Release 1.2.2.
[preload-hacks] / noip.c
1 /* -*-c-*-
2 *
3 * Make programs use Unix-domain sockets instead of IP
4 *
5 * (c) 2008 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of the preload-hacks package.
11 *
12 * Preload-hacks are free software; you can redistribute it and/or modify
13 * them under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or (at
15 * your option) any later version.
16 *
17 * Preload-hacks are distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License along
23 * with preload-hacks; if not, write to the Free Software Foundation, Inc.,
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 */
26
27 #define _GNU_SOURCE
28 #undef sun
29 #undef SUN
30 #define DEBUG
31
32 /*----- Header files ------------------------------------------------------*/
33
34 #include <assert.h>
35 #include <ctype.h>
36 #include <errno.h>
37 #include <stdarg.h>
38 #include <stddef.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41
42 #include <unistd.h>
43 #include <dirent.h>
44 #include <dlfcn.h>
45 #include <fcntl.h>
46 #include <pwd.h>
47
48 #include <sys/ioctl.h>
49 #include <sys/socket.h>
50 #include <sys/stat.h>
51 #include <sys/un.h>
52
53 #include <netinet/in.h>
54 #include <arpa/inet.h>
55 #include <netinet/tcp.h>
56 #include <netinet/udp.h>
57 #include <ifaddrs.h>
58 #include <netdb.h>
59
60 /*----- Data structures ---------------------------------------------------*/
61
62 /* Unix socket status values. */
63 #define UNUSED 0u /* No sign of anyone using it */
64 #define STALE 1u /* Socket exists, but is abandoned */
65 #define USED 16u /* Socket is in active use */
66 #define LISTEN 2u /* Socket has an active listener */
67
68 enum { DENY, ALLOW }; /* ACL verdicts */
69
70 static int address_families[] = { AF_INET, AF_INET6, -1 };
71
72 #define ADDRBUFSZ 64
73
74 /* Address representations. */
75 typedef union ipaddr {
76 struct in_addr v4;
77 struct in6_addr v6;
78 } ipaddr;
79
80 /* Convenient socket address hacking. */
81 typedef union address {
82 struct sockaddr sa;
83 struct sockaddr_in sin;
84 struct sockaddr_in6 sin6;
85 } address;
86
87 /* Access control list nodes */
88 typedef struct aclnode {
89 struct aclnode *next;
90 int act;
91 int af;
92 ipaddr minaddr, maxaddr;
93 unsigned short minport, maxport;
94 } aclnode;
95
96 /* Implicit bind records */
97 typedef struct impbind {
98 struct impbind *next;
99 int af, how;
100 ipaddr minaddr, maxaddr, bindaddr;
101 } impbind;
102 enum { EXPLICIT, SAME };
103
104 /* A type for an address range */
105 typedef struct addrrange {
106 int type;
107 union {
108 struct { int af; ipaddr min, max; } range;
109 } u;
110 } addrrange;
111 enum { EMPTY, ANY, LOCAL, RANGE };
112
113 /* Local address records */
114 typedef struct full_ipaddr {
115 int af;
116 ipaddr addr;
117 } full_ipaddr;
118 #define MAX_LOCAL_IPADDRS 64
119 static full_ipaddr local_ipaddrs[MAX_LOCAL_IPADDRS];
120 static int n_local_ipaddrs;
121
122 /* General configuration */
123 static uid_t uid;
124 static char *sockdir = 0;
125 static int debug = 0;
126 static unsigned minautoport = 16384, maxautoport = 65536;
127
128 /* Access control lists */
129 static aclnode *bind_real, **bind_tail = &bind_real;
130 static aclnode *connect_real, **connect_tail = &connect_real;
131 static impbind *impbinds, **impbind_tail = &impbinds;
132
133 /*----- Import the real versions of functions -----------------------------*/
134
135 /* The list of functions to immport. */
136 #define IMPORTS(_) \
137 _(socket, int, (int, int, int)) \
138 _(socketpair, int, (int, int, int, int *)) \
139 _(connect, int, (int, const struct sockaddr *, socklen_t)) \
140 _(bind, int, (int, const struct sockaddr *, socklen_t)) \
141 _(accept, int, (int, struct sockaddr *, socklen_t *)) \
142 _(getsockname, int, (int, struct sockaddr *, socklen_t *)) \
143 _(getpeername, int, (int, struct sockaddr *, socklen_t *)) \
144 _(getsockopt, int, (int, int, int, void *, socklen_t *)) \
145 _(setsockopt, int, (int, int, int, const void *, socklen_t)) \
146 _(sendto, ssize_t, (int, const void *buf, size_t, int, \
147 const struct sockaddr *to, socklen_t tolen)) \
148 _(recvfrom, ssize_t, (int, void *buf, size_t, int, \
149 struct sockaddr *from, socklen_t *fromlen)) \
150 _(sendmsg, ssize_t, (int, const struct msghdr *, int)) \
151 _(recvmsg, ssize_t, (int, struct msghdr *, int)) \
152 _(ioctl, int, (int, unsigned long, ...))
153
154 /* Function pointers to set up. */
155 #define DECL(imp, ret, args) static ret (*real_##imp) args;
156 IMPORTS(DECL)
157 #undef DECL
158
159 /* Import the system calls. */
160 static void import(void)
161 {
162 #define IMPORT(imp, ret, args) \
163 real_##imp = (ret (*)args)dlsym(RTLD_NEXT, #imp);
164 IMPORTS(IMPORT)
165 #undef IMPORT
166 }
167
168 /*----- Utilities ---------------------------------------------------------*/
169
170 /* Socket address casts */
171 #define SA(sa) ((struct sockaddr *)(sa))
172 #define SIN(sa) ((struct sockaddr_in *)(sa))
173 #define SIN6(sa) ((struct sockaddr_in6 *)(sa))
174 #define SUN(sa) ((struct sockaddr_un *)(sa))
175
176 /* Raw bytes */
177 #define UC(ch) ((unsigned char)(ch))
178
179 /* Memory allocation */
180 #define NEW(x) ((x) = xmalloc(sizeof(*x)))
181 #define NEWV(x, n) ((x) = xmalloc(sizeof(*x) * (n)))
182
183 /* Debugging */
184 #ifdef DEBUG
185 # define D(body) { if (debug) { body } }
186 # define Dpid pid_t pid = debug ? getpid() : -1
187 #else
188 # define D(body) ;
189 # define Dpid
190 #endif
191
192 /* Preservation of error status */
193 #define PRESERVING_ERRNO(body) do { \
194 int _err = errno; { body } errno = _err; \
195 } while (0)
196
197 /* Allocate N bytes of memory; abort on failure. */
198 static void *xmalloc(size_t n)
199 {
200 void *p;
201 if (!n) return (0);
202 if ((p = malloc(n)) == 0) { perror("malloc"); exit(127); }
203 return (p);
204 }
205
206 /* Allocate a copy of the null-terminated string P; abort on failure. */
207 static char *xstrdup(const char *p)
208 {
209 size_t n = strlen(p) + 1;
210 char *q = xmalloc(n);
211 memcpy(q, p, n);
212 return (q);
213 }
214
215 /*----- Address-type hacking ----------------------------------------------*/
216
217 /* If M is a simple mask, i.e., consists of a sequence of zero bits followed
218 * by a sequence of one bits, then return the length of the latter sequence
219 * (which may be zero); otherwise return -1.
220 */
221 static int simple_mask_length(unsigned long m)
222 {
223 int n = 0;
224
225 while (m & 1) { n++; m >>= 1; }
226 return (m ? -1 : n);
227 }
228
229 /* Answer whether AF is an interesting address family. */
230 static int family_known_p(int af)
231 {
232 switch (af) {
233 case AF_INET:
234 case AF_INET6:
235 return (1);
236 default:
237 return (0);
238 }
239 }
240
241 /* Return the socket address length for address family AF. */
242 static socklen_t family_socklen(int af)
243 {
244 switch (af) {
245 case AF_INET: return (sizeof(struct sockaddr_in));
246 case AF_INET6: return (sizeof(struct sockaddr_in6));
247 default: abort();
248 }
249 }
250
251 /* Return the width of addresses of kind AF. */
252 static int address_width(int af)
253 {
254 switch (af) {
255 case AF_INET: return 32;
256 case AF_INET6: return 128;
257 default: abort();
258 }
259 }
260
261 /* If addresses A and B share a common prefix then return its length;
262 * otherwise return -1.
263 */
264 static int common_prefix_length(int af, const ipaddr *a, const ipaddr *b)
265 {
266 switch (af) {
267 case AF_INET: {
268 unsigned long aa = ntohl(a->v4.s_addr), bb = ntohl(b->v4.s_addr);
269 unsigned long m = aa^bb;
270 if ((aa&m) == 0 && (bb&m) == m) return (32 - simple_mask_length(m));
271 else return (-1);
272 } break;
273 case AF_INET6: {
274 const uint8_t *aa = a->v6.s6_addr, *bb = b->v6.s6_addr;
275 unsigned m;
276 unsigned n;
277 int i;
278
279 for (i = 0; i < 16 && aa[i] == bb[i]; i++);
280 n = 8*i;
281 if (i < 16) {
282 m = aa[i]^bb[i];
283 if ((aa[i]&m) != 0 || (bb[i]&m) != m) return (-1);
284 n += 8 - simple_mask_length(m);
285 for (i++; i < 16; i++)
286 if (aa[i] || bb[i] != 0xff) return (-1);
287 }
288 return (n);
289 } break;
290 default:
291 abort();
292 }
293 }
294
295 /* Extract the port number (in host byte-order) from SA. */
296 static int port_from_sockaddr(const struct sockaddr *sa)
297 {
298 switch (sa->sa_family) {
299 case AF_INET: return (ntohs(SIN(sa)->sin_port));
300 case AF_INET6: return (ntohs(SIN6(sa)->sin6_port));
301 default: abort();
302 }
303 }
304
305 /* Store the port number PORT (in host byte-order) in SA. */
306 static void port_to_sockaddr(struct sockaddr *sa, int port)
307 {
308 switch (sa->sa_family) {
309 case AF_INET: SIN(sa)->sin_port = htons(port); break;
310 case AF_INET6: SIN6(sa)->sin6_port = htons(port); break;
311 default: abort();
312 }
313 }
314
315 /* Extract the address part from SA and store it in A. */
316 static void ipaddr_from_sockaddr(ipaddr *a, const struct sockaddr *sa)
317 {
318 switch (sa->sa_family) {
319 case AF_INET: a->v4 = SIN(sa)->sin_addr; break;
320 case AF_INET6: a->v6 = SIN6(sa)->sin6_addr; break;
321 default: abort();
322 }
323 }
324
325 /* Store the address A in SA. */
326 static void ipaddr_to_sockaddr(struct sockaddr *sa, const ipaddr *a)
327 {
328 switch (sa->sa_family) {
329 case AF_INET:
330 SIN(sa)->sin_addr = a->v4;
331 break;
332 case AF_INET6:
333 SIN6(sa)->sin6_addr = a->v6;
334 SIN6(sa)->sin6_scope_id = 0;
335 SIN6(sa)->sin6_flowinfo = 0;
336 break;
337 default:
338 abort();
339 }
340 }
341
342 /* Copy a whole socket address about. */
343 static void copy_sockaddr(struct sockaddr *sa_dst,
344 const struct sockaddr *sa_src)
345 { memcpy(sa_dst, sa_src, family_socklen(sa_src->sa_family)); }
346
347 /* Convert an AF_INET socket address into the equivalent IPv4-mapped AF_INET6
348 * address.
349 */
350 static void map_ipv4_sockaddr(struct sockaddr_in6 *a6,
351 const struct sockaddr_in *a4)
352 {
353 size_t i;
354 in_addr_t a = ntohl(a4->sin_addr.s_addr);
355
356 a6->sin6_family = AF_INET6;
357 a6->sin6_port = a4->sin_port;
358 a6->sin6_scope_id = 0;
359 a6->sin6_flowinfo = 0;
360 for (i = 0; i < 10; i++) a6->sin6_addr.s6_addr[i] = 0;
361 for (i = 10; i < 12; i++) a6->sin6_addr.s6_addr[i] = 0xff;
362 for (i = 0; i < 4; i++) a6->sin6_addr.s6_addr[15 - i] = (a >> 8*i)&0xff;
363 }
364
365 /* Convert an AF_INET6 socket address containing an IPv4-mapped IPv6 address
366 * into the equivalent AF_INET4 address. Return zero on success, or -1 if
367 * the address has the wrong form.
368 */
369 static int unmap_ipv4_sockaddr(struct sockaddr_in *a4,
370 const struct sockaddr_in6 *a6)
371 {
372 size_t i;
373 in_addr_t a;
374
375 for (i = 0; i < 10; i++) if (a6->sin6_addr.s6_addr[i] != 0) return (-1);
376 for (i = 10; i < 12; i++) if (a6->sin6_addr.s6_addr[i] != 0xff) return (-1);
377 for (i = 0, a = 0; i < 4; i++) a |= a6->sin6_addr.s6_addr[15 - i] << 8*i;
378 a4->sin_family = AF_INET;
379 a4->sin_port = a6->sin6_port;
380 a4->sin_addr.s_addr = htonl(a);
381 return (0);
382 }
383
384 /* Answer whether two addresses are equal. */
385 static int ipaddr_equal_p(int af, const ipaddr *a, const ipaddr *b)
386 {
387 switch (af) {
388 case AF_INET: return (a->v4.s_addr == b->v4.s_addr);
389 case AF_INET6: return (memcmp(a->v6.s6_addr, b->v6.s6_addr, 16) == 0);
390 default: abort();
391 }
392 }
393
394 /* Answer whether the address part of SA is between A and B (inclusive). We
395 * assume that SA has the correct address family.
396 */
397 static int sockaddr_in_range_p(const struct sockaddr *sa,
398 const ipaddr *a, const ipaddr *b)
399 {
400 switch (sa->sa_family) {
401 case AF_INET: {
402 unsigned long addr = ntohl(SIN(sa)->sin_addr.s_addr);
403 return (ntohl(a->v4.s_addr) <= addr &&
404 addr <= ntohl(b->v4.s_addr));
405 } break;
406 case AF_INET6: {
407 const uint8_t *ss = SIN6(sa)->sin6_addr.s6_addr;
408 const uint8_t *aa = a->v6.s6_addr, *bb = b->v6.s6_addr;
409 int h = 1, l = 1;
410 int i;
411
412 for (i = 0; h && l && i < 16; i++, ss++, aa++, bb++) {
413 if (*ss < *aa || *bb < *ss) return (0);
414 if (*aa < *ss) l = 0;
415 if (*ss < *bb) h = 0;
416 }
417 return (1);
418 } break;
419 default:
420 abort();
421 }
422 }
423
424 /* Fill in SA with the appropriate wildcard address. */
425 static void wildcard_address(int af, struct sockaddr *sa)
426 {
427 switch (af) {
428 case AF_INET: {
429 struct sockaddr_in *sin = SIN(sa);
430 memset(sin, 0, sizeof(*sin));
431 sin->sin_family = AF_INET;
432 sin->sin_port = 0;
433 sin->sin_addr.s_addr = INADDR_ANY;
434 } break;
435 case AF_INET6: {
436 struct sockaddr_in6 *sin6 = SIN6(sa);
437 memset(sin6, 0, sizeof(*sin6));
438 sin6->sin6_family = AF_INET6;
439 sin6->sin6_port = 0;
440 sin6->sin6_addr = in6addr_any;
441 sin6->sin6_scope_id = 0;
442 sin6->sin6_flowinfo = 0;
443 } break;
444 default:
445 abort();
446 }
447 }
448
449 /* Mask the address A, forcing all but the top PLEN bits to zero or one
450 * according to HIGHP.
451 */
452 static void mask_address(int af, ipaddr *a, int plen, int highp)
453 {
454 switch (af) {
455 case AF_INET: {
456 unsigned long addr = ntohl(a->v4.s_addr);
457 unsigned long mask = plen ? ~0ul << (32 - plen) : 0;
458 addr &= mask;
459 if (highp) addr |= ~mask;
460 a->v4.s_addr = htonl(addr & 0xffffffff);
461 } break;
462 case AF_INET6: {
463 int i = plen/8;
464 unsigned m = (0xff << (8 - plen%8)) & 0xff;
465 unsigned s = highp ? 0xff : 0;
466 if (m) {
467 a->v6.s6_addr[i] = (a->v6.s6_addr[i] & m) | (s & ~m);
468 i++;
469 }
470 for (; i < 16; i++) a->v6.s6_addr[i] = s;
471 } break;
472 default:
473 abort();
474 }
475 }
476
477 /* Write a presentation form of SA to BUF, a buffer of length SZ. LEN is the
478 * address length; if it's zero, look it up based on the address family.
479 * Return a pointer to the string (which might, in an emergency, be a static
480 * string rather than your buffer).
481 */
482 static char *present_sockaddr(const struct sockaddr *sa, socklen_t len,
483 char *buf, size_t sz)
484 {
485 #define WANT(n_) do { if (sz < (n_)) goto nospace; } while (0)
486 #define PUTC(c_) do { *buf++ = (c_); sz--; } while (0)
487
488 if (!sa) return "<null-address>";
489 if (!sz) return "<no-space-in-buffer>";
490 if (!len) len = family_socklen(sa->sa_family);
491
492 switch (sa->sa_family) {
493 case AF_UNIX: {
494 struct sockaddr_un *sun = SUN(sa);
495 char *p = sun->sun_path;
496 size_t n = len - offsetof(struct sockaddr_un, sun_path);
497
498 assert(n);
499 if (*p == 0) {
500 WANT(1); PUTC('@');
501 p++; n--;
502 while (n) {
503 switch (*p) {
504 case 0: WANT(2); PUTC('\\'); PUTC('0'); break;
505 case '\a': WANT(2); PUTC('\\'); PUTC('a'); break;
506 case '\n': WANT(2); PUTC('\\'); PUTC('n'); break;
507 case '\r': WANT(2); PUTC('\\'); PUTC('r'); break;
508 case '\t': WANT(2); PUTC('\\'); PUTC('t'); break;
509 case '\v': WANT(2); PUTC('\\'); PUTC('v'); break;
510 case '\\': WANT(2); PUTC('\\'); PUTC('\\'); break;
511 default:
512 if (*p > ' ' && *p <= '~')
513 { WANT(1); PUTC(*p); }
514 else {
515 WANT(4); PUTC('\\'); PUTC('x');
516 PUTC((*p >> 4)&0xf); PUTC((*p >> 0)&0xf);
517 }
518 break;
519 }
520 p++; n--;
521 }
522 } else {
523 if (*p != '/') { WANT(2); PUTC('.'); PUTC('/'); }
524 while (n && *p) { WANT(1); PUTC(*p); p++; n--; }
525 }
526 WANT(1); PUTC(0);
527 } break;
528 case AF_INET: case AF_INET6: {
529 char addrbuf[NI_MAXHOST], portbuf[NI_MAXSERV];
530 int err = getnameinfo(sa, len,
531 addrbuf, sizeof(addrbuf),
532 portbuf, sizeof(portbuf),
533 NI_NUMERICHOST | NI_NUMERICSERV);
534 assert(!err);
535 snprintf(buf, sz, strchr(addrbuf, ':') ? "[%s]:%s" : "%s:%s",
536 addrbuf, portbuf);
537 } break;
538 default:
539 snprintf(buf, sz, "<unknown-address-family %d>", sa->sa_family);
540 break;
541 }
542 return (buf);
543
544 nospace:
545 buf[sz - 1] = 0;
546 return (buf);
547 }
548
549 /* Guess the family of a textual socket address. */
550 static int guess_address_family(const char *p)
551 { return (strchr(p, ':') ? AF_INET6 : AF_INET); }
552
553 /* Parse a socket address P and write the result to SA. */
554 static int parse_sockaddr(struct sockaddr *sa, const char *p)
555 {
556 char buf[ADDRBUFSZ];
557 char *q;
558 struct addrinfo *ai, ai_hint = { 0 };
559
560 if (strlen(p) >= sizeof(buf) - 1) return (-1);
561 strcpy(buf, p); p = buf;
562 if (*p != '[') {
563 if ((q = strchr(p, ':')) == 0) return (-1);
564 *q++ = 0;
565 } else {
566 p++;
567 if ((q = strchr(p, ']')) == 0) return (-1);
568 *q++ = 0;
569 if (*q != ':') return (-1);
570 q++;
571 }
572
573 ai_hint.ai_family = AF_UNSPEC;
574 ai_hint.ai_socktype = SOCK_DGRAM;
575 ai_hint.ai_flags = AI_NUMERICHOST | AI_NUMERICSERV;
576 if (getaddrinfo(p, q, &ai_hint, &ai)) return (-1);
577 memcpy(sa, ai->ai_addr, ai->ai_addrlen);
578 freeaddrinfo(ai);
579 return (0);
580 }
581
582 /*----- Access control lists ----------------------------------------------*/
583
584 #ifdef DEBUG
585
586 static void dump_addrrange(int af, const ipaddr *min, const ipaddr *max)
587 {
588 char buf[ADDRBUFSZ];
589 const char *p;
590 int plen;
591
592 plen = common_prefix_length(af, min, max);
593 p = inet_ntop(af, min, buf, sizeof(buf));
594 fprintf(stderr, strchr(p, ':') ? "[%s]" : "%s", p);
595 if (plen < 0) {
596 p = inet_ntop(af, &max, buf, sizeof(buf));
597 fprintf(stderr, strchr(p, ':') ? "-[%s]" : "-%s", p);
598 } else if (plen < address_width(af))
599 fprintf(stderr, "/%d", plen);
600 }
601
602 /* Write to standard error a description of the ACL node A. */
603 static void dump_aclnode(const aclnode *a)
604 {
605 fprintf(stderr, "noip(%d): %c ", getpid(), a->act ? '+' : '-');
606 dump_addrrange(a->af, &a->minaddr, &a->maxaddr);
607 if (a->minport != 0 || a->maxport != 0xffff) {
608 fprintf(stderr, ":%u", (unsigned)a->minport);
609 if (a->minport != a->maxport)
610 fprintf(stderr, "-%u", (unsigned)a->maxport);
611 }
612 fputc('\n', stderr);
613 }
614
615 static void dump_acl(const aclnode *a)
616 {
617 int act = ALLOW;
618
619 for (; a; a = a->next) {
620 dump_aclnode(a);
621 act = a->act;
622 }
623 fprintf(stderr, "noip(%d): [default policy: %s]\n", getpid(),
624 act == ALLOW ? "DENY" : "ALLOW");
625 }
626
627 #endif
628
629 /* Returns nonzero if the ACL A allows the socket address SA. */
630 static int acl_allows_p(const aclnode *a, const struct sockaddr *sa)
631 {
632 unsigned short port = port_from_sockaddr(sa);
633 int act = ALLOW;
634 Dpid;
635
636 D({ char buf[ADDRBUFSZ];
637 fprintf(stderr, "noip(%d): check %s\n", pid,
638 present_sockaddr(sa, 0, buf, sizeof(buf))); })
639 for (; a; a = a->next) {
640 D( dump_aclnode(a); )
641 if (a->af == sa->sa_family &&
642 sockaddr_in_range_p(sa, &a->minaddr, &a->maxaddr) &&
643 a->minport <= port && port <= a->maxport) {
644 D( fprintf(stderr, "noip(%d): aha! %s\n", pid,
645 a->act ? "ALLOW" : "DENY"); )
646 return (a->act);
647 }
648 act = a->act;
649 }
650 D( fprintf(stderr, "noip(%d): nothing found: %s\n", pid,
651 act ? "DENY" : "ALLOW"); )
652 return (!act);
653 }
654
655 /*----- Socket address conversion -----------------------------------------*/
656
657 /* Return a uniformly distributed integer between MIN and MAX inclusive. */
658 static unsigned randrange(unsigned min, unsigned max)
659 {
660 unsigned mask, i;
661
662 /* It's so nice not to have to care about the quality of the generator
663 * much!
664 */
665 max -= min;
666 for (mask = 1; mask < max; mask = (mask << 1) | 1)
667 ;
668 do i = rand() & mask; while (i > max);
669 return (i + min);
670 }
671
672 /* Return the status of Unix-domain socket address SUN. Returns: UNUSED if
673 * the socket doesn't exist; USED if the path refers to an active socket, or
674 * isn't really a socket at all, or we can't tell without a careful search
675 * and QUICKP is set; or STALE if the file refers to a socket which isn't
676 * being used any more.
677 */
678 static int unix_socket_status(struct sockaddr_un *sun, int quickp)
679 {
680 struct stat st;
681 FILE *fp = 0;
682 size_t len, n;
683 int rc;
684 unsigned long f;
685 char buf[256];
686
687 /* If we can't find the socket node, then it's definitely not in use. If
688 * we get some other error, then this socket is weird.
689 */
690 if (stat(sun->sun_path, &st))
691 return (errno == ENOENT ? UNUSED : USED);
692
693 /* If it's not a socket, then something weird is going on. If we're just
694 * probing quickly to find a spare port, then existence is sufficient to
695 * discourage us now.
696 */
697 if (!S_ISSOCK(st.st_mode) || quickp)
698 return (USED);
699
700 /* The socket's definitely there, but is anyone actually still holding it
701 * open? The only way I know to discover this is to trundle through
702 * `/proc/net/unix'. If there's no entry, then the socket must be stale.
703 */
704 rc = USED;
705 if ((fp = fopen("/proc/net/unix", "r")) == 0)
706 goto done;
707 if (!fgets(buf, sizeof(buf), fp)) goto done; /* skip header */
708 len = strlen(sun->sun_path);
709 rc = 0;
710 while (fgets(buf, sizeof(buf), fp)) {
711 n = strlen(buf);
712 if (n >= len + 2 && buf[n - len - 2] == ' ' && buf[n - 1] == '\n' &&
713 memcmp(buf + n - len - 1, sun->sun_path, len) == 0) {
714 rc |= USED;
715 if (sscanf(buf, "%*s %*x %*x %lx", &f) < 0 || (f&0x00010000))
716 rc |= LISTEN;
717 }
718 }
719 if (ferror(fp))
720 goto done;
721 if (!rc) rc = STALE;
722 done:
723 if (fp) fclose(fp);
724
725 /* All done. */
726 return (rc);
727 }
728
729 /* Encode SA as a Unix-domain address SUN, and return whether it's currently
730 * in use.
731 */
732 static int encode_single_inet_addr(const struct sockaddr *sa,
733 struct sockaddr_un *sun,
734 int quickp)
735 {
736 char buf[ADDRBUFSZ];
737 int rc;
738
739 snprintf(sun->sun_path, sizeof(sun->sun_path), "%s/%s", sockdir,
740 present_sockaddr(sa, 0, buf, sizeof(buf)));
741 rc = unix_socket_status(sun, quickp);
742 if (rc == STALE) unlink(sun->sun_path);
743 return (rc);
744 }
745
746 /* Convert the IP address SA to a Unix-domain address SUN. Fail if the
747 * address seems already taken. If DESPARATEP then try cleaning up stale old
748 * sockets.
749 */
750 static int encode_unused_inet_addr(struct sockaddr *sa,
751 struct sockaddr_un *sun,
752 int desperatep)
753 {
754 address waddr, maddr;
755 struct sockaddr_un wsun;
756 int port = port_from_sockaddr(sa);
757
758 /* First, look for an exact match. Only look quickly unless we're
759 * desperate. If the socket is in use, we fail here. (This could get
760 * racy. Let's not worry about that for now.)
761 */
762 if (encode_single_inet_addr(sa, sun, !desperatep)&USED)
763 return (-1);
764
765 /* Next, check the corresponding wildcard address, so as to avoid
766 * inadvertant collisions with listeners. Do this in the same way.
767 */
768 wildcard_address(sa->sa_family, &waddr.sa);
769 port_to_sockaddr(&waddr.sa, port);
770 if (encode_single_inet_addr(&waddr.sa, &wsun, !desperatep)&USED)
771 return (-1);
772
773 /* We're not done yet. If this is an IPv4 address, then /also/ check (a)
774 * the v6-mapped version, (b) the v6-mapped v4 wildcard, /and/ (c) the v6
775 * wildcard. Ugh!
776 */
777 if (sa->sa_family == AF_INET) {
778 map_ipv4_sockaddr(&maddr.sin6, SIN(&sa));
779 if (encode_single_inet_addr(&maddr.sa, &wsun, !desperatep)&USED)
780 return (-1);
781
782 map_ipv4_sockaddr(&maddr.sin6, &waddr.sin);
783 if (encode_single_inet_addr(&maddr.sa, &wsun, !desperatep)&USED)
784 return (-1);
785
786 wildcard_address(AF_INET6, &waddr.sa);
787 port_to_sockaddr(&waddr.sa, port);
788 if (encode_single_inet_addr(&waddr.sa, &wsun, !desperatep)&USED)
789 return (-1);
790 }
791
792 /* All is well. */
793 return (0);
794 }
795
796 /* Encode the Internet address SA as a Unix-domain address SUN. If the flag
797 * `ENCF_FRESH' is set, and SA's port number is zero, then we pick an
798 * arbitrary local port. Otherwise we pick the port given. There's an
799 * unpleasant hack to find servers bound to local wildcard addresses.
800 * Returns zero on success; -1 on failure.
801 */
802 #define ENCF_FRESH 1u
803 #define ENCF_REUSEADDR 2u
804 static int encode_inet_addr(struct sockaddr_un *sun,
805 const struct sockaddr *sa,
806 unsigned f)
807 {
808 int i;
809 int desperatep = 0;
810 address addr;
811 struct sockaddr_in6 sin6;
812 int port = port_from_sockaddr(sa);
813 int rc;
814 char buf[ADDRBUFSZ];
815
816 D( fprintf(stderr, "noip(%d): encode %s (%s)", getpid(),
817 present_sockaddr(sa, 0, buf, sizeof(buf)),
818 (f&ENCF_FRESH) ? "FRESH" : "EXISTING"); )
819
820 /* Start making the Unix-domain address. */
821 sun->sun_family = AF_UNIX;
822
823 if (port || !(f&ENCF_FRESH)) {
824
825 /* Try the address as given. If it's in use, or we don't necessarily
826 * want an existing socket, then we're done.
827 */
828 rc = encode_single_inet_addr(sa, sun, 0);
829 if ((f&ENCF_REUSEADDR) && !(rc&LISTEN)) unlink(sun->sun_path);
830 if ((rc&USED) || (f&ENCF_FRESH)) goto found;
831
832 /* We're looking for a socket which already exists. This is
833 * unfortunately difficult, because we must deal both with wildcards and
834 * v6-mapped IPv4 addresses.
835 *
836 * * We've just tried searching for a socket whose name is an exact
837 * match for our remote address. If the remote address is IPv4, then
838 * we should try again with the v6-mapped equivalent.
839 *
840 * * Failing that, we try again with the wildcard address for the
841 * appropriate address family.
842 *
843 * * Failing /that/, if the remote address is IPv4, then we try
844 * /again/, increasingly desperately, first with the v6-mapped IPv4
845 * wildcard address, and then with the IPv6 wildcard address. This
846 * will cause magic v6-mapping to occur when the connection is
847 * accepted, which we hope won't cause too much trouble.
848 */
849
850 if (sa->sa_family == AF_INET) {
851 map_ipv4_sockaddr(&addr.sin6, SIN(sa));
852 if (encode_single_inet_addr(&addr.sa, sun, 0)&USED) goto found;
853 }
854
855 wildcard_address(sa->sa_family, &addr.sa);
856 port_to_sockaddr(&addr.sa, port);
857 if (encode_single_inet_addr(&addr.sa, sun, 0)&USED) goto found;
858
859 if (sa->sa_family == AF_INET) {
860 map_ipv4_sockaddr(&sin6, &addr.sin);
861 if (encode_single_inet_addr(SA(&sin6), sun, 0)&USED) goto found;
862 wildcard_address(AF_INET6, &addr.sa);
863 port_to_sockaddr(&addr.sa, port);
864 if (encode_single_inet_addr(&addr.sa, sun, 0)&USED) goto found;
865 }
866
867 /* Well, this isn't going to work (unless a miraculous race is lost), but
868 * we might as well try.
869 */
870 encode_single_inet_addr(sa, sun, 1);
871
872 } else {
873 /* We want a fresh new socket. */
874
875 /* Make a copy of the given address, because we're going to mangle it. */
876 copy_sockaddr(&addr.sa, sa);
877
878 /* Try a few random-ish port numbers to see if any of them is spare. */
879 for (i = 0; i < 10; i++) {
880 port_to_sockaddr(&addr.sa, randrange(minautoport, maxautoport));
881 if (!encode_unused_inet_addr(&addr.sa, sun, 0)) goto found;
882 }
883
884 /* Things must be getting tight. Work through all of the autoport range
885 * to see if we can find a spare one. The first time, just do it the
886 * quick way; if that doesn't work, then check harder for stale sockets.
887 */
888 for (desperatep = 0; desperatep < 2; desperatep++) {
889 for (i = minautoport; i <= maxautoport; i++) {
890 port_to_sockaddr(&addr.sa, i);
891 if (!encode_unused_inet_addr(&addr.sa, sun, 0)) goto found;
892 }
893 }
894
895 /* We failed to find any free ports. */
896 errno = EADDRINUSE;
897 D( fprintf(stderr, " -- can't resolve\n"); )
898 return (-1);
899 }
900
901 /* Success. */
902 found:
903 D( fprintf(stderr, " -> `%s'\n", sun->sun_path); )
904 return (0);
905 }
906
907 /* Decode the Unix address SUN to an Internet address SIN. If AF_HINT is
908 * nonzero, an empty address (indicative of an unbound Unix-domain socket) is
909 * translated to a wildcard Internet address of the appropriate family.
910 * Returns zero on success; -1 on failure (e.g., it wasn't one of our
911 * addresses).
912 */
913 static int decode_inet_addr(struct sockaddr *sa, int af_hint,
914 const struct sockaddr_un *sun,
915 socklen_t len)
916 {
917 char buf[ADDRBUFSZ];
918 size_t n = strlen(sockdir), nn;
919 address addr;
920
921 if (!sa) sa = &addr.sa;
922 if (sun->sun_family != AF_UNIX) return (-1);
923 if (len > sizeof(*sun)) return (-1);
924 ((char *)sun)[len] = 0;
925 nn = strlen(sun->sun_path);
926 D( fprintf(stderr, "noip(%d): decode `%s'", getpid(), sun->sun_path); )
927 if (af_hint && !sun->sun_path[0]) {
928 wildcard_address(af_hint, sa);
929 D( fprintf(stderr, " -- unbound socket\n"); )
930 return (0);
931 }
932 if (nn < n + 1 || nn - n >= sizeof(buf) || sun->sun_path[n] != '/' ||
933 memcmp(sun->sun_path, sockdir, n) != 0) {
934 D( fprintf(stderr, " -- not one of ours\n"); )
935 return (-1);
936 }
937 if (parse_sockaddr(sa, sun->sun_path + n + 1)) return (-1);
938 D( fprintf(stderr, " -> %s\n",
939 present_sockaddr(sa, 0, buf, sizeof(buf))); )
940 return (0);
941 }
942
943 /* SK is (or at least might be) a Unix-domain socket we created when an
944 * Internet socket was asked for. We've decided it should be an Internet
945 * socket after all, with family AF_HINT, so convert it. If TMP is not null,
946 * then don't replace the existing descriptor: store the new socket in *TMP
947 * and return zero.
948 */
949 static int fixup_real_ip_socket(int sk, int af_hint, int *tmp)
950 {
951 int nsk;
952 int type;
953 int f, fd;
954 struct sockaddr_un sun;
955 address addr;
956 socklen_t len;
957
958 #define OPTS(_) \
959 _(DEBUG, int) \
960 _(REUSEADDR, int) \
961 _(DONTROUTE, int) \
962 _(BROADCAST, int) \
963 _(SNDBUF, int) \
964 _(RCVBUF, int) \
965 _(OOBINLINE, int) \
966 _(NO_CHECK, int) \
967 _(LINGER, struct linger) \
968 _(BSDCOMPAT, int) \
969 _(RCVLOWAT, int) \
970 _(RCVTIMEO, struct timeval) \
971 _(SNDTIMEO, struct timeval)
972
973 len = sizeof(sun);
974 if (real_getsockname(sk, SA(&sun), &len))
975 return (-1);
976 if (decode_inet_addr(&addr.sa, af_hint, &sun, len))
977 return (0); /* Not one of ours */
978 len = sizeof(type);
979 if (real_getsockopt(sk, SOL_SOCKET, SO_TYPE, &type, &len) < 0 ||
980 (nsk = real_socket(addr.sa.sa_family, type, 0)) < 0)
981 return (-1);
982 #define FIX(opt, ty) do { \
983 ty ov_; \
984 len = sizeof(ov_); \
985 if (real_getsockopt(sk, SOL_SOCKET, SO_##opt, &ov_, &len) < 0 || \
986 real_setsockopt(nsk, SOL_SOCKET, SO_##opt, &ov_, len)) { \
987 close(nsk); \
988 return (-1); \
989 } \
990 } while (0);
991 OPTS(FIX)
992 #undef FIX
993 if (tmp)
994 *tmp = nsk;
995 else {
996 if ((f = fcntl(sk, F_GETFL)) < 0 ||
997 (fd = fcntl(sk, F_GETFD)) < 0 ||
998 fcntl(nsk, F_SETFL, f) < 0 ||
999 dup2(nsk, sk) < 0) {
1000 close(nsk);
1001 return (-1);
1002 }
1003 unlink(sun.sun_path);
1004 close(nsk);
1005 if (fcntl(sk, F_SETFD, fd) < 0) {
1006 perror("noip: fixup_real_ip_socket F_SETFD");
1007 abort();
1008 }
1009 }
1010 return (0);
1011 }
1012
1013 /* We found the real address SA, with length LEN; if it's a Unix-domain
1014 * address corresponding to a fake socket, convert it to cover up the
1015 * deception. Whatever happens, put the result at FAKE and store its length
1016 * at FAKELEN.
1017 */
1018 #define FNF_V6MAPPED 1u
1019 static void return_fake_name(struct sockaddr *sa, socklen_t len,
1020 struct sockaddr *fake, socklen_t *fakelen,
1021 unsigned f)
1022 {
1023 address addr;
1024 struct sockaddr_in6 sin6;
1025 socklen_t alen;
1026
1027 if (sa->sa_family == AF_UNIX &&
1028 !decode_inet_addr(&addr.sa, 0, SUN(sa), len)) {
1029 if (addr.sa.sa_family != AF_INET || !(f&FNF_V6MAPPED)) {
1030 sa = &addr.sa;
1031 len = family_socklen(addr.sa.sa_family);
1032 } else {
1033 map_ipv4_sockaddr(&sin6, &addr.sin);
1034 sa = SA(&sin6);
1035 len = family_socklen(AF_INET6);
1036 }
1037 }
1038 alen = len;
1039 if (len > *fakelen) len = *fakelen;
1040 if (len > 0) memcpy(fake, sa, len);
1041 *fakelen = alen;
1042 }
1043
1044 /* Variant of `return_fake_name' above, specifically handling the weirdness
1045 * of remote v6-mapped IPv4 addresses. If SK's fake local address is IPv6,
1046 * and the remote address is IPv4, then return a v6-mapped version of the
1047 * remote address.
1048 */
1049 static void return_fake_peer(int sk, struct sockaddr *sa, socklen_t len,
1050 struct sockaddr *fake, socklen_t *fakelen)
1051 {
1052 char sabuf[1024];
1053 socklen_t mylen = sizeof(sabuf);
1054 unsigned fnf = 0;
1055 address addr;
1056 int rc;
1057
1058 PRESERVING_ERRNO({
1059 rc = real_getsockname(sk, SA(sabuf), &mylen);
1060 if (!rc && sa->sa_family == AF_UNIX &&
1061 !decode_inet_addr(&addr.sa, 0, SUN(sabuf), mylen) &&
1062 addr.sa.sa_family == AF_INET6)
1063 fnf |= FNF_V6MAPPED;
1064 });
1065 return_fake_name(sa, len, fake, fakelen, fnf);
1066 }
1067
1068 /*----- Implicit binding --------------------------------------------------*/
1069
1070 #ifdef DEBUG
1071
1072 static void dump_impbind(const impbind *i)
1073 {
1074 char buf[ADDRBUFSZ];
1075
1076 fprintf(stderr, "noip(%d): ", getpid());
1077 dump_addrrange(i->af, &i->minaddr, &i->maxaddr);
1078 switch (i->how) {
1079 case SAME: fprintf(stderr, " <self>"); break;
1080 case EXPLICIT:
1081 fprintf(stderr, " %s", inet_ntop(i->af, &i->bindaddr,
1082 buf, sizeof(buf)));
1083 break;
1084 default: abort();
1085 }
1086 fputc('\n', stderr);
1087 }
1088
1089 static void dump_impbind_list(void)
1090 {
1091 const impbind *i;
1092
1093 for (i = impbinds; i; i = i->next) dump_impbind(i);
1094 }
1095
1096 #endif
1097
1098 /* The socket SK is about to be used to communicate with the remote address
1099 * SA. Assign it a local address so that getpeername(2) does something
1100 * useful.
1101 *
1102 * If the flag `IBF_V6MAPPED' is set then, then SA must be an `AF_INET'
1103 * address; after deciding on the appropriate local address, convert it to be
1104 * an IPv4-mapped IPv6 address before final conversion to a Unix-domain
1105 * socket address and actually binding. Note that this could well mean that
1106 * the socket ends up bound to the v6-mapped v4 wildcard address
1107 * ::ffff:0.0.0.0, which looks very strange but is meaningful.
1108 */
1109 #define IBF_V6MAPPED 1u
1110 static int do_implicit_bind(int sk, const struct sockaddr *sa, unsigned f)
1111 {
1112 address addr;
1113 struct sockaddr_in6 sin6;
1114 struct sockaddr_un sun;
1115 const impbind *i;
1116 Dpid;
1117
1118 D( fprintf(stderr, "noip(%d): checking impbind list...\n", pid); )
1119 for (i = impbinds; i; i = i->next) {
1120 D( dump_impbind(i); )
1121 if (sa->sa_family == i->af &&
1122 sockaddr_in_range_p(sa, &i->minaddr, &i->maxaddr)) {
1123 D( fprintf(stderr, "noip(%d): match!\n", pid); )
1124 addr.sa.sa_family = sa->sa_family;
1125 ipaddr_to_sockaddr(&addr.sa, &i->bindaddr);
1126 goto found;
1127 }
1128 }
1129 D( fprintf(stderr, "noip(%d): no match; using wildcard\n", pid); )
1130 wildcard_address(sa->sa_family, &addr.sa);
1131 found:
1132 if (addr.sa.sa_family != AF_INET || !(f&IBF_V6MAPPED)) sa = &addr.sa;
1133 else { map_ipv4_sockaddr(&sin6, &addr.sin); sa = SA(&sin6); }
1134 encode_inet_addr(&sun, sa, ENCF_FRESH);
1135 D( fprintf(stderr, "noip(%d): implicitly binding to %s\n",
1136 pid, sun.sun_path); )
1137 if (real_bind(sk, SA(&sun), SUN_LEN(&sun))) return (-1);
1138 return (0);
1139 }
1140
1141 /* The socket SK is about to communicate with the remote address *SA. Ensure
1142 * that the socket has a local address, and adjust *SA to refer to the real
1143 * remote endpoint.
1144 *
1145 * If we need to translate the remote address, then the Unix-domain endpoint
1146 * address will end in *SUN, and *SA will be adjusted to point to it.
1147 */
1148 static int fixup_client_socket(int sk, const struct sockaddr **sa_r,
1149 socklen_t *len_r, struct sockaddr_un *sun)
1150 {
1151 struct sockaddr_in sin;
1152 socklen_t mylen = sizeof(*sun);
1153 const struct sockaddr *sa = *sa_r;
1154 unsigned ibf = 0;
1155
1156 /* If this isn't a Unix-domain socket then there's nothing to do. */
1157 if (real_getsockname(sk, SA(sun), &mylen) < 0) return (-1);
1158 if (sun->sun_family != AF_UNIX) return (0);
1159 if (mylen < sizeof(*sun)) ((char *)sun)[mylen] = 0;
1160
1161 /* If the remote address is v6-mapped IPv4, then unmap it so as to search
1162 * for IPv4 servers. Also remember to v6-map the local address when we
1163 * autobind.
1164 */
1165 if (sa->sa_family == AF_INET6 && !(unmap_ipv4_sockaddr(&sin, SIN6(sa)))) {
1166 sa = SA(&sin);
1167 ibf |= IBF_V6MAPPED;
1168 }
1169
1170 /* If we're allowed to talk to a real remote endpoint, then fix things up
1171 * as necessary and proceed.
1172 */
1173 if (acl_allows_p(connect_real, sa)) {
1174 if (fixup_real_ip_socket(sk, (*sa_r)->sa_family, 0)) return (-1);
1175 return (0);
1176 }
1177
1178 /* Speaking of which, if we don't have a local address, then we should
1179 * arrange one now.
1180 */
1181 if (!sun->sun_path[0] && do_implicit_bind(sk, sa, ibf)) return (-1);
1182
1183 /* And then come up with a remote address. */
1184 encode_inet_addr(sun, sa, 0);
1185 *sa_r = SA(sun);
1186 *len_r = SUN_LEN(sun);
1187 return (0);
1188 }
1189
1190 /*----- Configuration -----------------------------------------------------*/
1191
1192 /* Return the process owner's home directory. */
1193 static char *home(void)
1194 {
1195 char *p;
1196 struct passwd *pw;
1197
1198 if (getuid() == uid &&
1199 (p = getenv("HOME")) != 0)
1200 return (p);
1201 else if ((pw = getpwuid(uid)) != 0)
1202 return (pw->pw_dir);
1203 else
1204 return "/notexist";
1205 }
1206
1207 /* Return a good temporary directory to use. */
1208 static char *tmpdir(void)
1209 {
1210 char *p;
1211
1212 if ((p = getenv("TMPDIR")) != 0) return (p);
1213 else if ((p = getenv("TMP")) != 0) return (p);
1214 else return ("/tmp");
1215 }
1216
1217 /* Return the user's name, or at least something distinctive. */
1218 static char *user(void)
1219 {
1220 static char buf[16];
1221 char *p;
1222 struct passwd *pw;
1223
1224 if ((p = getenv("USER")) != 0) return (p);
1225 else if ((p = getenv("LOGNAME")) != 0) return (p);
1226 else if ((pw = getpwuid(uid)) != 0) return (pw->pw_name);
1227 else {
1228 snprintf(buf, sizeof(buf), "uid-%lu", (unsigned long)uid);
1229 return (buf);
1230 }
1231 }
1232
1233 /* Skip P over space characters. */
1234 #define SKIPSPC do { while (*p && isspace(UC(*p))) p++; } while (0)
1235
1236 /* Set Q to point to the next word following P, null-terminate it, and step P
1237 * past it. */
1238 #define NEXTWORD(q) do { \
1239 SKIPSPC; \
1240 q = p; \
1241 while (*p && !isspace(UC(*p))) p++; \
1242 if (*p) *p++ = 0; \
1243 } while (0)
1244
1245 /* Set Q to point to the next dotted-quad address, store the ending delimiter
1246 * in DEL, null-terminate it, and step P past it. */
1247 static void parse_nextaddr(char **pp, char **qq, int *del)
1248 {
1249 char *p = *pp;
1250
1251 SKIPSPC;
1252 if (*p == '[') {
1253 p++; SKIPSPC;
1254 *qq = p;
1255 p += strcspn(p, "]");
1256 if (*p) *p++ = 0;
1257 *del = 0;
1258 } else {
1259 *qq = p;
1260 while (*p && (*p == '.' || isdigit(UC(*p)))) p++;
1261 *del = *p;
1262 if (*p) *p++ = 0;
1263 }
1264 *pp = p;
1265 }
1266
1267 /* Set Q to point to the next decimal number, store the ending delimiter in
1268 * DEL, null-terminate it, and step P past it. */
1269 #define NEXTNUMBER(q, del) do { \
1270 SKIPSPC; \
1271 q = p; \
1272 while (*p && isdigit(UC(*p))) p++; \
1273 del = *p; \
1274 if (*p) *p++ = 0; \
1275 } while (0)
1276
1277 /* Push the character DEL back so we scan it again, unless it's zero
1278 * (end-of-file). */
1279 #define RESCAN(del) do { if (del) *--p = del; } while (0)
1280
1281 /* Evaluate true if P is pointing to the word KW (and not some longer string
1282 * of which KW is a prefix). */
1283
1284 #define KWMATCHP(kw) (strncmp(p, kw, sizeof(kw) - 1) == 0 && \
1285 !isalnum(UC(p[sizeof(kw) - 1])) && \
1286 (p += sizeof(kw) - 1))
1287
1288 /* Parse a port list, starting at *PP. Port lists have the form
1289 * [:LOW[-HIGH]]: if omitted, all ports are included; if HIGH is omitted,
1290 * it's as if HIGH = LOW. Store LOW in *MIN, HIGH in *MAX and set *PP to the
1291 * rest of the string.
1292 */
1293 static void parse_ports(char **pp, unsigned short *min, unsigned short *max)
1294 {
1295 char *p = *pp, *q;
1296 int del;
1297
1298 SKIPSPC;
1299 if (*p != ':')
1300 { *min = 0; *max = 0xffff; }
1301 else {
1302 p++;
1303 NEXTNUMBER(q, del); *min = strtoul(q, 0, 0); RESCAN(del);
1304 SKIPSPC;
1305 if (*p == '-')
1306 { p++; NEXTNUMBER(q, del); *max = strtoul(q, 0, 0); RESCAN(del); }
1307 else
1308 *max = *min;
1309 }
1310 *pp = p;
1311 }
1312
1313 /* Parse an address range designator starting at PP and store a
1314 * representation of it in R. An address range designator has the form:
1315 *
1316 * any | local | ADDR | ADDR - ADDR | ADDR/ADDR | ADDR/INT
1317 */
1318 static int parse_addrrange(char **pp, addrrange *r)
1319 {
1320 char *p = *pp, *q;
1321 int n;
1322 int del;
1323 int af;
1324
1325 SKIPSPC;
1326 if (KWMATCHP("any")) r->type = ANY;
1327 else if (KWMATCHP("local")) r->type = LOCAL;
1328 else {
1329 parse_nextaddr(&p, &q, &del);
1330 af = guess_address_family(q);
1331 if (inet_pton(af, q, &r->u.range.min) <= 0) goto bad;
1332 RESCAN(del);
1333 SKIPSPC;
1334 if (*p == '-') {
1335 p++;
1336 parse_nextaddr(&p, &q, &del);
1337 if (inet_pton(af, q, &r->u.range.max) <= 0) goto bad;
1338 RESCAN(del);
1339 } else if (*p == '/') {
1340 p++;
1341 NEXTNUMBER(q, del);
1342 n = strtoul(q, 0, 0);
1343 r->u.range.max = r->u.range.min;
1344 mask_address(af, &r->u.range.min, n, 0);
1345 mask_address(af, &r->u.range.max, n, 1);
1346 RESCAN(del);
1347 } else
1348 r->u.range.max = r->u.range.min;
1349 r->type = RANGE;
1350 r->u.range.af = af;
1351 }
1352 *pp = p;
1353 return (0);
1354
1355 bad:
1356 return (-1);
1357 }
1358
1359 /* Call FUNC on each individual address range in R. */
1360 static void foreach_addrrange(const addrrange *r,
1361 void (*func)(int af,
1362 const ipaddr *min,
1363 const ipaddr *max,
1364 void *p),
1365 void *p)
1366 {
1367 ipaddr minaddr, maxaddr;
1368 int i, af;
1369
1370 switch (r->type) {
1371 case EMPTY:
1372 break;
1373 case ANY:
1374 for (i = 0; address_families[i] >= 0; i++) {
1375 af = address_families[i];
1376 memset(&minaddr, 0, sizeof(minaddr));
1377 maxaddr = minaddr; mask_address(af, &maxaddr, 0, 1);
1378 func(af, &minaddr, &maxaddr, p);
1379 }
1380 break;
1381 case LOCAL:
1382 for (i = 0; address_families[i] >= 0; i++) {
1383 af = address_families[i];
1384 memset(&minaddr, 0, sizeof(minaddr));
1385 maxaddr = minaddr; mask_address(af, &maxaddr, 0, 1);
1386 func(af, &minaddr, &minaddr, p);
1387 func(af, &maxaddr, &maxaddr, p);
1388 }
1389 for (i = 0; i < n_local_ipaddrs; i++) {
1390 func(local_ipaddrs[i].af,
1391 &local_ipaddrs[i].addr, &local_ipaddrs[i].addr,
1392 p);
1393 }
1394 break;
1395 case RANGE:
1396 func(r->u.range.af, &r->u.range.min, &r->u.range.max, p);
1397 break;
1398 default:
1399 abort();
1400 }
1401 }
1402
1403 struct add_aclnode_ctx {
1404 int act;
1405 unsigned short minport, maxport;
1406 aclnode ***tail;
1407 };
1408
1409 static void add_aclnode(int af, const ipaddr *min, const ipaddr *max,
1410 void *p)
1411 {
1412 struct add_aclnode_ctx *ctx = p;
1413 aclnode *a;
1414
1415 NEW(a);
1416 a->act = ctx->act;
1417 a->af = af;
1418 a->minaddr = *min; a->maxaddr = *max;
1419 a->minport = ctx->minport; a->maxport = ctx->maxport;
1420 **ctx->tail = a; *ctx->tail = &a->next;
1421 }
1422
1423 /* Parse an ACL line. *PP points to the end of the line; *TAIL points to
1424 * the list tail (i.e., the final link in the list). An ACL entry has the
1425 * form +|- ADDR-RANGE PORTS
1426 * where PORTS is parsed by parse_ports above; an ACL line consists of a
1427 * comma-separated sequence of entries..
1428 */
1429 static void parse_acl_line(char **pp, aclnode ***tail)
1430 {
1431 struct add_aclnode_ctx ctx;
1432 addrrange r;
1433 char *p = *pp;
1434
1435 ctx.tail = tail;
1436 for (;;) {
1437 SKIPSPC;
1438 if (*p == '+') ctx.act = ALLOW;
1439 else if (*p == '-') ctx.act = DENY;
1440 else goto bad;
1441
1442 p++;
1443 if (parse_addrrange(&p, &r)) goto bad;
1444 parse_ports(&p, &ctx.minport, &ctx.maxport);
1445 foreach_addrrange(&r, add_aclnode, &ctx);
1446 SKIPSPC;
1447 if (*p != ',') break;
1448 if (*p) p++;
1449 }
1450 if (*p) goto bad;
1451 *pp = p;
1452 return;
1453
1454 bad:
1455 D( fprintf(stderr, "noip(%d): bad acl spec (ignored)\n", getpid()); )
1456 return;
1457 }
1458
1459 /* Parse an ACL from an environment variable VAR, attaching it to the list
1460 * TAIL.
1461 */
1462 static void parse_acl_env(const char *var, aclnode ***tail)
1463 {
1464 char *p, *q;
1465
1466 if ((p = getenv(var)) != 0) {
1467 p = q = xstrdup(p);
1468 parse_acl_line(&q, tail);
1469 free(p);
1470 }
1471 }
1472
1473 struct add_impbind_ctx {
1474 int af, how;
1475 ipaddr addr;
1476 };
1477
1478 static void add_impbind(int af, const ipaddr *min, const ipaddr *max,
1479 void *p)
1480 {
1481 struct add_impbind_ctx *ctx = p;
1482 impbind *i;
1483
1484 if (ctx->af && af != ctx->af) return;
1485 NEW(i);
1486 i->af = af;
1487 i->how = ctx->how;
1488 i->minaddr = *min; i->maxaddr = *max;
1489 switch (ctx->how) {
1490 case EXPLICIT: i->bindaddr = ctx->addr;
1491 case SAME: break;
1492 default: abort();
1493 }
1494 *impbind_tail = i; impbind_tail = &i->next;
1495 }
1496
1497 /* Parse an implicit-bind line. An implicit-bind entry has the form
1498 * ADDR-RANGE {ADDR | same}
1499 */
1500 static void parse_impbind_line(char **pp)
1501 {
1502 struct add_impbind_ctx ctx;
1503 char *p = *pp, *q;
1504 addrrange r;
1505 int del;
1506
1507 for (;;) {
1508 if (parse_addrrange(&p, &r)) goto bad;
1509 SKIPSPC;
1510 if (KWMATCHP("same")) {
1511 ctx.how = SAME;
1512 ctx.af = 0;
1513 } else {
1514 ctx.how = EXPLICIT;
1515 parse_nextaddr(&p, &q, &del);
1516 ctx.af = guess_address_family(q);
1517 if (inet_pton(ctx.af, q, &ctx.addr) < 0) goto bad;
1518 RESCAN(del);
1519 }
1520 foreach_addrrange(&r, add_impbind, &ctx);
1521 SKIPSPC;
1522 if (*p != ',') break;
1523 if (*p) p++;
1524 }
1525 if (*p) goto bad;
1526 *pp = p;
1527 return;
1528
1529 bad:
1530 D( fprintf(stderr, "noip(%d): bad implicit-bind spec (ignored)\n",
1531 getpid()); )
1532 return;
1533 }
1534
1535 /* Parse implicit-bind instructions from an environment variable VAR,
1536 * attaching it to the list.
1537 */
1538 static void parse_impbind_env(const char *var)
1539 {
1540 char *p, *q;
1541
1542 if ((p = getenv(var)) != 0) {
1543 p = q = xstrdup(p);
1544 parse_impbind_line(&q);
1545 free(p);
1546 }
1547 }
1548
1549 /* Parse the autoports configuration directive. Syntax is MIN - MAX. */
1550 static void parse_autoports(char **pp)
1551 {
1552 char *p = *pp, *q;
1553 unsigned x, y;
1554 int del;
1555
1556 SKIPSPC;
1557 NEXTNUMBER(q, del); x = strtoul(q, 0, 0); RESCAN(del);
1558 SKIPSPC;
1559 if (*p != '-') goto bad;
1560 p++;
1561 NEXTNUMBER(q, del); y = strtoul(q, 0, 0); RESCAN(del);
1562 minautoport = x; maxautoport = y;
1563 SKIPSPC; if (*p) goto bad;
1564 *pp = p;
1565 return;
1566
1567 bad:
1568 D( fprintf(stderr, "noip(%d): bad port range (ignored)\n", getpid()); )
1569 return;
1570 }
1571
1572 /* Read the configuration from the config file and environment. */
1573 static void readconfig(void)
1574 {
1575 FILE *fp;
1576 char buf[1024];
1577 size_t n;
1578 char *p, *q, *cmd;
1579 Dpid;
1580
1581 parse_acl_env("NOIP_REALBIND_BEFORE", &bind_tail);
1582 parse_acl_env("NOIP_REALCONNECT_BEFORE", &connect_tail);
1583 parse_impbind_env("NOIP_IMPBIND_BEFORE");
1584 if ((p = getenv("NOIP_AUTOPORTS")) != 0) {
1585 p = q = xstrdup(p);
1586 parse_autoports(&q);
1587 free(p);
1588 }
1589 if ((p = getenv("NOIP_CONFIG")) == 0)
1590 snprintf(p = buf, sizeof(buf), "%s/.noip", home());
1591 D( fprintf(stderr, "noip(%d): config file: %s\n", pid, p); )
1592
1593 if ((fp = fopen(p, "r")) == 0) {
1594 D( fprintf(stderr, "noip(%d): couldn't read config: %s\n",
1595 pid, strerror(errno)); )
1596 goto done;
1597 }
1598 while (fgets(buf, sizeof(buf), fp)) {
1599 n = strlen(buf);
1600 p = buf;
1601
1602 SKIPSPC;
1603 if (!*p || *p == '#') continue;
1604 while (n && isspace(UC(buf[n - 1]))) n--;
1605 buf[n] = 0;
1606 NEXTWORD(cmd);
1607 SKIPSPC;
1608
1609 if (strcmp(cmd, "socketdir") == 0)
1610 sockdir = xstrdup(p);
1611 else if (strcmp(cmd, "realbind") == 0)
1612 parse_acl_line(&p, &bind_tail);
1613 else if (strcmp(cmd, "realconnect") == 0)
1614 parse_acl_line(&p, &connect_tail);
1615 else if (strcmp(cmd, "impbind") == 0)
1616 parse_impbind_line(&p);
1617 else if (strcmp(cmd, "autoports") == 0)
1618 parse_autoports(&p);
1619 else if (strcmp(cmd, "debug") == 0)
1620 debug = *p ? atoi(p) : 1;
1621 else
1622 D( fprintf(stderr, "noip(%d): bad config command %s\n", pid, cmd); )
1623 }
1624 fclose(fp);
1625
1626 done:
1627 parse_acl_env("NOIP_REALBIND", &bind_tail);
1628 parse_acl_env("NOIP_REALCONNECT", &connect_tail);
1629 parse_impbind_env("NOIP_IMPBIND");
1630 parse_acl_env("NOIP_REALBIND_AFTER", &bind_tail);
1631 parse_acl_env("NOIP_REALCONNECT_AFTER", &connect_tail);
1632 parse_impbind_env("NOIP_IMPBIND_AFTER");
1633 *bind_tail = 0;
1634 *connect_tail = 0;
1635 *impbind_tail = 0;
1636 if (!sockdir) sockdir = getenv("NOIP_SOCKETDIR");
1637 if (!sockdir) {
1638 snprintf(buf, sizeof(buf), "%s/noip-%s", tmpdir(), user());
1639 sockdir = xstrdup(buf);
1640 }
1641 D( fprintf(stderr, "noip(%d): socketdir: %s\n", pid, sockdir);
1642 fprintf(stderr, "noip(%d): autoports: %u-%u\n",
1643 pid, minautoport, maxautoport);
1644 fprintf(stderr, "noip(%d): realbind acl:\n", pid);
1645 dump_acl(bind_real);
1646 fprintf(stderr, "noip(%d): realconnect acl:\n", pid);
1647 dump_acl(connect_real);
1648 fprintf(stderr, "noip(%d): impbind list:\n", pid);
1649 dump_impbind_list(); )
1650 }
1651
1652 /*----- Overridden system calls -------------------------------------------*/
1653
1654 static void dump_syserr(long rc)
1655 { fprintf(stderr, " => %ld (E%d)\n", rc, errno); }
1656
1657 static void dump_sysresult(long rc)
1658 {
1659 if (rc < 0) dump_syserr(rc);
1660 else fprintf(stderr, " => %ld\n", rc);
1661 }
1662
1663 static void dump_addrresult(long rc, const struct sockaddr *sa,
1664 socklen_t len)
1665 {
1666 char addrbuf[ADDRBUFSZ];
1667
1668 if (rc < 0) dump_syserr(rc);
1669 else {
1670 fprintf(stderr, " => %ld [%s]\n", rc,
1671 present_sockaddr(sa, len, addrbuf, sizeof(addrbuf)));
1672 }
1673 }
1674
1675 int socket(int pf, int ty, int proto)
1676 {
1677 int sk;
1678
1679 D( fprintf(stderr, "noip(%d): SOCKET pf=%d, type=%d, proto=%d",
1680 getpid(), pf, ty, proto); )
1681
1682 switch (pf) {
1683 default:
1684 if (!family_known_p(pf)) {
1685 D( fprintf(stderr, " -> unknown; refuse\n"); )
1686 errno = EAFNOSUPPORT;
1687 sk = -1;
1688 }
1689 D( fprintf(stderr, " -> inet; substitute"); )
1690 pf = PF_UNIX;
1691 proto = 0;
1692 break;
1693 case PF_UNIX:
1694 #ifdef PF_NETLINK
1695 case PF_NETLINK:
1696 #endif
1697 D( fprintf(stderr, " -> safe; permit"); )
1698 break;
1699 }
1700 sk = real_socket(pf, ty, proto);
1701 D( dump_sysresult(sk); )
1702 return (sk);
1703 }
1704
1705 int socketpair(int pf, int ty, int proto, int *sk)
1706 {
1707 int rc;
1708
1709 D( fprintf(stderr, "noip(%d): SOCKETPAIR pf=%d, type=%d, proto=%d",
1710 getpid(), pf, ty, proto); )
1711 if (!family_known_p(pf))
1712 D( fprintf(stderr, " -> unknown; permit"); )
1713 else {
1714 D( fprintf(stderr, " -> inet; substitute"); )
1715 pf = PF_UNIX;
1716 proto = 0;
1717 }
1718 rc = real_socketpair(pf, ty, proto, sk);
1719 D( if (rc < 0) dump_syserr(rc);
1720 else fprintf(stderr, " => %d (%d, %d)\n", rc, sk[0], sk[1]); )
1721 return (rc);
1722 }
1723
1724 int bind(int sk, const struct sockaddr *sa, socklen_t len)
1725 {
1726 struct sockaddr_un sun;
1727 int rc;
1728 unsigned f;
1729 int reusep;
1730 socklen_t n;
1731 Dpid;
1732
1733 D({ char buf[ADDRBUFSZ];
1734 fprintf(stderr, "noip(%d): BIND sk=%d, sa[%d]=%s", pid,
1735 sk, len, present_sockaddr(sa, len, buf, sizeof(buf))); })
1736
1737 if (!family_known_p(sa->sa_family))
1738 D( fprintf(stderr, " -> unknown af; pass through"); )
1739 else {
1740 D( fprintf(stderr, " -> checking...\n"); )
1741 PRESERVING_ERRNO({
1742 if (acl_allows_p(bind_real, sa)) {
1743 if (fixup_real_ip_socket(sk, sa->sa_family, 0))
1744 return (-1);
1745 } else {
1746 f = ENCF_FRESH;
1747 n = sizeof(reusep);
1748 if (!getsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &reusep, &n) && reusep)
1749 f |= ENCF_REUSEADDR;
1750 encode_inet_addr(&sun, sa, f);
1751 sa = SA(&sun);
1752 len = SUN_LEN(&sun);
1753 }
1754 });
1755 D( fprintf(stderr, "noip(%d): BIND ...", pid); )
1756 }
1757 rc = real_bind(sk, sa, len);
1758 D( dump_sysresult(rc); )
1759 return (rc);
1760 }
1761
1762 int connect(int sk, const struct sockaddr *sa, socklen_t len)
1763 {
1764 struct sockaddr_un sun;
1765 int rc;
1766 Dpid;
1767
1768 D({ char buf[ADDRBUFSZ];
1769 fprintf(stderr, "noip(%d): CONNECT sk=%d, sa[%d]=%s", pid,
1770 sk, len, present_sockaddr(sa, len, buf, sizeof(buf))); })
1771
1772 if (!family_known_p(sa->sa_family)) {
1773 D( fprintf(stderr, " -> unknown af; pass through"); )
1774 rc = real_connect(sk, sa, len);
1775 } else {
1776 D( fprintf(stderr, " -> checking...\n"); )
1777 PRESERVING_ERRNO({
1778 fixup_client_socket(sk, &sa, &len, &sun);
1779 });
1780 D( fprintf(stderr, "noip(%d): CONNECT ...", pid); )
1781 rc = real_connect(sk, sa, len);
1782 if (rc < 0) {
1783 switch (errno) {
1784 case ENOENT: errno = ECONNREFUSED; break;
1785 }
1786 }
1787 }
1788 D( dump_sysresult(rc); )
1789 return (rc);
1790 }
1791
1792 ssize_t sendto(int sk, const void *buf, size_t len, int flags,
1793 const struct sockaddr *to, socklen_t tolen)
1794 {
1795 struct sockaddr_un sun;
1796 ssize_t n;
1797 Dpid;
1798
1799 D({ char addrbuf[ADDRBUFSZ];
1800 fprintf(stderr, "noip(%d): SENDTO sk=%d, len=%lu, flags=%d, to[%d]=%s",
1801 pid, sk, (unsigned long)len, flags, tolen,
1802 present_sockaddr(to, tolen, addrbuf, sizeof(addrbuf))); })
1803
1804 if (!to)
1805 D( fprintf(stderr, " -> null address; leaving"); )
1806 else if (!family_known_p(to->sa_family))
1807 D( fprintf(stderr, " -> unknown af; pass through"); )
1808 else {
1809 D( fprintf(stderr, " -> checking...\n"); )
1810 PRESERVING_ERRNO({
1811 fixup_client_socket(sk, &to, &tolen, &sun);
1812 });
1813 D( fprintf(stderr, "noip(%d): SENDTO ...", pid); )
1814 }
1815 n = real_sendto(sk, buf, len, flags, to, tolen);
1816 D( dump_sysresult(n); )
1817 return (n);
1818 }
1819
1820 ssize_t recvfrom(int sk, void *buf, size_t len, int flags,
1821 struct sockaddr *from, socklen_t *fromlen)
1822 {
1823 char sabuf[1024];
1824 socklen_t mylen = sizeof(sabuf);
1825 ssize_t n;
1826 Dpid;
1827
1828 D( fprintf(stderr, "noip(%d): RECVFROM sk=%d, len=%lu, flags=%d",
1829 pid, sk, (unsigned long)len, flags); )
1830
1831 if (!from) {
1832 D( fprintf(stderr, " -> null addr; pass through"); )
1833 n = real_recvfrom(sk, buf, len, flags, 0, 0);
1834 } else {
1835 n = real_recvfrom(sk, buf, len, flags, SA(sabuf), &mylen);
1836 if (n >= 0) {
1837 D( fprintf(stderr, " -> converting...\n"); )
1838 PRESERVING_ERRNO({
1839 return_fake_peer(sk, SA(sabuf), mylen, from, fromlen);
1840 });
1841 D( fprintf(stderr, "noip(%d): ... RECVFROM", pid); )
1842 }
1843 }
1844 D( dump_addrresult(n, from, fromlen ? *fromlen : 0); )
1845 return (n);
1846 }
1847
1848 ssize_t sendmsg(int sk, const struct msghdr *msg, int flags)
1849 {
1850 struct sockaddr_un sun;
1851 const struct sockaddr *sa = SA(msg->msg_name);
1852 struct msghdr mymsg;
1853 ssize_t n;
1854 Dpid;
1855
1856 D({ char addrbuf[ADDRBUFSZ];
1857 fprintf(stderr, "noip(%d): SENDMSG sk=%d, "
1858 "msg_flags=%d, msg_name[%d]=%s, ...",
1859 pid, sk, msg->msg_flags, msg->msg_namelen,
1860 present_sockaddr(sa, msg->msg_namelen,
1861 addrbuf, sizeof(addrbuf))); })
1862
1863 if (!sa)
1864 D( fprintf(stderr, " -> null address; leaving"); )
1865 else if (!family_known_p(sa->sa_family))
1866 D( fprintf(stderr, " -> unknown af; pass through"); )
1867 else {
1868 D( fprintf(stderr, " -> checking...\n"); )
1869 PRESERVING_ERRNO({
1870 mymsg = *msg;
1871 fixup_client_socket(sk, &sa, &mymsg.msg_namelen, &sun);
1872 mymsg.msg_name = SA(sa);
1873 msg = &mymsg;
1874 });
1875 D( fprintf(stderr, "noip(%d): SENDMSG ...", pid); )
1876 }
1877 n = real_sendmsg(sk, msg, flags);
1878 D( dump_sysresult(n); )
1879 return (n);
1880 }
1881
1882 ssize_t recvmsg(int sk, struct msghdr *msg, int flags)
1883 {
1884 char sabuf[1024];
1885 struct sockaddr *sa = SA(msg->msg_name);
1886 socklen_t len = msg->msg_namelen;
1887 ssize_t n;
1888 Dpid;
1889
1890 D( fprintf(stderr, "noip(%d): RECVMSG sk=%d msg_flags=%d, ...",
1891 pid, sk, msg->msg_flags); )
1892
1893 if (!msg->msg_name) {
1894 D( fprintf(stderr, " -> null addr; pass through"); )
1895 return (real_recvmsg(sk, msg, flags));
1896 } else {
1897 msg->msg_name = sabuf;
1898 msg->msg_namelen = sizeof(sabuf);
1899 n = real_recvmsg(sk, msg, flags);
1900 if (n >= 0) {
1901 D( fprintf(stderr, " -> converting...\n"); )
1902 PRESERVING_ERRNO({
1903 return_fake_peer(sk, SA(sabuf), msg->msg_namelen, sa, &len);
1904 });
1905 }
1906 D( fprintf(stderr, "noip(%d): ... RECVMSG", pid); )
1907 msg->msg_name = sa;
1908 msg->msg_namelen = len;
1909 }
1910 D( dump_addrresult(n, sa, len); )
1911 return (n);
1912 }
1913
1914 int accept(int sk, struct sockaddr *sa, socklen_t *len)
1915 {
1916 char sabuf[1024];
1917 socklen_t mylen = sizeof(sabuf);
1918 int nsk;
1919 Dpid;
1920
1921 D( fprintf(stderr, "noip(%d): ACCEPT sk=%d", pid, sk); )
1922
1923 nsk = real_accept(sk, SA(sabuf), &mylen);
1924 if (nsk < 0) /* failed */;
1925 else if (!sa) D( fprintf(stderr, " -> address not wanted"); )
1926 else {
1927 D( fprintf(stderr, " -> converting...\n"); )
1928 return_fake_peer(sk, SA(sabuf), mylen, sa, len);
1929 D( fprintf(stderr, "noip(%d): ... ACCEPT", pid); )
1930 }
1931 D( dump_addrresult(nsk, sa, len ? *len : 0); )
1932 return (nsk);
1933 }
1934
1935 int getsockname(int sk, struct sockaddr *sa, socklen_t *len)
1936 {
1937 char sabuf[1024];
1938 socklen_t mylen = sizeof(sabuf);
1939 int rc;
1940 Dpid;
1941
1942 D( fprintf(stderr, "noip(%d): GETSOCKNAME sk=%d", pid, sk); )
1943 rc = real_getsockname(sk, SA(sabuf), &mylen);
1944 if (rc >= 0) {
1945 D( fprintf(stderr, " -> converting...\n"); )
1946 return_fake_name(SA(sabuf), mylen, sa, len, 0);
1947 D( fprintf(stderr, "noip(%d): ... GETSOCKNAME", pid); )
1948 }
1949 D( dump_addrresult(rc, sa, *len); )
1950 return (rc);
1951 }
1952
1953 int getpeername(int sk, struct sockaddr *sa, socklen_t *len)
1954 {
1955 char sabuf[1024];
1956 socklen_t mylen = sizeof(sabuf);
1957 int rc;
1958 Dpid;
1959
1960 D( fprintf(stderr, "noip(%d): GETPEERNAME sk=%d", pid, sk); )
1961 rc = real_getpeername(sk, SA(sabuf), &mylen);
1962 if (rc >= 0) {
1963 D( fprintf(stderr, " -> converting...\n"); )
1964 return_fake_peer(sk, SA(sabuf), mylen, sa, len);
1965 D( fprintf(stderr, "noip(%d): ... GETPEERNAME", pid); )
1966 }
1967 D( dump_addrresult(rc, sa, *len); )
1968 return (rc);
1969 }
1970
1971 int getsockopt(int sk, int lev, int opt, void *p, socklen_t *len)
1972 {
1973 switch (lev) {
1974 case IPPROTO_IP:
1975 case IPPROTO_IPV6:
1976 case IPPROTO_TCP:
1977 case IPPROTO_UDP:
1978 if (*len > 0)
1979 memset(p, 0, *len);
1980 return (0);
1981 }
1982 return (real_getsockopt(sk, lev, opt, p, len));
1983 }
1984
1985 int setsockopt(int sk, int lev, int opt, const void *p, socklen_t len)
1986 {
1987 switch (lev) {
1988 case IPPROTO_IP:
1989 case IPPROTO_IPV6:
1990 case IPPROTO_TCP:
1991 case IPPROTO_UDP:
1992 return (0);
1993 }
1994 switch (opt) {
1995 case SO_BINDTODEVICE:
1996 case SO_ATTACH_FILTER:
1997 case SO_DETACH_FILTER:
1998 return (0);
1999 }
2000 return (real_setsockopt(sk, lev, opt, p, len));
2001 }
2002
2003 int ioctl(int fd, unsigned long op, ...)
2004 {
2005 va_list ap;
2006 void *arg;
2007 int sk;
2008 int rc;
2009
2010 va_start(ap, op);
2011 arg = va_arg(ap, void *);
2012
2013 switch (op) {
2014 case SIOCGIFADDR:
2015 case SIOCGIFBRDADDR:
2016 case SIOCGIFDSTADDR:
2017 case SIOCGIFNETMASK:
2018 PRESERVING_ERRNO({
2019 if (fixup_real_ip_socket(fd, AF_INET, &sk)) goto real;
2020 });
2021 rc = real_ioctl(sk, op, arg);
2022 PRESERVING_ERRNO({ close(sk); });
2023 break;
2024 default:
2025 real:
2026 rc = real_ioctl(fd, op, arg);
2027 break;
2028 }
2029 va_end(ap);
2030 return (rc);
2031 }
2032
2033 /*----- Initialization ----------------------------------------------------*/
2034
2035 /* Clean up the socket directory, deleting stale sockets. */
2036 static void cleanup_sockdir(void)
2037 {
2038 DIR *dir;
2039 struct dirent *d;
2040 address addr;
2041 struct sockaddr_un sun;
2042 struct stat st;
2043 Dpid;
2044
2045 if ((dir = opendir(sockdir)) == 0) return;
2046 sun.sun_family = AF_UNIX;
2047 while ((d = readdir(dir)) != 0) {
2048 if (d->d_name[0] == '.') continue;
2049 snprintf(sun.sun_path, sizeof(sun.sun_path),
2050 "%s/%s", sockdir, d->d_name);
2051 if (decode_inet_addr(&addr.sa, 0, &sun, SUN_LEN(&sun)) ||
2052 stat(sun.sun_path, &st) ||
2053 !S_ISSOCK(st.st_mode)) {
2054 D( fprintf(stderr, "noip(%d): ignoring unknown socketdir entry `%s'\n",
2055 pid, sun.sun_path); )
2056 continue;
2057 }
2058 if (unix_socket_status(&sun, 0) == STALE) {
2059 D( fprintf(stderr, "noip(%d): clearing away stale socket %s\n",
2060 pid, d->d_name); )
2061 unlink(sun.sun_path);
2062 }
2063 }
2064 closedir(dir);
2065 }
2066
2067 /* Find the addresses attached to local network interfaces, and remember them
2068 * in a table.
2069 */
2070 static void get_local_ipaddrs(void)
2071 {
2072 struct ifaddrs *ifa_head, *ifa;
2073 ipaddr a;
2074 int i;
2075 Dpid;
2076
2077 D( fprintf(stderr, "noip(%d): fetching local addresses...\n", pid); )
2078 if (getifaddrs(&ifa_head)) { perror("getifaddrs"); return; }
2079 for (n_local_ipaddrs = 0, ifa = ifa_head;
2080 n_local_ipaddrs < MAX_LOCAL_IPADDRS && ifa;
2081 ifa = ifa->ifa_next) {
2082 if (!ifa->ifa_addr || !family_known_p(ifa->ifa_addr->sa_family))
2083 continue;
2084 ipaddr_from_sockaddr(&a, ifa->ifa_addr);
2085 D({ char buf[ADDRBUFSZ];
2086 fprintf(stderr, "noip(%d): local addr %s = %s", pid,
2087 ifa->ifa_name,
2088 inet_ntop(ifa->ifa_addr->sa_family, &a,
2089 buf, sizeof(buf))); })
2090 for (i = 0; i < n_local_ipaddrs; i++) {
2091 if (ifa->ifa_addr->sa_family == local_ipaddrs[i].af &&
2092 ipaddr_equal_p(local_ipaddrs[i].af, &a, &local_ipaddrs[i].addr)) {
2093 D( fprintf(stderr, " (duplicate)\n"); )
2094 goto skip;
2095 }
2096 }
2097 D( fprintf(stderr, "\n"); )
2098 local_ipaddrs[n_local_ipaddrs].af = ifa->ifa_addr->sa_family;
2099 local_ipaddrs[n_local_ipaddrs].addr = a;
2100 n_local_ipaddrs++;
2101 skip:;
2102 }
2103 freeifaddrs(ifa_head);
2104 }
2105
2106 /* Print the given message to standard error. Avoids stdio. */
2107 static void printerr(const char *p)
2108 { if (write(STDERR_FILENO, p, strlen(p))) ; }
2109
2110 /* Create the socket directory, being careful about permissions. */
2111 static void create_sockdir(void)
2112 {
2113 struct stat st;
2114
2115 if (lstat(sockdir, &st)) {
2116 if (errno == ENOENT) {
2117 if (mkdir(sockdir, 0700)) {
2118 perror("noip: creating socketdir");
2119 exit(127);
2120 }
2121 if (!lstat(sockdir, &st))
2122 goto check;
2123 }
2124 perror("noip: checking socketdir");
2125 exit(127);
2126 }
2127 check:
2128 if (!S_ISDIR(st.st_mode)) {
2129 printerr("noip: bad socketdir: not a directory\n");
2130 exit(127);
2131 }
2132 if (st.st_uid != uid) {
2133 printerr("noip: bad socketdir: not owner\n");
2134 exit(127);
2135 }
2136 if (st.st_mode & 077) {
2137 printerr("noip: bad socketdir: not private\n");
2138 exit(127);
2139 }
2140 }
2141
2142 /* Initialization function. */
2143 static void setup(void) __attribute__((constructor));
2144 static void setup(void)
2145 {
2146 PRESERVING_ERRNO({
2147 char *p;
2148
2149 import();
2150 uid = geteuid();
2151 if ((p = getenv("NOIP_DEBUG")) && atoi(p))
2152 debug = 1;
2153 get_local_ipaddrs();
2154 readconfig();
2155 create_sockdir();
2156 cleanup_sockdir();
2157 });
2158 }
2159
2160 /*----- That's all, folks -------------------------------------------------*/