classify.m4: Fix some typos in the commentary.
[firewall] / functions.m4
1 ### -*-sh-*-
2 ###
3 ### Utility functions for firewall scripts
4 ###
5 ### (c) 2008 Mark Wooding
6 ###
7
8 ###----- Licensing notice ---------------------------------------------------
9 ###
10 ### This program is free software; you can redistribute it and/or modify
11 ### it under the terms of the GNU General Public License as published by
12 ### the Free Software Foundation; either version 2 of the License, or
13 ### (at your option) any later version.
14 ###
15 ### This program is distributed in the hope that it will be useful,
16 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 ### GNU General Public License for more details.
19 ###
20 ### You should have received a copy of the GNU General Public License
21 ### along with this program; if not, write to the Free Software Foundation,
22 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23
24 m4_divert(20)m4_dnl
25 ###--------------------------------------------------------------------------
26 ### Utility functions.
27
28 ## doit COMMAND ARGS...
29 ##
30 ## If debugging, print the COMMAND and ARGS. If serious, execute them.
31 run () {
32 set -e
33 if [ "$FW_DEBUG" ]; then echo "* $*"; fi
34 if ! [ "$FW_NOACT" ]; then "$@"; fi
35 }
36
37 ## trace MESSAGE...
38 ##
39 ## If debugging, print the MESSAGE.
40 trace () {
41 set -e
42 if [ "$FW_DEBUG" ]; then echo "$*"; fi
43 }
44
45 ## defport NAME NUMBER
46 ##
47 ## Define $port_NAME to be NUMBER.
48 defport () {
49 name=$1 number=$2
50 eval port_$name=$number
51 }
52
53 ## defproto NAME NUMBER
54 ##
55 ## Define $proto_NAME to be NUMBER.
56 defproto () {
57 name=$1 number=$2
58 eval proto_$name=$number
59 }
60
61 ## addword VAR WORD
62 ##
63 ## Adds WORD to the value of the shell variable VAR, if it's not there
64 ## already. Words are separated by a single space; no leading or trailing
65 ## spaces are introduced.
66 addword () {
67 var=$1 word=$2
68 eval val=\$$var
69 case " $val " in
70 *" $word "*) ;;
71 *) eval "$var=\${$var:+\$val }\$word" ;;
72 esac
73 }
74
75 m4_divert(38)m4_dnl
76 ###--------------------------------------------------------------------------
77 ### Utility chains (used by function definitions).
78
79 m4_divert(20)m4_dnl
80 ###--------------------------------------------------------------------------
81 ### Basic chain constructions.
82
83 ## ip46tables ARGS ...
84 ##
85 ## Do the same thing for `iptables' and `ip6tables'.
86 ip46tables () {
87 set -e
88 iptables "$@"
89 ip6tables "$@"
90 }
91
92 ## clearchain CHAIN CHAIN ...
93 ##
94 ## Ensure that the named chains exist and are empty.
95 clearchain () {
96 set -e
97 for _chain; do
98 case $_chain in
99 *:*) table=${_chain%:*} _chain=${_chain#*:} ;;
100 *) table=filter ;;
101 esac
102 run ip46tables -t $table -N $_chain 2>/dev/null || :
103 done
104 }
105
106 ## makeset SET TYPE [PARAMS]
107 ##
108 ## Ensure that the named ipset exists. Don't clear it.
109 makeset () {
110 set -e
111 name=$1; shift
112 v=$(ipset --version)
113 createp=t
114 case "$v" in
115 "ipset v4"*)
116 if ipset -nL | grep -q "^Name: $name\$"; then createp=nil; fi
117 ;;
118 *)
119 if ipset -n -L | grep -q "^$name\$"; then createp=nil; fi
120 ;;
121 esac
122 case $createp in
123 t) ipset -N "$name" "$@" ;;
124 esac
125 }
126
127 ## errorchain CHAIN ACTION ARGS ...
128 ##
129 ## Make a chain which logs a message and then invokes some other action,
130 ## typically REJECT. Log messages are prefixed by `fw: CHAIN'.
131 errorchain () {
132 set -e
133 chain=$1; shift
134 case $chain in
135 *:*) table=${chain%:*} chain=${chain#*:} ;;
136 *) table=filter ;;
137 esac
138 clearchain $table:$chain
139 run ip46tables -t $table -A $chain -j LOG \
140 -m limit --limit 3/minute --limit-burst 10 \
141 --log-prefix "fw: $chain " --log-level notice || :
142 run ip46tables -t $table -A $chain -j "$@" \
143 -m limit --limit 20/second --limit-burst 100
144 run ip46tables -t $table -A $chain -j DROP
145 }
146
147 m4_divert(20)m4_dnl
148 ###--------------------------------------------------------------------------
149 ### Basic option setting.
150
151 ## setopt OPTION VALUE
152 ##
153 ## Set an IP sysctl.
154 setopt () {
155 set -e
156 opt=$1 val=$2
157 any=nil
158 for ver in ipv4 ipv6; do
159 if [ -f /proc/sys/net/$ver/$opt ]; then
160 run sysctl -q net/$ver/$opt="$val"
161 any=t
162 fi
163 done
164 case $any in
165 nil) echo >&2 "$0: unknown IP option $opt"; exit 1 ;;
166 esac
167 }
168
169 ## setdevopt OPTION VALUE [INTERFACES ...]
170 ##
171 ## Set an IP interface-level sysctl.
172 setdevopt () {
173 set -e
174 opt=$1 val=$2; shift 2
175 case "$#,$1" in
176 0, | 1,all)
177 set -- $(
178 seen=:
179 for ver in ipv4 ipv6; do
180 cd /proc/sys/net/$ver/conf
181 for i in *; do
182 [ -f $i/$opt ] || continue
183 case "$seen" in (*:$i:*) continue ;; esac
184 echo $i
185 done
186 done)
187 ;;
188 esac
189 for i in "$@"; do
190 any=nil
191 for ver in ipv4 ipv6; do
192 if [ -f /proc/sys/net/$ver/conf/$i/$opt ]; then
193 any=t
194 run sysctl -q net/$ver/conf/$i/$opt="$val"
195 fi
196 done
197 case $any in
198 nil) echo >&2 "$0: unknown device option $opt"; exit 1 ;;
199 esac
200 done
201 }
202
203 m4_divert(20)m4_dnl
204 ###--------------------------------------------------------------------------
205 ### Packet filter construction.
206
207 ## conntrack CHAIN
208 ##
209 ## Add connection tracking to CHAIN, and allow obvious stuff.
210 conntrack () {
211 set -e
212 chain=$1
213 run ip46tables -A $chain -p tcp -m state \
214 --state ESTABLISHED,RELATED -j ACCEPT
215 run ip46tables -A $chain -p tcp ! --syn -g bad-tcp
216 }
217
218 ## commonrules CHAIN
219 ##
220 ## Add standard IP filtering rules to the CHAIN.
221 commonrules () {
222 set -e
223 chain=$1
224
225 ## Pass fragments through, assuming that the eventual destination will sort
226 ## things out properly. Except for TCP, that is, which should never be
227 ## fragmented. This is an extra pain for ip6tables, which doesn't provide
228 ## a pleasant way to detect non-initial fragments.
229 run iptables -A $chain -p tcp -f -g tcp-fragment
230 run iptables -A $chain -f -j ACCEPT
231 run ip6tables -A $chain -p tcp -g tcp-fragment \
232 -m ipv6header --soft --header frag
233 run ip6tables -A $chain -j accept-non-init-frag
234 }
235
236 m4_divert(38)m4_dnl
237 ## Accept a non-initial fragment. This is only needed by IPv6, to work
238 ## around a deficiency in the option parser.
239 run ip6tables -N accept-non-init-frag
240 run ip6tables -A accept-non-init-frag -j RETURN \
241 -m frag --fragfirst
242 run ip6tables -A accept-non-init-frag -j ACCEPT
243
244 m4_divert(20)m4_dnl
245 ## allowservices CHAIN PROTO SERVICE ...
246 ##
247 ## Add rules to allow the SERVICES on the CHAIN.
248 allowservices () {
249 set -e
250 chain=$1 proto=$2; shift 2
251 count=0
252 list=
253 for svc; do
254 case $svc in
255 *:*)
256 n=2
257 left=${svc%:*} right=${svc#*:}
258 case $left in *[!0-9]*) eval left=\$port_$left ;; esac
259 case $right in *[!0-9]*) eval right=\$port_$right ;; esac
260 svc=$left:$right
261 ;;
262 *)
263 n=1
264 case $svc in *[!0-9]*) eval svc=\$port_$svc ;; esac
265 ;;
266 esac
267 case $svc in
268 *: | :* | "" | *[!0-9:]*)
269 echo >&2 "Bad service name"
270 exit 1
271 ;;
272 esac
273 count=$(( $count + $n ))
274 if [ $count -gt 15 ]; then
275 run ip46tables -A $chain -p $proto -m multiport -j ACCEPT \
276 --destination-ports ${list#,}
277 list= count=$n
278 fi
279 list=$list,$svc
280 done
281 case $list in
282 "")
283 ;;
284 ,*,*)
285 run ip46tables -A $chain -p $proto -m multiport -j ACCEPT \
286 --destination-ports ${list#,}
287 ;;
288 *)
289 run ip46tables -A $chain -p $proto -j ACCEPT \
290 --destination-port ${list#,}
291 ;;
292 esac
293 }
294
295 ## ntpclient CHAIN NTPSERVER ...
296 ##
297 ## Add rules to CHAIN to allow NTP with NTPSERVERs.
298 ntpclient () {
299 set -e
300 ntpchain=$1; shift
301
302 clearchain ntp-servers
303 for ntp; do run iptables -A ntp-servers -j ACCEPT -s $ntp; done
304 run iptables -A $ntpchain -j ntp-servers \
305 -p udp --source-port 123 --destination-port 123
306 }
307
308 ## dnsresolver CHAIN
309 ##
310 ## Add rules to allow CHAIN to be a DNS resolver.
311 dnsresolver () {
312 set -e
313 chain=$1
314 for p in tcp udp; do
315 run ip46tables -A $chain -j ACCEPT \
316 -m state --state ESTABLISHED \
317 -p $p --source-port 53
318 done
319 }
320
321 ## dnsserver CHAIN
322 ##
323 ## Add rules to allow CHAIN to be a DNS server.
324 dnsserver () {
325 set -e
326 chain=$1
327
328 ## Allow TCP access. Hitting us with SYNs will make us deploy SYN cookies,
329 ## but that's tolerable.
330 run ip46tables -A $chain -j ACCEPT -p tcp --destination-port 53
331
332 ## Avoid being a DDoS amplifier by rate-limiting incoming DNS queries.
333 clearchain $chain-udp-dns
334 run ip46tables -A $chain-udp-dns -j ACCEPT \
335 -m limit --limit 20/second --limit-burst 300
336 run ip46tables -A $chain-udp-dns -g dns-rate-limit
337 run ip46tables -A $chain -j $chain-udp-dns \
338 -p udp --destination-port 53
339 }
340
341 ## openports CHAIN [MIN MAX]
342 ##
343 ## Add rules to CHAIN to allow the open ports.
344 openports () {
345 set -e
346 chain=$1; shift
347 [ $# -eq 0 ] && set -- $open_port_min $open_port_max
348 run ip46tables -A $chain -p tcp -g interesting --destination-port $1:$2
349 run ip46tables -A $chain -p udp -g interesting --destination-port $1:$2
350 }
351
352 bcp38_setup=:
353 bcp38 () {
354 ipv=$1 ifname=$2; shift 2
355 ## Add rules for BCP38 egress filtering for IP version IPV (either 4 or 6).
356 ## IFNAME is the outgoing interface; the remaining arguments are network
357 ## prefixes.
358
359 ## Sort out which command we're using
360 case $ipv in
361 4) ipt=iptables ;;
362 6) ipt=ip6tables ;;
363 *) echo >&2 "Unknown IP version $ipv"; exit 1 ;;
364 esac
365
366 ## If we've not set up the error chain then do that.
367 case $bcp38_setup in
368 :)
369 errorchain bcp38 DROP
370 clearchain bcp38-check
371 ip46tables -A bcp38-check -g bcp38
372 ;;
373 esac
374
375 ## Stitch our egress filter into the outbound chains if we haven't done
376 ## that yet. Do this for both IP versions: if we're only ever given
377 ## IPv6 addresses for a particular interface then we assume that IPv4
378 ## packets aren't allowed on it at all.
379 case $bcp38_setup in
380 *:$ifname:*) ;;
381 *)
382 run ip46tables -A OUTPUT -j bcp38-check -o $ifname
383 case $forward in
384 1) run ip46tables -A FORWARD -j bcp38-check -o $ifname ;;
385 esac
386 bcp38_setup=$bcp38_setup$ifname:
387 ;;
388 esac
389
390 ## Finally, add in our allowed networks.
391 for i in "$@"; do
392 run $ipt -I bcp38-check -j RETURN -s $i
393 done
394 }
395
396 m4_divert(20)m4_dnl
397 ###--------------------------------------------------------------------------
398 ### Packet classification.
399 ###
400 ### See `classify.m4' for an explanation of how the firewall machinery for
401 ### packet classification works.
402 ###
403 ### A list of all network names is kept in `allnets'. For each network NET,
404 ### shell variables are defined describing their properties.
405 ###
406 ### net_class_NET The class of the network, as defined by
407 ### `defnetclass'.
408 ### net_inet_NET List of IPv4 address ranges in the network.
409 ### net_inet6_NET List of IPv6 address ranges in the network.
410 ### net_via_NET List of other networks that this one forwards via.
411 ### net_hosts_NET List of hosts known to be in the network.
412 ### host_inet_HOST IPv4 address of the named HOST.
413 ### host_inet6_HOST IPv6 address of the named HOST.
414 ###
415 ### Similarly, a list of hosts is kept in `allhosts', and for each host HOST,
416 ### a shell variables are defined:
417 ###
418 ### host_ifaces_HOST List of interfaces for this host and the networks
419 ### they attach to, in the form IFACE=NET.
420
421 ## defbitfield NAME WIDTH
422 ##
423 ## Defines MASK_NAME and BIT_NAME symbolic constants for dealing with
424 ## bitfields: x << BIT_NAME yields the value x in the correct position, and
425 ## ff & MASK_NAME extracts the corresponding value.
426 defbitfield () {
427 set -e
428 name=$1 width=$2
429 eval MASK_$name=$(( (1 << $width) - 1 << $bitindex ))
430 eval BIT_$name=$bitindex
431 bitindex=$(( $bitindex + $width ))
432 }
433
434 ## Define the layout of the bitfield.
435 bitindex=0
436 defbitfield MASK 16
437 defbitfield FROM 4
438 defbitfield TO 4
439
440 ## defnetclass NAME FORWARD-TO...
441 ##
442 ## Defines a netclass called NAME, which is allowed to forward to the
443 ## FORWARD-TO netclasses.
444 ##
445 ## For each netclass, constants from_NAME and to_NAME are defined as the
446 ## appropriate values in the FROM and TO fields (i.e., not including any mask
447 ## bits).
448 ##
449 ## This function also establishes mangle chains mark-from-NAME and
450 ## mark-to-NAME for applying the appropriate mark bits to the packet.
451 ##
452 ## Because it needs to resolve forward references, netclasses must be defined
453 ## in a two-pass manner, using a loop of the form
454 ##
455 ## for pass in 1 2; do netclassindex=0; ...; done
456 netclassess=
457 defnetclass () {
458 set -e
459 name=$1; shift
460 case $pass in
461 1)
462
463 ## Pass 1. Establish the from_NAME and to_NAME constants, and the
464 ## netclass's mask bit.
465 trace "netclass $name = $netclassindex"
466 eval from_$name=$(( $netclassindex << $BIT_FROM ))
467 eval to_$name=$(( $netclassindex << $BIT_TO ))
468 eval fwd_$name=$(( 1 << ($netclassindex + $BIT_MASK) ))
469 nets="$nets $name"
470 ;;
471 2)
472
473 ## Pass 2. Compute the actual from and to values. This is fiddly:
474 ## we want to preserve the other flags.
475 from=$(( ($netclassindex << $BIT_FROM) ))
476 frommask=$(( $MASK_FROM | $MASK_MASK ))
477 for net; do
478 eval bit=\$fwd_$net
479 from=$(( $from + $bit ))
480 done
481 to=$(( ($netclassindex << $BIT_TO) ))
482 tomask=$(( $MASK_TO | $MASK_MASK ^ (1 << ($netclassindex + $BIT_MASK)) ))
483 trace "from $name --> set $(printf %08x/%08x $from $frommask)"
484 trace " to $name --> set $(printf %08x/%08x $to $tomask)"
485
486 ## Now establish the mark-from-NAME and mark-to-NAME chains.
487 clearchain mangle:mark-from-$name mangle:mark-to-$name
488 run ip46tables -t mangle -A mark-from-$name -j MARK \
489 --set-xmark $from/$frommask
490 run ip46tables -t mangle -A mark-to-$name -j MARK \
491 --set-xmark $to/$tomask
492 ;;
493 esac
494 netclassindex=$(( $netclassindex + 1 ))
495 }
496
497 ## defnet NET CLASS
498 ##
499 ## Define a network. Follow by calls to `addr', `via', etc. to define
500 ## properties of the network. Networks are processed in order, so if their
501 ## addresses overlap then the more specific addresses should be defined
502 ## earlier.
503 defnet () {
504 net=$1 class=$2
505 addword allnets $net
506 eval net_class_$1=\$class
507 }
508
509 ## addr ADDRESS/LEN ...
510 ##
511 ## Define addresses for the network being defined. ADDRESSes are in
512 ## colon-separated IPv6 or dotted-quad IPv4 form.
513 addr () {
514 for i in "$@"; do
515 case "$i" in
516 *:*) addword net_inet6_$net $i ;;
517 *) addword net_inet_$net $i ;;
518 esac
519 done
520 }
521
522 ## via NET ...
523 ##
524 ## Declare that packets from this network are forwarded to the other NETs.
525 via () {
526 eval "net_via_$net=\"$*\""
527 }
528
529 ## noxit NET ...
530 ##
531 ## Declare that packets from this network must not be forwarded to the other
532 ## NETs.
533 noxit () {
534 eval "net_noxit_$net=\"$*\""
535 }
536
537 ## host HOST ADDR ...
538 ##
539 ## Define the address of an individual host on the current network. The
540 ## ADDRs may be full IPv4 or IPv6 addresses, or offsets from the containing
541 ## network address, which is a simple number for IPv4, or a suffix beginning
542 ## with `::' for IPv6. If an IPv6 base address is provided for the network
543 ## but not for the host then the host's IPv4 address is used as a suffix.
544 host () {
545 name=$1; shift
546
547 ## Work out which addresses we've actually been given.
548 unset a6
549 for i in "$@"; do
550 case "$i" in ::*) a6=$i ;; *) a=$i ;; esac
551 done
552 case "${a+t}" in
553 t) ;;
554 *) echo >&2 "$0: no address for $name"; exit 1 ;;
555 esac
556 case "${a6+t}" in t) ;; *) a6=::$a ;; esac
557
558 ## Work out the IPv4 address.
559 eval nn=\$net_inet_$net
560 for n in $nn; do
561 addr=${n%/*}
562 base=${addr%.*}
563 offset=${addr##*.}
564 case $a in *.*) aa=$a ;; *) aa=$base.$(( $offset + $a )) ;; esac
565 eval host_inet_$name=$aa
566 done
567
568 ## Work out the IPv6 address.
569 eval nn=\$net_inet6_$net
570 for n in $nn; do
571 addr=${n%/*}
572 base=${addr%::*}
573 case $a6 in ::*) aa=$base$a6 ;; *) aa=$a6 ;; esac
574 eval host_inet6_$name=$aa
575 done
576
577 ## Remember the host in the list.
578 addword net_hosts_$net $name
579 }
580
581 ## defhost NAME
582 ##
583 ## Define a new host. Follow by calls to `iface' to define the host's
584 ## interfaces.
585 defhost () {
586 host=$1
587 addword allhosts $host
588 eval host_type_$host=server
589 }
590
591 ## hosttype TYPE
592 ##
593 ## Declare the host to have the given type.
594 hosttype () {
595 type=$1
596 case $type in
597 router | server | client) ;;
598 *) echo >&2 "$0: bad host type \`$type'"; exit 1 ;;
599 esac
600 eval host_type_$host=$type
601 }
602
603 ## iface IFACE NET ...
604 ##
605 ## Define a host's interfaces. Specifically, declares that the host has an
606 ## interface IFACE attached to the listed NETs.
607 iface () {
608 name=$1; shift
609 for net in "$@"; do
610 addword host_ifaces_$host $name=$net
611 done
612 }
613
614 ## matchnets OPT WIN FLAGS PREPARE BASE SUFFIX NEXT NET [NET ...]
615 ##
616 ## Build rules which match a particular collection of networks.
617 ##
618 ## Specifically, use the address-comparison operator OPT (typically `-s' or
619 ## `-d') to match the addresses of each NET, writing the rules to the chain
620 ## BASESUFFIX. If we find a match, dispatch to WIN-CLASS, where CLASS is the
621 ## class of the matching network. In order to deal with networks containing
622 ## negative address ranges, more chains may need to be constructed; they will
623 ## be named BASE#Q for sequence numbers Q starting with NEXT. All of this
624 ## happens on the `mangle' table, and there isn't (currently) a way to tweak
625 ## this.
626 ##
627 ## The FLAGS gather additional interesting information about the job,
628 ## separated by colons. The only flag currently is :default: which means
629 ## that the default network was listed.
630 ##
631 ## Finally, there is a hook PREPARE which is called just in advance of
632 ## processing the final network, passing it the argument FLAGS. (The PREPARE
633 ## string will be subjected to shell word-splitting, so it can provide some
634 ## arguments of its own if it wants.) It should set `mode' to indicate how
635 ## the chain should be finished.
636 ##
637 ## goto If no networks matched, then issue a final `goto' to the
638 ## chain named by the variable `fail'.
639 ##
640 ## call Run `$finish CHAIN' to write final rules to the named CHAIN
641 ## (which may be suffixed from the original BASE argument if
642 ## this was necessary). This function will arrange to call
643 ## these rules if no networks match.
644 ##
645 ## ret If no network matches then return (maybe by falling off the
646 ## end of the chain).
647 matchnets () {
648 local opt win flags prepare base suffix next net lose splitp
649 opt=$1 win=$2 flags=$3 prepare=$4 base=$5 suffix=$6 next=$7 net=$8
650 shift 8
651
652 ## If this is the default network, then set the flag.
653 case "$net" in default) flags=${flags}default: ;; esac
654
655 ## Do an initial pass over the addresses to see whether there are any
656 ## negative ranges. If so, we'll need to split. See also the standard
657 ## joke about soup.
658 splitp=nil
659 eval "addrs=\"\$net_inet_$net \$net_inet6_$net\""
660 for a in $addrs; do case $a in !*) splitp=t; break ;; esac; done
661
662 trace "MATCHNETS [splitp $splitp] $opt $win $flags [$prepare] $base $suffix $next : $net $*"
663
664 ## Work out how to handle matches against negative address ranges. If this
665 ## is the last network, invoke the PREPARE hook to find out. Otherwise, if
666 ## we have to split the chain, recursively build the target here.
667 case $splitp,$# in
668 t,0 | nil,0)
669 $prepare $flags
670 case $splitp,$mode in
671 *,goto)
672 lose="-g $fail"
673 ;;
674 *,ret)
675 lose="-j RETURN"
676 ;;
677 t,call)
678 clearchain mangle:$base#$next
679 lose="-g $base#$next"
680 ;;
681 nil,call)
682 ;;
683 esac
684 ;;
685 t,*)
686 clearchain mangle:$base#$next
687 matchnets $opt $win $flags "$prepare" \
688 $base \#$next $(( $next + 1 )) "$@"
689 lose="-g $base#$next" mode=goto
690 ;;
691 *)
692 mode=continue
693 ;;
694 esac
695
696 ## Populate the chain with rules to match the necessary networks.
697 eval addr=\$net_inet_$net addr6=\$net_inet6_$net class=\$net_class_$net
698 for a in $addr; do
699 case $a in
700 !*) run iptables -t mangle -A $base$suffix $lose $opt ${a#!} ;;
701 *) run iptables -t mangle -A $base$suffix -g $win-$class $opt $a ;;
702 esac
703 done
704 for a in $addr6; do
705 case $a in
706 !*) run ip6tables -t mangle -A $base$suffix $lose $opt ${a#!} ;;
707 *) run ip6tables -t mangle -A $base$suffix -g $win-$class $opt $a ;;
708 esac
709 done
710
711 ## Wrap up the chain appropriately. If we didn't split and there are more
712 ## networks to handle then append the necessary rules now. (If we did
713 ## split, then we already wrote the rules for them above.) If there are no
714 ## more networks then consult the `mode' setting to find out what to do.
715 case $splitp,$#,$mode in
716 *,0,ret) ;;
717 *,*,goto) run ip46tables -t mangle -A $base$suffix $lose ;;
718 t,0,call) $finish $base#$next ;;
719 nil,0,call) $finish $base$suffix ;;
720 nil,*,*)
721 matchnets $opt $win $flags "$prepare" $base "$suffix" $next "$@"
722 ;;
723 esac
724 }
725
726 ## net_interfaces HOST NET
727 ##
728 ## Determine the interfaces on which packets may plausibly arrive from the
729 ## named NET. Returns `-' if no such interface exists.
730 ##
731 ## This algorithm is not very clever. It's just about barely good enough to
732 ## deduce transitivity through a simple routed network; with complicated
733 ## networks, it will undoubtedly give wrong answers. Check the results
734 ## carefully, and, if necessary, list the connectivity explicitly; use the
735 ## special interface `-' for networks you know shouldn't send packets to a
736 ## host.
737 net_interfaces () {
738 host=$1 startnet=$2
739
740 ## Determine the locally attached networks.
741 targets=:
742 eval ii=\$host_ifaces_$host
743 for i in $ii; do targets=$targets$i:; done
744
745 ## Determine the transitivity.
746 seen=:
747 nets=$startnet
748 while :; do
749
750 ## First pass. Determine whether any of the networks we're considering
751 ## are in the target set. If they are, then return the corresponding
752 ## interfaces.
753 found=""
754 for net in $nets; do
755 tg=$targets
756 while :; do
757 any=nil
758 case $tg in
759 *"=$net:"*)
760 n=${tg%=$net:*}; tg=${n%:*}:; n=${n##*:}
761 addword found $n
762 any=t
763 ;;
764 esac
765 case $any in nil) break ;; esac
766 done
767 done
768 case "$found" in ?*) echo $found; return ;; esac
769
770 ## No joy. Determine the set of networks which (a) these ones can
771 ## forward to, and (b) that we've not considered already. These are the
772 ## nets we'll consider next time around.
773 nextnets=""
774 any=nil
775 for net in $nets; do
776 eval via=\$net_via_$net
777 for n in $via; do
778 case $seen in *":$n:"*) continue ;; esac
779 seen=$seen$n:
780 eval noxit=\$net_noxit_$n
781 case " $noxit " in *" $startnet "*) continue ;; esac
782 case " $nextnets " in
783 *" $n "*) ;;
784 *) addword nextnets $n; any=t ;;
785 esac
786 done
787 done
788
789 ## If we've run out of networks then there's no reachability. Return a
790 ## failure.
791 case $any in nil) echo -; return ;; esac
792 nets=$nextnets
793 done
794 }
795
796 m4_divert(-1)
797 ###----- That's all, folks --------------------------------------------------