telecaster.m4: Rate-limit incoming ICP.
[firewall] / functions.m4
1 ### -*-sh-*-
2 ###
3 ### Utility functions for firewall scripts
4 ###
5 ### (c) 2008 Mark Wooding
6 ###
7
8 ###----- Licensing notice ---------------------------------------------------
9 ###
10 ### This program is free software; you can redistribute it and/or modify
11 ### it under the terms of the GNU General Public License as published by
12 ### the Free Software Foundation; either version 2 of the License, or
13 ### (at your option) any later version.
14 ###
15 ### This program is distributed in the hope that it will be useful,
16 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 ### GNU General Public License for more details.
19 ###
20 ### You should have received a copy of the GNU General Public License
21 ### along with this program; if not, write to the Free Software Foundation,
22 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 m4_divert(20)m4_dnl
25 ###--------------------------------------------------------------------------
26 ### Utility functions.
27
28 ## doit COMMAND ARGS...
29 ##
30 ## If debugging, print the COMMAND and ARGS. If serious, execute them.
31 run () {
32 set -e
33 if [ "$FW_DEBUG" ]; then echo "* $*"; fi
34 if ! [ "$FW_NOACT" ]; then "$@"; fi
35 }
36
37 ## trace MESSAGE...
38 ##
39 ## If debugging, print the MESSAGE.
40 trace () {
41 set -e
42 if [ "$FW_DEBUG" ]; then echo "$*"; fi
43 }
44
45 ## defport NAME NUMBER
46 ##
47 ## Define $port_NAME to be NUMBER.
48 defport () {
49 name=$1 number=$2
50 eval port_$name=$number
51 }
52
53 ## defproto NAME NUMBER
54 ##
55 ## Define $proto_NAME to be NUMBER.
56 defproto () {
57 name=$1 number=$2
58 eval proto_$name=$number
59 }
60
61 ## addword VAR WORD
62 ##
63 ## Adds WORD to the value of the shell variable VAR, if it's not there
64 ## already. Words are separated by a single space; no leading or trailing
65 ## spaces are introduced.
66 addword () {
67 var=$1 word=$2
68 eval val=\$$var
69 case " $val " in
70 *" $word "*) ;;
71 *) eval "$var=\${$var:+\$val }\$word" ;;
72 esac
73 }
74
75 m4_divert(38)m4_dnl
76 ###--------------------------------------------------------------------------
77 ### Utility chains (used by function definitions).
78
79 m4_divert(20)m4_dnl
80 ###--------------------------------------------------------------------------
81 ### Basic chain constructions.
82
83 ## ip46tables ARGS ...
84 ##
85 ## Do the same thing for `iptables' and `ip6tables'.
86 ip46tables () {
87 set -e
88 iptables "$@"
89 ip6tables "$@"
90 }
91
92 ## clearchain CHAIN CHAIN ...
93 ##
94 ## Ensure that the named chains exist and are empty.
95 clearchain () {
96 set -e
97 for _chain; do
98 case $_chain in
99 *:*) table=${_chain%:*} _chain=${_chain#*:} ;;
100 *) table=filter ;;
101 esac
102 run ip46tables -t $table -N $_chain 2>/dev/null || :
103 done
104 }
105
106 ## makeset SET TYPE [PARAMS]
107 ##
108 ## Ensure that the named ipset exists. Don't clear it.
109 makeset () {
110 set -e
111 name=$1; shift
112 v=$(ipset --version)
113 createp=t
114 case "$v" in
115 "ipset v4"*)
116 if ipset -nL | grep -q "^Name: $name\$"; then createp=nil; fi
117 ;;
118 *)
119 if ipset -n -L | grep -q "^$name\$"; then createp=nil; fi
120 ;;
121 esac
122 case $createp in
123 t) ipset -N "$name" "$@" ;;
124 esac
125 }
126
127 ## errorchain CHAIN ACTION ARGS ...
128 ##
129 ## Make a chain which logs a message and then invokes some other action,
130 ## typically REJECT. Log messages are prefixed by `fw: CHAIN'.
131 errorchain () {
132 set -e
133 chain=$1; shift
134 case $chain in
135 *:*) table=${chain%:*} chain=${chain#*:} ;;
136 *) table=filter ;;
137 esac
138 clearchain $table:$chain
139 run ip46tables -t $table -A $chain -j LOG \
140 -m limit --limit 3/minute --limit-burst 10 \
141 --log-prefix "fw: $chain " --log-level notice || :
142 run ip46tables -t $table -A $chain -j "$@" \
143 -m limit --limit 20/second --limit-burst 100
144 run ip46tables -t $table -A $chain -j DROP
145 }
146
147 m4_divert(20)m4_dnl
148 ###--------------------------------------------------------------------------
149 ### Basic option setting.
150
151 ## setopt OPTION VALUE
152 ##
153 ## Set an IP sysctl.
154 setopt () {
155 set -e
156 opt=$1 val=$2
157 any=nil
158 for ver in ipv4 ipv6; do
159 if [ -f /proc/sys/net/$ver/$opt ]; then
160 run sysctl -q net/$ver/$opt="$val"
161 any=t
162 fi
163 done
164 case $any in
165 nil) echo >&2 "$0: unknown IP option $opt"; exit 1 ;;
166 esac
167 }
168
169 ## setdevopt OPTION VALUE [INTERFACES ...]
170 ##
171 ## Set an IP interface-level sysctl.
172 setdevopt () {
173 set -e
174 opt=$1 val=$2; shift 2
175 case "$#,$1" in
176 0, | 1,all)
177 set -- $(
178 seen=:
179 for ver in ipv4 ipv6; do
180 cd /proc/sys/net/$ver/conf
181 for i in *; do
182 [ -f $i/$opt ] || continue
183 case "$seen" in (*:$i:*) continue ;; esac
184 echo $i
185 done
186 done)
187 ;;
188 esac
189 for i in "$@"; do
190 any=nil
191 for ver in ipv4 ipv6; do
192 if [ -f /proc/sys/net/$ver/conf/$i/$opt ]; then
193 any=t
194 run sysctl -q net/$ver/conf/$i/$opt="$val"
195 fi
196 done
197 case $any in
198 nil) echo >&2 "$0: unknown device option $opt"; exit 1 ;;
199 esac
200 done
201 }
202
203 m4_divert(20)m4_dnl
204 ###--------------------------------------------------------------------------
205 ### Packet filter construction.
206
207 ## conntrack CHAIN
208 ##
209 ## Add connection tracking to CHAIN, and allow obvious stuff.
210 conntrack () {
211 set -e
212 chain=$1
213 run ip46tables -A $chain -p tcp -m state \
214 --state ESTABLISHED,RELATED -j ACCEPT
215 run ip46tables -A $chain -p tcp ! --syn -g bad-tcp
216 }
217
218 ## commonrules CHAIN
219 ##
220 ## Add standard IP filtering rules to the CHAIN.
221 commonrules () {
222 set -e
223 chain=$1
224
225 ## Pass fragments through, assuming that the eventual destination will sort
226 ## things out properly. Except for TCP, that is, which should never be
227 ## fragmented. This is an extra pain for ip6tables, which doesn't provide
228 ## a pleasant way to detect non-initial fragments.
229 run iptables -A $chain -p tcp -f -g tcp-fragment
230 run iptables -A $chain -f -j ACCEPT
231 run ip6tables -A $chain -p tcp -g tcp-fragment \
232 -m ipv6header --soft --header frag
233 run ip6tables -A $chain -j accept-non-init-frag
234 }
235
236 m4_divert(38)m4_dnl
237 ## Accept a non-initial fragment. This is only needed by IPv6, to work
238 ## around a deficiency in the option parser.
239 run ip6tables -N accept-non-init-frag
240 run ip6tables -A accept-non-init-frag -j RETURN \
241 -m frag --fragfirst
242 run ip6tables -A accept-non-init-frag -j ACCEPT
243
244 m4_divert(20)m4_dnl
245 ## allowservices CHAIN PROTO SERVICE ...
246 ##
247 ## Add rules to allow the SERVICES on the CHAIN.
248 allowservices () {
249 set -e
250 chain=$1 proto=$2; shift 2
251 count=0
252 list=
253 for svc; do
254 case $svc in
255 *:*)
256 n=2
257 left=${svc%:*} right=${svc#*:}
258 case $left in *[!0-9]*) eval left=\$port_$left ;; esac
259 case $right in *[!0-9]*) eval right=\$port_$right ;; esac
260 svc=$left:$right
261 ;;
262 *)
263 n=1
264 case $svc in *[!0-9]*) eval svc=\$port_$svc ;; esac
265 ;;
266 esac
267 case $svc in
268 *: | :* | "" | *[!0-9:]*)
269 echo >&2 "Bad service name"
270 exit 1
271 ;;
272 esac
273 count=$(( $count + $n ))
274 if [ $count -gt 15 ]; then
275 run ip46tables -A $chain -p $proto -m multiport -j ACCEPT \
276 --destination-ports ${list#,}
277 list= count=$n
278 fi
279 list=$list,$svc
280 done
281 case $list in
282 "")
283 ;;
284 ,*,*)
285 run ip46tables -A $chain -p $proto -m multiport -j ACCEPT \
286 --destination-ports ${list#,}
287 ;;
288 *)
289 run ip46tables -A $chain -p $proto -j ACCEPT \
290 --destination-port ${list#,}
291 ;;
292 esac
293 }
294
295 ## ntpclient CHAIN NTPSERVER ...
296 ##
297 ## Add rules to CHAIN to allow NTP with NTPSERVERs.
298 ntpclient () {
299 set -e
300 ntpchain=$1; shift
301
302 clearchain ntp-servers
303 for ntp; do run iptables -A ntp-servers -j ACCEPT -s $ntp; done
304 run iptables -A $ntpchain -j ntp-servers \
305 -p udp --source-port 123 --destination-port 123
306 }
307
308 ## dnsresolver CHAIN
309 ##
310 ## Add rules to allow CHAIN to be a DNS resolver.
311 dnsresolver () {
312 set -e
313 chain=$1
314 for p in tcp udp; do
315 run ip46tables -A $chain -j ACCEPT \
316 -m state --state ESTABLISHED \
317 -p $p --source-port 53
318 done
319 }
320
321 ## dnsserver CHAIN
322 ##
323 ## Add rules to allow CHAIN to be a DNS server.
324 dnsserver () {
325 set -e
326 chain=$1
327
328 ## Allow TCP access. Hitting us with SYNs will make us deploy SYN cookies,
329 ## but that's tolerable.
330 run ip46tables -A $chain -j ACCEPT -p tcp --destination-port 53
331
332 ## Avoid being a DDoS amplifier by rate-limiting incoming DNS queries.
333 clearchain $chain-udp-dns
334 run ip46tables -A $chain-udp-dns -j ACCEPT \
335 -m limit --limit 20/second --limit-burst 300
336 run ip46tables -A $chain-udp-dns -g dns-rate-limit
337 run ip46tables -A $chain -j $chain-udp-dns \
338 -p udp --destination-port 53
339 }
340
341 ## openports CHAIN [MIN MAX]
342 ##
343 ## Add rules to CHAIN to allow the open ports.
344 openports () {
345 set -e
346 chain=$1; shift
347 [ $# -eq 0 ] && set -- $open_port_min $open_port_max
348 run ip46tables -A $chain -p tcp -g interesting --destination-port $1:$2
349 run ip46tables -A $chain -p udp -g interesting --destination-port $1:$2
350 }
351
352 m4_divert(20)m4_dnl
353 ###--------------------------------------------------------------------------
354 ### Packet classification.
355 ###
356 ### See `classify.m4' for an explanation of how the firewall machinery for
357 ### packet classification works.
358 ###
359 ### A list of all network names is kept in `allnets'. For each network NET,
360 ### shell variables are defined describing their properties.
361 ###
362 ### net_class_NET The class of the network, as defined by
363 ### `defnetclass'.
364 ### net_inet_NET List of IPv4 address ranges in the network.
365 ### net_inet6_NET List of IPv6 address ranges in the network.
366 ### net_via_NET List of other networks that this one forwards via.
367 ### net_hosts_NET List of hosts known to be in the network.
368 ### host_inet_HOST IPv4 address of the named HOST.
369 ### host_inet6_HOST IPv6 address of the named HOST.
370 ###
371 ### Similarly, a list of hosts is kept in `allhosts', and for each host HOST,
372 ### a shell variables are defined:
373 ###
374 ### host_ifaces_HOST List of interfaces for this host and the networks
375 ### they attach to, in the form IFACE=NET.
376
377 ## defbitfield NAME WIDTH
378 ##
379 ## Defines MASK_NAME and BIT_NAME symbolic constants for dealing with
380 ## bitfields: x << BIT_NAME yields the value x in the correct position, and
381 ## ff & MASK_NAME extracts the corresponding value.
382 defbitfield () {
383 set -e
384 name=$1 width=$2
385 eval MASK_$name=$(( (1 << $width) - 1 << $bitindex ))
386 eval BIT_$name=$bitindex
387 bitindex=$(( $bitindex + $width ))
388 }
389
390 ## Define the layout of the bitfield.
391 bitindex=0
392 defbitfield MASK 16
393 defbitfield FROM 4
394 defbitfield TO 4
395
396 ## defnetclass NAME FORWARD-TO...
397 ##
398 ## Defines a netclass called NAME, which is allowed to forward to the
399 ## FORWARD-TO netclasses.
400 ##
401 ## For each netclass, constants from_NAME and to_NAME are defined as the
402 ## appropriate values in the FROM and TO fields (i.e., not including any mask
403 ## bits).
404 ##
405 ## This function also establishes mangle chains mark-from-NAME and
406 ## mark-to-NAME for applying the appropriate mark bits to the packet.
407 ##
408 ## Because it needs to resolve forward references, netclasses must be defined
409 ## in a two-pass manner, using a loop of the form
410 ##
411 ## for pass in 1 2; do netclassindex=0; ...; done
412 netclassess=
413 defnetclass () {
414 set -e
415 name=$1; shift
416 case $pass in
417 1)
418
419 ## Pass 1. Establish the from_NAME and to_NAME constants, and the
420 ## netclass's mask bit.
421 trace "netclass $name = $netclassindex"
422 eval from_$name=$(( $netclassindex << $BIT_FROM ))
423 eval to_$name=$(( $netclassindex << $BIT_TO ))
424 eval fwd_$name=$(( 1 << ($netclassindex + $BIT_MASK) ))
425 nets="$nets $name"
426 ;;
427 2)
428
429 ## Pass 2. Compute the actual from and to values. This is fiddly:
430 ## we want to preserve the other flags.
431 from=$(( ($netclassindex << $BIT_FROM) ))
432 frommask=$(( $MASK_FROM | $MASK_MASK ))
433 for net; do
434 eval bit=\$fwd_$net
435 from=$(( $from + $bit ))
436 done
437 to=$(( ($netclassindex << $BIT_TO) ))
438 tomask=$(( $MASK_TO | $MASK_MASK ^ (1 << ($netclassindex + $BIT_MASK)) ))
439 trace "from $name --> set $(printf %08x/%08x $from $frommask)"
440 trace " to $name --> set $(printf %08x/%08x $to $tomask)"
441
442 ## Now establish the mark-from-NAME and mark-to-NAME chains.
443 clearchain mangle:mark-from-$name mangle:mark-to-$name
444 run ip46tables -t mangle -A mark-from-$name -j MARK \
445 --set-xmark $from/$frommask
446 run ip46tables -t mangle -A mark-to-$name -j MARK \
447 --set-xmark $to/$tomask
448 ;;
449 esac
450 netclassindex=$(( $netclassindex + 1 ))
451 }
452
453 ## defnet NET CLASS
454 ##
455 ## Define a network. Follow by calls to `addr', `via', etc. to define
456 ## properties of the network. Networks are processed in order, so if their
457 ## addresses overlap then the more specific addresses should be defined
458 ## earlier.
459 defnet () {
460 net=$1 class=$2
461 addword allnets $net
462 eval net_class_$1=\$class
463 }
464
465 ## addr ADDRESS/LEN ...
466 ##
467 ## Define addresses for the network being defined. ADDRESSes are in
468 ## colon-separated IPv6 or dotted-quad IPv4 form.
469 addr () {
470 for i in "$@"; do
471 case "$i" in
472 *:*) addword net_inet6_$net $i ;;
473 *) addword net_inet_$net $i ;;
474 esac
475 done
476 }
477
478 ## via NET ...
479 ##
480 ## Declare that packets from this network are forwarded to the other NETs.
481 via () {
482 eval "net_via_$net=\"$*\""
483 }
484
485 ## noxit NET ...
486 ##
487 ## Declare that packets from this network must not be forwarded to the other
488 ## NETs.
489 noxit () {
490 eval "net_noxit_$net=\"$*\""
491 }
492
493 ## host HOST ADDR ...
494 ##
495 ## Define the address of an individual host on the current network. The
496 ## ADDRs may be full IPv4 or IPv6 addresses, or offsets from the containing
497 ## network address, which is a simple number for IPv4, or a suffix beginning
498 ## with `::' for IPv6. If an IPv6 base address is provided for the network
499 ## but not for the host then the host's IPv4 address is used as a suffix.
500 host () {
501 name=$1; shift
502
503 ## Work out which addresses we've actually been given.
504 unset a6
505 for i in "$@"; do
506 case "$i" in ::*) a6=$i ;; *) a=$i ;; esac
507 done
508 case "${a+t}" in
509 t) ;;
510 *) echo >&2 "$0: no address for $name"; exit 1 ;;
511 esac
512 case "${a6+t}" in t) ;; *) a6=::$a ;; esac
513
514 ## Work out the IPv4 address.
515 eval nn=\$net_inet_$net
516 for n in $nn; do
517 addr=${n%/*}
518 base=${addr%.*}
519 offset=${addr##*.}
520 case $a in *.*) aa=$a ;; *) aa=$base.$(( $offset + $a )) ;; esac
521 eval host_inet_$name=$aa
522 done
523
524 ## Work out the IPv6 address.
525 eval nn=\$net_inet6_$net
526 for n in $nn; do
527 addr=${n%/*}
528 base=${addr%::*}
529 case $a6 in ::*) aa=$base$a6 ;; *) aa=$a6 ;; esac
530 eval host_inet6_$name=$aa
531 done
532
533 ## Remember the host in the list.
534 addword net_hosts_$net $name
535 }
536
537 ## defhost NAME
538 ##
539 ## Define a new host. Follow by calls to `iface' to define the host's
540 ## interfaces.
541 defhost () {
542 host=$1
543 addword allhosts $host
544 eval host_type_$host=server
545 }
546
547 ## hosttype TYPE
548 ##
549 ## Declare the host to have the given type.
550 hosttype () {
551 type=$1
552 case $type in
553 router | server | client) ;;
554 *) echo >&2 "$0: bad host type \`$type'"; exit 1 ;;
555 esac
556 eval host_type_$host=$type
557 }
558
559 ## iface IFACE NET ...
560 ##
561 ## Define a host's interfaces. Specifically, declares that the host has an
562 ## interface IFACE attached to the listed NETs.
563 iface () {
564 name=$1; shift
565 for net in "$@"; do
566 addword host_ifaces_$host $name=$net
567 done
568 }
569
570 ## matchnets OPT WIN FLAGS PREPARE BASE SUFFIX NEXT NET [NET ...]
571 ##
572 ## Build rules which match a particular collection of networks.
573 ##
574 ## Specifically, use the address-comparison operator OPT (typically `-s' or
575 ## `-d') to match the addresses of each NET, writing the rules to the chain
576 ## BASESUFFIX. If we find a match, dispatch to WIN-CLASS, where CLASS is the
577 ## class of the matching network. In order to deal with networks containing
578 ## negative address ranges, more chains may need to be constructed; they will
579 ## be named BASE#Q for sequence numbers Q starting with NEXT. All of this
580 ## happens on the `mangle' table, and there isn't (currently) a way to tweak
581 ## this.
582 ##
583 ## The FLAGS gather additional interesting information about the job,
584 ## separated by colons. The only flag currently is :default: which means
585 ## that the default network was listed.
586 ##
587 ## Finally, there is a hook PREPARE which is called just in advance of
588 ## processing the final network, passing it the argument FLAGS. (The PREPARE
589 ## string will be subjected to shell word-splitting, so it can provide some
590 ## arguments of its own if it wants.) It should set `mode' to indicate how
591 ## the chain should be finished.
592 ##
593 ## goto If no networks matched, then issue a final `goto' to the
594 ## chain named by the variable `fail'.
595 ##
596 ## call Run `$finish CHAIN' to write final rules to the named CHAIN
597 ## (which may be suffixed from the original BASE argument if
598 ## this was necessary). This function will arrange to call
599 ## these rules if no networks match.
600 ##
601 ## ret If no network matches then return (maybe by falling off the
602 ## end of the chain).
603 matchnets () {
604 local opt win flags prepare base suffix next net lose splitp
605 opt=$1 win=$2 flags=$3 prepare=$4 base=$5 suffix=$6 next=$7 net=$8
606 shift 8
607
608 ## If this is the default network, then set the flag.
609 case "$net" in default) flags=${flags}default: ;; esac
610
611 ## Do an initial pass over the addresses to see whether there are any
612 ## negative ranges. If so, we'll need to split. See also the standard
613 ## joke about soup.
614 splitp=nil
615 eval "addrs=\"\$net_inet_$net \$net_inet6_$net\""
616 for a in $addrs; do case $a in !*) splitp=t; break ;; esac; done
617
618 trace "MATCHNETS [splitp $splitp] $opt $win $flags [$prepare] $base $suffix $next : $net $*"
619
620 ## Work out how to handle matches against negative address ranges. If this
621 ## is the last network, invoke the PREPARE hook to find out. Otherwise, if
622 ## we have to split the chain, recursively build the target here.
623 case $splitp,$# in
624 t,0 | nil,0)
625 $prepare $flags
626 case $splitp,$mode in
627 *,goto)
628 lose="-g $fail"
629 ;;
630 *,ret)
631 lose="-j RETURN"
632 ;;
633 t,call)
634 clearchain mangle:$base#$next
635 lose="-g $base#$next"
636 ;;
637 nil,call)
638 ;;
639 esac
640 ;;
641 t,*)
642 clearchain mangle:$base#$next
643 matchnets $opt $win $flags "$prepare" \
644 $base \#$next $(( $next + 1 )) "$@"
645 lose="-g $base#$next" mode=goto
646 ;;
647 *)
648 mode=continue
649 ;;
650 esac
651
652 ## Populate the chain with rules to match the necessary networks.
653 eval addr=\$net_inet_$net addr6=\$net_inet6_$net class=\$net_class_$net
654 for a in $addr; do
655 case $a in
656 !*) run iptables -t mangle -A $base$suffix $lose $opt ${a#!} ;;
657 *) run iptables -t mangle -A $base$suffix -g $win-$class $opt $a ;;
658 esac
659 done
660 for a in $addr6; do
661 case $a in
662 !*) run ip6tables -t mangle -A $base$suffix $lose $opt ${a#!} ;;
663 *) run ip6tables -t mangle -A $base$suffix -g $win-$class $opt $a ;;
664 esac
665 done
666
667 ## Wrap up the chain appropriately. If we didn't split and there are more
668 ## networks to handle then append the necessary rules now. (If we did
669 ## split, then we already wrote the rules for them above.) If there are no
670 ## more networks then consult the `mode' setting to find out what to do.
671 case $splitp,$#,$mode in
672 *,0,ret) ;;
673 *,*,goto) run ip46tables -t mangle -A $base$suffix $lose ;;
674 t,0,call) $finish $base#$next ;;
675 nil,0,call) $finish $base$suffix ;;
676 nil,*,*)
677 matchnets $opt $win $flags "$prepare" $base "$suffix" $next "$@"
678 ;;
679 esac
680 }
681
682 ## net_interfaces HOST NET
683 ##
684 ## Determine the interfaces on which packets may plausibly arrive from the
685 ## named NET. Returns `-' if no such interface exists.
686 ##
687 ## This algorithm is not very clever. It's just about barely good enough to
688 ## deduce transitivity through a simple routed network; with complicated
689 ## networks, it will undoubtedly give wrong answers. Check the results
690 ## carefully, and, if necessary, list the connectivity explicitly; use the
691 ## special interface `-' for networks you know shouldn't send packets to a
692 ## host.
693 net_interfaces () {
694 host=$1 startnet=$2
695
696 ## Determine the locally attached networks.
697 targets=:
698 eval ii=\$host_ifaces_$host
699 for i in $ii; do targets=$targets$i:; done
700
701 ## Determine the transitivity.
702 seen=:
703 nets=$startnet
704 while :; do
705
706 ## First pass. Determine whether any of the networks we're considering
707 ## are in the target set. If they are, then return the corresponding
708 ## interfaces.
709 found=""
710 for net in $nets; do
711 tg=$targets
712 while :; do
713 any=nil
714 case $tg in
715 *"=$net:"*)
716 n=${tg%=$net:*}; tg=${n%:*}:; n=${n##*:}
717 addword found $n
718 any=t
719 ;;
720 esac
721 case $any in nil) break ;; esac
722 done
723 done
724 case "$found" in ?*) echo $found; return ;; esac
725
726 ## No joy. Determine the set of networks which (a) these ones can
727 ## forward to, and (b) that we've not considered already. These are the
728 ## nets we'll consider next time around.
729 nextnets=""
730 any=nil
731 for net in $nets; do
732 eval via=\$net_via_$net
733 for n in $via; do
734 case $seen in *":$n:"*) continue ;; esac
735 seen=$seen$n:
736 eval noxit=\$net_noxit_$n
737 case " $noxit " in *" $startnet "*) continue ;; esac
738 case " $nextnets " in
739 *" $n "*) ;;
740 *) addword nextnets $n; any=t ;;
741 esac
742 done
743 done
744
745 ## If we've run out of networks then there's no reachability. Return a
746 ## failure.
747 case $any in nil) echo -; return ;; esac
748 nets=$nextnets
749 done
750 }
751
752 m4_divert(-1)
753 ###----- That's all, folks --------------------------------------------------