv + 8, zw2); STORE32_L(zv + 12, zw3);
328 STORE32_L(zv + 16, zw4); STORE32_L(zv + 20, zw5);
329 STORE32_L(zv + 24, zw6); STORE32_L(zv + 28, zw7);
330 }
331
332 /* --- @f25519_set@ --- *
333 *
334 * Arguments: @f25519 *z@ = where to write the result
335 * @int a@ = a small-ish constant
336 *
337 * Returns: ---
338 *
339 * Use: Sets @z@ to equal @a@.
340 */
341
342 void f25519_set(f25519 *x, int a)
343 {
344 unsigned i;
345
346 x->P[0] = a;
347 for (i = 1; i < NPIECE; i++) x->P[i] = 0;
348 }
349
350 /*----- Basic arithmetic --------------------------------------------------*/
351
352 /* --- @f25519_add@ --- *
353 *
354 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
355 * @const f25519 *x, *y@ = two operands
356 *
357 * Returns: ---
358 *
359 * Use: Set @z@ to the sum %$x + y$%.
360 */
361
362 void f25519_add(f25519 *z, const f25519 *x, const f25519 *y)
363 {
364 z->P[0] = x->P[0] + y->P[0]; z->P[1] = x->P[1] + y->P[1];
365 z->P[2] = x->P[2] + y->P[2]; z->P[3] = x->P[3] + y->P[3];
366 z->P[4] = x->P[4] + y->P[4]; z->P[5] = x->P[5] + y->P[5];
367 z->P[6] = x->P[6] + y->P[6]; z->P[7] = x->P[7] + y->P[7];
368 z->P[8] = x->P[8] + y->P[8]; z->P[9] = x->P[9] + y->P[9];
369 }
370
371 /* --- @f25519_sub@ --- *
372 *
373 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
374 * @const f25519 *x, *y@ = two operands
375 *
376 * Returns: ---
377 *
378 * Use: Set @z@ to the difference %$x - y$%.
379 */
380
381 void f25519_sub(f25519 *z, const f25519 *x, const f25519 *y)
382 {
383 z->P[0] = x->P[0] - y->P[0]; z->P[1] = x->P[1] - y->P[1];
384 z->P[2] = x->P[2] - y->P[2]; z->P[3] = x->P[3] - y->P[3];
385 z->P[4] = x->P[4] - y->P[4]; z->P[5] = x->P[5] - y->P[5];
386 z->P[6] = x->P[6] - y->P[6]; z->P[7] = x->P[7] - y->P[7];
387 z->P[8] = x->P[8] - y->P[8]; z->P[9] = x->P[9] - y->P[9];
388 }
389
390 #ifndef F25519_TRIM_X25519
391
392 /* --- @f25519_neg@ --- *
393 *
394 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
395 * @const f25519 *x@ = an operand
396 *
397 * Returns: ---
398 *
399 * Use: Set @z = -x@.
400 */
401
402 void f25519_neg(f25519 *z, const f25519 *x)
403 {
404 z->P[0] = -x->P[0]; z->P[1] = -x->P[1];
405 z->P[2] = -x->P[2]; z->P[3] = -x->P[3];
406 z->P[4] = -x->P[4]; z->P[5] = -x->P[5];
407 z->P[6] = -x->P[6]; z->P[7] = -x->P[7];
408 z->P[8] = -x->P[8]; z->P[9] = -x->P[9];
409 }
410
411 #endif
412
413 /*----- Constant-time utilities -------------------------------------------*/
414
415 #ifndef F25519_TRIM_X25519
416
417 /* --- @f25519_pick2@ --- *
418 *
419 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
420 * @const f25519 *x, *y@ = two operands
421 * @uint32 m@ = a mask
422 *
423 * Returns: ---
424 *
425 * Use: If @m@ is zero, set @z = y@; if @m@ is all-bits-set, then set
426 * @z = x@. If @m@ has some other value, then scramble @z@ in
427 * an unhelpful way.
428 */
429
430 void f25519_pick2(f25519 *z, const f25519 *x, const f25519 *y, uint32 m)
431 {
432 mask32 mm = FIX_MASK32(m);
433
434 z->P[0] = PICK2(x->P[0], y->P[0], mm);
435 z->P[1] = PICK2(x->P[1], y->P[1], mm);
436 z->P[2] = PICK2(x->P[2], y->P[2], mm);
437 z->P[3] = PICK2(x->P[3], y->P[3], mm);
438 z->P[4] = PICK2(x->P[4], y->P[4], mm);
439 z->P[5] = PICK2(x->P[5], y->P[5], mm);
440 z->P[6] = PICK2(x->P[6], y->P[6], mm);
441 z->P[7] = PICK2(x->P[7], y->P[7], mm);
442 z->P[8] = PICK2(x->P[8], y->P[8], mm);
443 z->P[9] = PICK2(x->P[9], y->P[9], mm);
444 }
445
446 /* --- @f25519_pickn@ --- *
447 *
448 * Arguments: @f25519 *z@ = where to put the result
449 * @const f25519 *v@ = a table of entries
450 * @size_t n@ = the number of entries in @v@
451 * @size_t i@ = an index
452 *
453 * Returns: ---
454 *
455 * Use: If @0 <= i < n < 32@ then set @z = v[i]@. If @n >= 32@ then
456 * do something unhelpful; otherwise, if @i >= n@ then set @z@
457 * to zero.
458 */
459
460 void f25519_pickn(f25519 *z, const f25519 *v, size_t n, size_t i)
461 {
462 uint32 b = (uint32)1 << (31 - i);
463 mask32 m;
464
465 z->P[0] = z->P[1] = z->P[2] = z->P[3] = z->P[4] =
466 z->P[5] = z->P[6] = z->P[7] = z->P[8] = z->P[9] = 0;
467 while (n--) {
468 m = SIGN(b);
469 CONDPICK(z->P[0], v->P[0], m);
470 CONDPICK(z->P[1], v->P[1], m);
471 CONDPICK(z->P[2], v->P[2], m);
472 CONDPICK(z->P[3], v->P[3], m);
473 CONDPICK(z->P[4], v->P[4], m);
474 CONDPICK(z->P[5], v->P[5], m);
475 CONDPICK(z->P[6], v->P[6], m);
476 CONDPICK(z->P[7], v->P[7], m);
477 CONDPICK(z->P[8], v->P[8], m);
478 CONDPICK(z->P[9], v->P[9], m);
479 v++; b <<= 1;
480 }
481 }
482
483 #endif
484
485 /* --- @f25519_condswap@ --- *
486 *
487 * Arguments: @f25519 *x, *y@ = two operands
488 * @uint32 m@ = a mask
489 *
490 * Returns: ---
491 *
492 * Use: If @m@ is zero, do nothing; if @m@ is all-bits-set, then
493 * exchange @x@ and @y@. If @m@ has some other value, then
494 * scramble @x@ and @y@ in an unhelpful way.
495 */
496
497 void f25519_condswap(f25519 *x, f25519 *y, uint32 m)
498 {
499 mask32 mm = FIX_MASK32(m);
500
501 CONDSWAP(x->P[0], y->P[0], mm);
502 CONDSWAP(x->P[1], y->P[1], mm);
503 CONDSWAP(x->P[2], y->P[2], mm);
504 CONDSWAP(x->P[3], y->P[3], mm);
505 CONDSWAP(x->P[4], y->P[4], mm);
506 CONDSWAP(x->P[5], y->P[5], mm);
507 CONDSWAP(x->P[6], y->P[6], mm);
508 CONDSWAP(x->P[7], y->P[7], mm);
509 CONDSWAP(x->P[8], y->P[8], mm);
510 CONDSWAP(x->P[9], y->P[9], mm);
511 }
512
513 #ifndef F25519_TRIM_X25519
514
515 /* --- @f25519_condneg@ --- *
516 *
517 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
518 * @const f25519 *x@ = an operand
519 * @uint32 m@ = a mask
520 *
521 * Returns: ---
522 *
523 * Use: If @m@ is zero, set @z = x@; if @m@ is all-bits-set, then set
524 * @z = -x@. If @m@ has some other value then scramble @z@ in
525 * an unhelpful way.
526 */
527
528 void f25519_condneg(f25519 *z, const f25519 *x, uint32 m)
529 {
530 mask32 m_xor = FIX_MASK32(m);
531 piece m_add = m&1;
532 # define CONDNEG(x) (((x) ^ m_xor) + m_add)
533
534 z->P[0] = CONDNEG(x->P[0]);
535 z->P[1] = CONDNEG(x->P[1]);
536 z->P[2] = CONDNEG(x->P[2]);
537 z->P[3] = CONDNEG(x->P[3]);
538 z->P[4] = CONDNEG(x->P[4]);
539 z->P[5] = CONDNEG(x->P[5]);
540 z->P[6] = CONDNEG(x->P[6]);
541 z->P[7] = CONDNEG(x->P[7]);
542 z->P[8] = CONDNEG(x->P[8]);
543 z->P[9] = CONDNEG(x->P[9]);
544
545 #undef CONDNEG
546 }
547
548 #endif
549
550 /*----- Multiplication ----------------------------------------------------*/
551
552 /* Let B = 2^63 - 1 be the largest value such that +B and -B can be
553 * represented in a double-precision piece. On entry, it must be the case
554 * that |X_i| <= M <= B - 2^25 for some M. If this is the case, then, on
555 * exit, we will have |Z_i| <= 2^25 + 19 M/2^25.
556 */
557 #define CARRYSTEP(z, x, m, b, f, xx, n) do { \
558 (z) = (dblpiece)((udblpiece)(x)&(m)) - (b) + \
559 (f)*ASR(dblpiece, (xx), (n)); \
560 } while (0)
561 #define CARRY_REDUCE(z, x) do { \
562 dblpiece PIECES(_t); \
563 \
564 /* Bias the input pieces. This keeps the carries and so on centred \
565 * around zero rather than biased positive. \
566 */ \
567 _t0 = (x##0) + B25; _t1 = (x##1) + B24; \
568 _t2 = (x##2) + B25; _t3 = (x##3) + B24; \
569 _t4 = (x##4) + B25; _t5 = (x##5) + B24; \
570 _t6 = (x##6) + B25; _t7 = (x##7) + B24; \
571 _t8 = (x##8) + B25; _t9 = (x##9) + B24; \
572 \
573 /* Calculate the reduced pieces. Careful with the bithacking. */ \
574 CARRYSTEP(z##0, _t0, M26, B25, 19, _t9, 25); \
575 CARRYSTEP(z##1, _t1, M25, B24, 1, _t0, 26); \
576 CARRYSTEP(z##2, _t2, M26, B25, 1, _t1, 25); \
577 CARRYSTEP(z##3, _t3, M25, B24, 1, _t2, 26); \
578 CARRYSTEP(z##4, _t4, M26, B25, 1, _t3, 25); \
579 CARRYSTEP(z##5, _t5, M25, B24, 1, _t4, 26); \
580 CARRYSTEP(z##6, _t6, M26, B25, 1, _t5, 25); \
581 CARRYSTEP(z##7, _t7, M25, B24, 1, _t6, 26); \
582 CARRYSTEP(z##8, _t8, M26, B25, 1, _t7, 25); \
583 CARRYSTEP(z##9, _t9, M25, B24, 1, _t8, 26); \
584 } while (0)
585
586 /* --- @f25519_mulconst@ --- *
587 *
588 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
589 * @const f25519 *x@ = an operand
590 * @long a@ = a small-ish constant; %$|a| < 2^{20}$%.
591 *
592 * Returns: ---
593 *
594 * Use: Set @z@ to the product %$a x$%.
595 */
596
597 void f25519_mulconst(f25519 *z, const f25519 *x, long a)
598 {
599 piece PIECES(x);
600 dblpiece PIECES(z), aa = a;
601
602 FETCH(x, x);
603
604 /* Suppose that |x_i| <= 2^27, and |a| <= 2^23. Then we'll have
605 * |z_i| <= 2^50.
606 */
607 z0 = aa*x0; z1 = aa*x1; z2 = aa*x2; z3 = aa*x3; z4 = aa*x4;
608 z5 = aa*x5; z6 = aa*x6; z7 = aa*x7; z8 = aa*x8; z9 = aa*x9;
609
610 /* Following `CARRY_REDUCE', we'll have |z_i| <= 2^26. */
611 CARRY_REDUCE(z, z);
612 STASH(z, z);
613 }
614
615 /* --- @f25519_mul@ --- *
616 *
617 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
618 * @const f25519 *x, *y@ = two operands
619 *
620 * Returns: ---
621 *
622 * Use: Set @z@ to the product %$x y$%.
623 */
624
625 void f25519_mul(f25519 *z, const f25519 *x, const f25519 *y)
626 {
627 piece PIECES(x), PIECES(y);
628 dblpiece PIECES(z);
629 unsigned i;
630
631 FETCH(x, x); FETCH(y, y);
632
633 /* Suppose that |x_i|, |y_i| <= 2^27. Then we'll have
634 *
635 * |z_0| <= 267*2^54
636 * |z_1| <= 154*2^54
637 * |z_2| <= 213*2^54
638 * |z_3| <= 118*2^54
639 * |z_4| <= 159*2^54
640 * |z_5| <= 82*2^54
641 * |z_6| <= 105*2^54
642 * |z_7| <= 46*2^54
643 * |z_8| <= 51*2^54
644 * |z_9| <= 10*2^54
645 *
646 * all of which are less than 2^63 - 2^25.
647 */
648
649 #define M(a, b) ((dblpiece)(a)*(b))
650 z0 = M(x0, y0) +
651 19*(M(x2, y8) + M(x4, y6) + M(x6, y4) + M(x8, y2)) +
652 38*(M(x1, y9) + M(x3, y7) + M(x5, y5) + M(x7, y3) + M(x9, y1));
653 z1 = M(x0, y1) + M(x1, y0) +
654 19*(M(x2, y9) + M(x3, y8) + M(x4, y7) + M(x5, y6) +
655 M(x6, y5) + M(x7, y4) + M(x8, y3) + M(x9, y2));
656 z2 = M(x0, y2) + M(x2, y0) +
657 2* M(x1, y1) +
658 19*(M(x4, y8) + M(x6, y6) + M(x8, y4)) +
659 38*(M(x3, y9) + M(x5, y7) + M(x7, y5) + M(x9, y3));
660 z3 = M(x0, y3) + M(x1, y2) + M(x2, y1) + M(x3, y0) +
661 19*(M(x4, y9) + M(x5, y8) + M(x6, y7) +
662 M(x7, y6) + M(x8, y5) + M(x9, y4));
663 z4 = M(x0, y4) + M(x2, y2) + M(x4, y0) +
664 2*(M(x1, y3) + M(x3, y1)) +
665 19*(M(x6, y8) + M(x8, y6)) +
666 38*(M(x5, y9) + M(x7, y7) + M(x9, y5));
667 z5 = M(x0, y5) + M(x1, y4) + M(x2, y3) +
668 M(x3, y2) + M(x4, y1) + M(x5, y0) +
669 19*(M(x6, y9) + M(x7, y8) + M(x8, y7) + M(x9, y6));
670 z6 = M(x0, y6) + M(x2, y4) + M(x4, y2) + M(x6, y0) +
671 2*(M(x1, y5) + M(x3, y3) + M(x5, y1)) +
672 19* M(x8, y8) +
673 38*(M(x7, y9) + M(x9, y7));
674 z7 = M(x0, y7) + M(x1, y6) + M(x2, y5) + M(x3, y4) +
675 M(x4, y3) + M(x5, y2) + M(x6, y1) + M(x7, y0) +
676 19*(M(x8, y9) + M(x9, y8));
677 z8 = M(x0, y8) + M(x2, y6) + M(x4, y4) + M(x6, y2) + M(x8, y0) +
678 2*(M(x1, y7) + M(x3, y5) + M(x5, y3) + M(x7, y1)) +
679 38* M(x9, y9);
680 z9 = M(x0, y9) + M(x1, y8) + M(x2, y7) + M(x3, y6) + M(x4, y5) +
681 M(x5, y4) + M(x6, y3) + M(x7, y2) + M(x8, y1) + M(x9, y0);
682 #undef M
683
684 /* From above, we have |z_i| <= 2^63 - 2^25. A pass of `CARRY_REDUCE' will
685 * leave |z_i| <= 2^38 + 2^25; and a second pass will leave |z_i| <= 2^25 +
686 * 2^13, which is comfortable for an addition prior to the next
687 * multiplication.
688 */
689 for (i = 0; i < 2; i++) CARRY_REDUCE(z, z);
690 STASH(z, z);
691 }
692
693 /* --- @f25519_sqr@ --- *
694 *
695 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
696 * @const f25519 *x@ = an operand
697 *
698 * Returns: ---
699 *
700 * Use: Set @z@ to the square %$x^2$%.
701 */
702
703 void f25519_sqr(f25519 *z, const f25519 *x)
704 {
705 piece PIECES(x);
706 dblpiece PIECES(z);
707 unsigned i;
708
709 FETCH(x, x);
710
711 /* See `f25519_mul' for bounds. */
712
713 #define M(a, b) ((dblpiece)(a)*(b))
714 z0 = M(x0, x0) +
715 38*(M(x2, x8) + M(x4, x6) + M(x5, x5)) +
716 76*(M(x1, x9) + M(x3, x7));
717 z1 = 2* M(x0, x1) +
718 38*(M(x2, x9) + M(x3, x8) + M(x4, x7) + M(x5, x6));
719 z2 = 2*(M(x0, x2) + M(x1, x1)) +
720 19* M(x6, x6) +
721 38* M(x4, x8) +
722 76*(M(x3, x9) + M(x5, x7));
723 z3 = 2*(M(x0, x3) + M(x1, x2)) +
724 38*(M(x4, x9) + M(x5, x8) + M(x6, x7));
725 z4 = M(x2, x2) +
726 2* M(x0, x4) +
727 4* M(x1, x3) +
728 38*(M(x6, x8) + M(x7, x7)) +
729 76* M(x5, x9);
730 z5 = 2*(M(x0, x5) + M(x1, x4) + M(x2, x3)) +
731 38*(M(x6, x9) + M(x7, x8));
732 z6 = 2*(M(x0, x6) + M(x2, x4) + M(x3, x3)) +
733 4* M(x1, x5) +
734 19* M(x8, x8) +
735 76* M(x7, x9);
736 z7 = 2*(M(x0, x7) + M(x1, x6) + M(x2, x5) + M(x3, x4)) +
737 38* M(x8, x9);
738 z8 = M(x4, x4) +
739 2*(M(x0, x8) + M(x2, x6)) +
740 4*(M(x1, x7) + M(x3, x5)) +
741 38* M(x9, x9);
742 z9 = 2*(M(x0, x9) + M(x1, x8) + M(x2, x7) + M(x3, x6) + M(x4, x5));
743 #undef M
744
745 /* See `f25519_mul' for details. */
746 for (i = 0; i < 2; i++) CARRY_REDUCE(z, z);
747 STASH(z, z);
748 }
749
750 /*----- More complicated things -------------------------------------------*/
751
752 /* --- @f25519_inv@ --- *
753 *
754 * Arguments: @f25519 *z@ = where to put the result (may alias @x@)
755 * @const f25519 *x@ = an operand
756 *
757 * Returns: ---
758 *
759 * Use: Stores in @z@ the multiplicative inverse %$x^{-1}$%. If
760 * %$x = 0$% then @z@ is set to zero. This is considered a
761 * feature.
762 */
763
764 void f25519_inv(f25519 *z, const f25519 *x)
765 {
766 f25519 t, u, t2, t11, t2p10m1, t2p50m1;
767 unsigned i;
768
769 #define SQRN(z, x, n) do { \
770 f25519_sqr((z), (x)); \
771 for (i = 1; i < (n); i++) f25519_sqr((z), (z)); \
772 } while (0)
773
774 /* Calculate x^-1 = x^(p - 2) = x^(2^255 - 21), which also handles x = 0 as
775 * intended. The addition chain here is from Bernstein's implementation; I
776 * couldn't find a better one.
777 */ /* step | value */
778 f25519_sqr(&t2, x); /* 1 | 2 */
779 SQRN(&u, &t2, 2); /* 3 | 8 */
780 f25519_mul(&t, &u, x); /* 4 | 9 */
781 f25519_mul(&t11, &t, &t2); /* 5 | 11 = 2^5 - 21 */
782 f25519_sqr(&u, &t11); /* 6 | 22 */
783 f25519_mul(&t, &t, &u); /* 7 | 31 = 2^5 - 1 */
784 SQRN(&u, &t, 5); /* 12 | 2^10 - 2^5 */
785 f25519_mul(&t2p10m1, &t, &u); /* 13 | 2^10 - 1 */
786 SQRN(&u, &t2p10m1, 10); /* 23 | 2^20 - 2^10 */
787 f25519_mul(&t, &t2p10m1, &u); /* 24 | 2^20 - 1 */
788 SQRN(&u, &t, 20); /* 44 | 2^40 - 2^20 */
789 f25519_mul(&t, &t, &u); /* 45 | 2^40 - 1 */
790 SQRN(&u, &t, 10); /* 55 | 2^50 - 2^10 */
791 f25519_mul(&t2p50m1, &t2p10m1, &u); /* 56 | 2^50 - 1 */
792 SQRN(&u, &t2p50m1, 50); /* 106 | 2^100 - 2^50 */
793 f25519_mul(&t, &t2p50m1, &u); /* 107 | 2^100 - 1 */
794 SQRN(&u, &t, 100); /* 207 | 2^200 - 2^100 */
795 f25519_mul(&t, &t, &u); /* 208 | 2^200 - 1 */
796 SQRN(&u, &t, 50); /* 258 | 2^250 - 2^50 */
797 f25519_mul(&t, &t2p50m1, &u); /* 259 | 2^250 - 1 */
798 SQRN(&u, &t, 5); /* 264 | 2^255 - 2^5 */
799 f25519_mul(z, &u, &t11); /* 265 | 2^255 - 21 */
800
801 #undef SQRN
802 }
803
804 #ifndef F25519_TRIM_X25519
805
806 /* --- @f25519_quosqrt@ --- *
807 *
808 * Arguments: @f25519 *z@ = where to put the result (may alias @x@ or @y@)
809 * @const f25519 *x, *y@ = two operands
810 *
811 * Returns: Zero if successful, @-1@ if %$x/y$% is not a square.
812 *
813 * Use: Stores in @z@ the one of the square roots %$\pm\sqrt{x/y}$%.
814 * If %$x = y = 0% then the result is zero; if %$y = 0$% but %$x
815 * \ne 0$% then the operation fails. If you wanted a specific
816 * square root then you'll have to pick it yourself.
817 */
818
819 static const piece sqrtm1_pieces[NPIECE] = {
820 #if F25519_IMPL == 26
821 -32595792, -7943725, 9377950, 3500415, 12389472,
822 -272473, -25146209, -2005654, 326686, 11406482
823 #elif F25519_IMPL == 10
824 176, -88, 161, 157, -485, -196, -231, -220, -416,
825 -169, -255, 50, 189, -89, -266, -32, 202, -511,
826 423, 357, 248, -249, 80, 288, 50, 174
827 #endif
828 };
829 #define SQRTM1 ((const f25519 *)sqrtm1_pieces)
830
831 int f25519_quosqrt(f25519 *z, const f25519 *x, const f25519 *y)
832 {
833 f25519 t, u, w, beta, xy3, t2p50m1;
834 octet xb[32], b0[32], b1[32];
835 int32 rc = -1;
836 mask32 m;
837 unsigned i;
838
839 #define SQRN(z, x, n) do { \
840 f25519_sqr((z), (x)); \
841 for (i = 1; i < (n); i++) f25519_sqr((z), (z)); \
842 } while (0)
843
844 /* This is a bit tricky; the algorithm is from Bernstein, Duif, Lange,
845 * Schwabe, and Yang, `High-speed high-security signatures', 2011-09-26,
846 * https://ed25519.cr.yp.to/ed25519-20110926.pdf.
847 *
848 * First of all, a complicated exponentation. The addition chain here is
849 * mine. We start with some preliminary values.
850 */ /* step | value */
851 SQRN(&u, y, 1); /* 1 | 0, 2 */
852 f25519_mul(&t, &u, y); /* 2 | 0, 3 */
853 f25519_mul(&xy3, &t, x); /* 3 | 1, 3 */
854 SQRN(&u, &u, 1); /* 4 | 0, 4 */
855 f25519_mul(&w, &u, &xy3); /* 5 | 1, 7 */
856
857 /* And now we calculate w^((p - 5)/8) = w^(252 - 3). */
858 SQRN(&u, &w, 1); /* 6 | 2 */
859 f25519_mul(&t, &w, &u); /* 7 | 3 */
860 SQRN(&u, &t, 1); /* 8 | 6 */
861 f25519_mul(&t, &u, &w); /* 9 | 7 */
862 SQRN(&u, &t, 3); /* 12 | 56 */
863 f25519_mul(&t, &t, &u); /* 13 | 63 = 2^6 - 1 */
864 SQRN(&u, &t, 6); /* 19 | 2^12 - 2^6 */
865 f25519_mul(&t, &t, &u); /* 20 | 2^12 - 1 */
866 SQRN(&u, &t, 12); /* 32 | 2^24 - 2^12 */
867 f25519_mul(&t, &t, &u); /* 33 | 2^24 - 1 */
868 SQRN(&u, &t, 1); /* 34 | 2^25 - 2 */
869 f25519_mul(&t, &u, &w); /* 35 | 2^25 - 1 */
870 SQRN(&u, &t, 25); /* 60 | 2^50 - 2^25 */
871 f25519_mul(&t2p50m1, &t, &u); /* 61 | 2^50 - 1 */
872 SQRN(&u, &t2p50m1, 50); /* 111 | 2^100 - 2^50 */
873 f25519_mul(&t, &t2p50m1, &u); /* 112 | 2^100 - 1 */
874 SQRN(&u, &t, 100); /* 212 | 2^200 - 2^100 */
875 f25519_mul(&t, &t, &u); /* 213 | 2^200 - 1 */
876 SQRN(&u, &t, 50); /* 263 | 2^250 - 2^50 */
877 f25519_mul(&t, &t2p50m1, &u); /* 264 | 2^250 - 1 */
878 SQRN(&u, &t, 2); /* 266 | 2^252 - 4 */
879 f25519_mul(&t, &u, &w); /* 267 | 2^252 - 3 */
880
881 /* And finally... */
882 f25519_mul(&beta, &t, &xy3); /* 268 | ... */
883
884 /* Now we have beta = (x y^3) (x y^7)^((p - 5)/8) = (x/y)^((p + 3)/8), and
885 * we're ready to finish the computation. Suppose that alpha^2 = u/w.
886 * Then beta^4 = (x/y)^((p + 3)/2) = alpha^(p + 3) = alpha^4 = (x/y)^2, so
887 * we have beta^2 = ±x/y. If y beta^2 = x then beta is the one we wanted;
888 * if -y beta^2 = x, then we want beta sqrt(-1), which we already know. Of
889 * course, it might not match either, in which case we fail.
890 *
891 * The easiest way to compare is to encode. This isn't as wasteful as it
892 * sounds: the hard part is normalizing the representations, which we have
893 * to do anyway.
894 */
895 f25519_sqr(&t, &beta);
896 f25519_mul(&t, &t, y);
897 f25519_neg(&u, &t);
898 f25519_store(xb, x);
899 f25519_store(b0, &t);
900 f25519_store(b1, &u);
901 f25519_mul(&u, &beta, SQRTM1);
902
903 m = -ct_memeq(b0, xb, 32);
904 rc = PICK2(0, rc, m);
905 f25519_pick2(z, &beta, &u, m);
906 m = -ct_memeq(b1, xb, 32);
907 rc = PICK2(0, rc, m);
908
909 /* And we're done. */
910 return (rc);
911 }
912
913 #endif
914
915 /*----- That's all, folks -------------------------------------------------*/