f9f16d5def0541553a0e364fe0fb2fb23eea14be
[catacomb] / rand / rand.c
1 /* -*-c-*-
2 *
3 * Secure random number generator
4 *
5 * (c) 1998 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33 #include <stdio.h>
34 #include <string.h>
35
36 #include <mLib/bits.h>
37 #include <mLib/sub.h>
38
39 #include "arena.h"
40 #include "dispatch.h"
41 #include "paranoia.h"
42
43 #define RAND__HACKS
44 #include "rand.h"
45
46 #include "noise.h"
47
48 #include "twofish-counter.h"
49 #include "sha256.h"
50
51 #define CIPHER_CTX twofish_counterctx
52 #define CIPHER_INIT twofish_counterinit
53 #define CIPHER_ENCRYPT twofish_counterencrypt
54 #define CIPHER_IVSZ TWOFISH_BLKSZ
55 #define CIPHER_KEYSZ TWOFISH_KEYSZ
56
57 #define HASH_CTX sha256_ctx
58 #define HASH_INIT sha256_init
59 #define HASH sha256_hash
60 #define HASH_DONE sha256_done
61 #define HASH_SZ SHA256_HASHSZ
62
63 /*----- Static variables --------------------------------------------------*/
64
65 static const grand_ops gops;
66
67 typedef struct rand__gctx {
68 grand r;
69 rand_pool p;
70 } gctx;
71
72 gctx rand_global = {
73 { &gops },
74 { { 0 }, 0, 0, 0, 0,
75 { 0 }, RAND_SECSZ, 0,
76 { "Catacomb global random byte pool" },
77 &noise_source }
78 };
79
80 /*----- Macros ------------------------------------------------------------*/
81
82 #define RAND_RESOLVE(r) \
83 do { if ((r) == RAND_GLOBAL) r = &rand_global.p; } while (0)
84
85 #define GENCHECK(r) do { \
86 unsigned gen = rand_generation(); \
87 if (r->gen != gen) { r->gen = gen; rand_gate(r); } \
88 } while (0)
89
90 static int quick(rand_pool *);
91 #define QUICK(r) do { \
92 quick(r); \
93 if ((r)->s && (r)->s->timer) (r)->s->timer(r); \
94 } while (0)
95
96 /*----- Main code ---------------------------------------------------------*/
97
98 /* --- @rand_init@ --- *
99 *
100 * Arguments: @rand_pool *r@ = pointer to a randomness pool
101 *
102 * Returns: ---
103 *
104 * Use: Initializes a randomness pool. The pool doesn't start out
105 * very random: that's your job to sort out. A good suggestion
106 * would be to attach an appropriate noise source and call
107 * @rand_seed@.
108 */
109
110 void rand_init(rand_pool *r)
111 {
112 RAND_RESOLVE(r);
113 memset(r->pool, 0, sizeof(r->pool));
114 memset(r->buf, 0, sizeof(r->buf));
115 r->gen = rand_generation();
116 r->i = 0;
117 r->irot = 0;
118 r->ibits = r->obits = 0;
119 r->o = RAND_SECSZ;
120 r->s = &noise_source;
121 rand_key(r, 0, 0);
122 rand_gate(r);
123 }
124
125 /* --- @rand_noisesrc@ --- *
126 *
127 * Arguments: @rand_pool *r@ = pointer to a randomness pool
128 * @const rand_source *s@ = pointer to source definition
129 *
130 * Returns: ---
131 *
132 * Use: Sets a noise source for a randomness pool. When the pool's
133 * estimate of good random bits falls to zero, the @getnoise@
134 * function is called, passing the pool handle as an argument.
135 * It is expected to increase the number of good bits by at
136 * least one, because it'll be called over and over again until
137 * there are enough bits to satisfy the caller. The @timer@
138 * function is called frequently throughout the generator's
139 * operation.
140 */
141
142 void rand_noisesrc(rand_pool *r, const rand_source *s)
143 {
144 RAND_RESOLVE(r);
145 r->s = s;
146 }
147
148 /* --- @rand_quick@ --- *
149 *
150 * Arguments: @rand_pool *r@ = pointer to a randomness pool
151 *
152 * Returns: Zero on success; @-1@ on failure.
153 *
154 * Use Attempts to use some machine-specific `quick' source of
155 * entropy to top up @r@. This may not do anything at all on
156 * many systems.
157 */
158
159 CPU_DISPATCH(static, return, int, quick, (rand_pool *r), (r),
160 pick_quick, trivial_quick);
161
162 static int trivial_quick(rand_pool *r) { return (-1); }
163
164 #if __GNUC__ && (CPUFAM_X86 || CPUFAM_AMD64)
165 static int rdrand_quick(rand_pool *r)
166 {
167 unsigned long rr;
168 int i = 16;
169
170 __asm__ ("0: rdrand %0; jc 9f; dec %1; jnz 0b; 9:"
171 : "=r" (rr), "=r" (i) : "1" (i) : "cc");
172 if (!i) return (-1);
173 rand_add(r, &rr, sizeof(rr), 8*sizeof(rr));
174 return (0);
175 }
176 #endif
177
178 static quick__functype *pick_quick(void)
179 {
180 #if __GNUC__ && (CPUFAM_X86 || CPUFAM_AMD64)
181 DISPATCH_PICK_COND(rand_quick, rdrand_quick,
182 cpu_feature_p(CPUFEAT_X86_RDRAND));
183 #endif
184 DISPATCH_PICK_FALLBACK(rand_quick, trivial_quick);
185 }
186
187 int rand_quick(rand_pool *r) { RAND_RESOLVE(r); return (quick(r)); }
188
189 /* --- @rand_seed@ --- *
190 *
191 * Arguments: @rand_pool *r@ = pointer to a randomness pool
192 * @unsigned bits@ = number of bits to ensure
193 *
194 * Returns: ---
195 *
196 * Use: Ensures that there are at least @bits@ good bits of entropy
197 * in the pool. It is recommended that you call this after
198 * initializing a new pool. Requesting @bits > RAND_IBITS@ is
199 * doomed to failure (and is an error).
200 */
201
202 void rand_seed(rand_pool *r, unsigned bits)
203 {
204 RAND_RESOLVE(r);
205
206 assert(((void)"bits pointlessly large in rand_seed", bits <= RAND_IBITS));
207 assert(((void)"no noise source in rand_seed", r->s));
208
209 while (r->ibits < bits)
210 r->s->getnoise(r);
211 rand_gate(r);
212 }
213
214 /* --- @rand_key@ --- *
215 *
216 * Arguments: @rand_pool *r@ = pointer to a randomness pool
217 * @const void *k@ = pointer to key data
218 * @size_t sz@ = size of key data
219 *
220 * Returns: ---
221 *
222 * Use: Sets the secret key for a randomness pool. The key is used
223 * when mixing in new random bits.
224 */
225
226 void rand_key(rand_pool *r, const void *k, size_t sz)
227 {
228 HASH_CTX hc;
229 octet h[HASH_SZ];
230 static const char label[] = "Catacomb random pool key";
231
232 RAND_RESOLVE(r);
233
234 assert(HASH_SZ >= RAND_KEYSZ);
235 HASH_INIT(&hc);
236 HASH(&hc, label, sizeof(label));
237 if (sz) HASH(&hc, k, sz);
238 HASH_DONE(&hc, h);
239 memcpy(r->k.k, h, RAND_KEYSZ);
240 }
241
242 /* --- @rand_add@ --- *
243 *
244 * Arguments: @rand_pool *r@ = pointer to a randomness pool
245 * @const void *p@ = pointer a buffer of data to add
246 * @size_t sz@ = size of the data buffer
247 * @unsigned goodbits@ = number of good bits estimated in buffer
248 *
249 * Returns: ---
250 *
251 * Use: Mixes the data in the buffer with the contents of the
252 * pool. The estimate of the number of good bits is added to
253 * the pool's own count. The mixing operation is not
254 * cryptographically strong. However, data in the input pool
255 * isn't output directly, only through the one-way gating
256 * operation, so that shouldn't matter.
257 */
258
259 void rand_add(rand_pool *r, const void *p, size_t sz, unsigned goodbits)
260 {
261 const octet *c = p;
262 int i, rot;
263
264 #if RAND_POOLSZ != 128
265 # error Polynomial in rand_add is out of date. Fix it.
266 #endif
267
268 RAND_RESOLVE(r);
269
270 i = r->i; rot = r->irot;
271
272 while (sz) {
273 octet o = *c++;
274 r->pool[i] ^= (ROL8(o, rot) ^
275 r->pool[(i + 1) % RAND_POOLSZ] ^
276 r->pool[(i + 2) % RAND_POOLSZ] ^
277 r->pool[(i + 7) % RAND_POOLSZ]);
278 rot = (rot + 5) & 7;
279 i++; if (i >= RAND_POOLSZ) i -= RAND_POOLSZ;
280 sz--;
281 }
282
283 r->i = i;
284 r->irot = rot;
285 r->ibits += goodbits;
286 if (r->ibits > RAND_IBITS)
287 r->ibits = RAND_IBITS;
288 }
289
290 /* --- @rand_goodbits@ --- *
291 *
292 * Arguments: @rand_pool *r@ = pointer to a randomness pool
293 *
294 * Returns: Estimate of the number of good bits remaining in the pool.
295 */
296
297 unsigned rand_goodbits(rand_pool *r)
298 {
299 RAND_RESOLVE(r);
300 return (r->ibits + r->obits);
301 }
302
303 /* --- @rand_gate@ --- *
304 *
305 * Arguments: @rand_pool *r@ = pointer to a randomness pool
306 *
307 * Returns: ---
308 *
309 * Use: Mixes up the entire state of the generator in a nonreversible
310 * way.
311 */
312
313 void rand_gate(rand_pool *r)
314 {
315 octet h[HASH_SZ], g[4];
316 HASH_CTX hc;
317 CIPHER_CTX cc;
318
319 RAND_RESOLVE(r);
320 QUICK(r);
321
322 /* --- Hash up all the data in the pool --- */
323
324 HASH_INIT(&hc);
325 STORE32(g, r->gen); HASH(&hc, g, sizeof(g));
326 HASH(&hc, r->pool, RAND_POOLSZ);
327 HASH(&hc, r->buf, RAND_BUFSZ);
328 HASH_DONE(&hc, h);
329 BURN(hc);
330
331 /* --- Now mangle all of the data based on the hash --- */
332
333 assert(CIPHER_KEYSZ <= HASH_SZ);
334 CIPHER_INIT(&cc, h, CIPHER_KEYSZ, 0);
335 CIPHER_ENCRYPT(&cc, r->pool, r->pool, RAND_POOLSZ);
336 CIPHER_ENCRYPT(&cc, r->buf, r->buf, RAND_BUFSZ);
337 BURN(cc);
338
339 /* --- Reset the various state variables --- */
340
341 r->o = RAND_SECSZ;
342 r->obits += r->ibits;
343 if (r->obits > RAND_OBITS) {
344 r->ibits = r->obits - r->ibits;
345 r->obits = RAND_OBITS;
346 } else
347 r->ibits = 0;
348 QUICK(r);
349 }
350
351 /* --- @rand_stretch@ --- *
352 *
353 * Arguments: @rand_pool *r@ = pointer to a randomness pool
354 *
355 * Returns: ---
356 *
357 * Use: Stretches the contents of the output buffer by transforming
358 * it in a nonreversible way. This doesn't add any entropy
359 * worth speaking about, but it works well enough when the
360 * caller doesn't care about that sort of thing.
361 */
362
363 void rand_stretch(rand_pool *r)
364 {
365 octet h[HASH_SZ], g[4];
366 HASH_CTX hc;
367 CIPHER_CTX cc;
368
369 RAND_RESOLVE(r);
370 QUICK(r);
371
372 /* --- Hash up all the data in the buffer --- */
373
374 HASH_INIT(&hc);
375 STORE32(g, r->gen); HASH(&hc, g, sizeof(g));
376 HASH(&hc, r->pool, RAND_POOLSZ);
377 HASH(&hc, r->buf, RAND_BUFSZ);
378 HASH_DONE(&hc, h);
379 BURN(hc);
380
381 /* --- Now mangle the buffer based on the hash --- */
382
383 assert(CIPHER_KEYSZ <= HASH_SZ);
384 CIPHER_INIT(&cc, h, CIPHER_KEYSZ, 0);
385 CIPHER_ENCRYPT(&cc, r->buf, r->buf, RAND_BUFSZ);
386 BURN(cc);
387
388 /* --- Reset the various state variables --- */
389
390 r->o = RAND_SECSZ;
391 QUICK(r);
392 }
393
394 /* --- @rand_get@ --- *
395 *
396 * Arguments: @rand_pool *r@ = pointer to a randomness pool
397 * @void *p@ = pointer to output buffer
398 * @size_t sz@ = size of output buffer
399 *
400 * Returns: ---
401 *
402 * Use: Gets random data from the pool. The pool's contents can't be
403 * determined from the output of this function; nor can the
404 * output data be determined from a knowledge of the data input
405 * to the pool wihtout also having knowledge of the secret key.
406 * The good bits counter is decremented, although no special
407 * action is taken if it reaches zero.
408 */
409
410 void rand_get(rand_pool *r, void *p, size_t sz)
411 {
412 octet *o = p;
413
414 RAND_RESOLVE(r);
415 GENCHECK(r);
416 QUICK(r);
417
418 if (!sz)
419 return;
420 for (;;) {
421 if (r->o + sz <= RAND_BUFSZ) {
422 memcpy(o, r->buf + r->o, sz);
423 r->o += sz;
424 break;
425 } else {
426 size_t chunk = RAND_BUFSZ - r->o;
427 if (chunk) {
428 memcpy(o, r->buf + r->o, chunk);
429 sz -= chunk;
430 o += chunk;
431 }
432 rand_stretch(r);
433 }
434 }
435
436 if (r->obits > sz * 8)
437 r->obits -= sz * 8;
438 else
439 r->obits = 0;
440 }
441
442 /* --- @rand_getgood@ --- *
443 *
444 * Arguments: @rand_pool *r@ = pointer to a randomness pool
445 * @void *p@ = pointer to output buffer
446 * @size_t sz@ = size of output buffer
447 *
448 * Returns: ---
449 *
450 * Use: Gets random data from the pool, ensuring that there are
451 * enough good bits. This interface isn't recommended: it makes
452 * the generator slow, and doesn't provide much more security
453 * than @rand_get@, assuming you've previously done a
454 * @rand_seed@.
455 */
456
457 void rand_getgood(rand_pool *r, void *p, size_t sz)
458 {
459 octet *o = p;
460
461 RAND_RESOLVE(r);
462
463 if (!sz)
464 return;
465 if (!r->s || !r->s->getnoise) {
466 rand_get(r, p, sz);
467 return;
468 }
469 GENCHECK(r);
470 QUICK(r);
471
472 while (sz) {
473 size_t chunk = sz;
474
475 if (chunk * 8 > r->obits) {
476 if (chunk * 8 > r->ibits + r->obits)
477 do r->s->getnoise(r); while (r->ibits + r->obits < 256);
478 rand_gate(r);
479 if (chunk * 8 > r->obits)
480 chunk = r->obits / 8;
481 }
482
483 if (chunk + r->o > RAND_BUFSZ)
484 chunk = RAND_BUFSZ - r->o;
485
486 memcpy(o, r->buf + r->o, chunk);
487 r->o += chunk;
488 r->obits -= chunk * 8;
489 o += chunk;
490 sz -= chunk;
491 }
492 }
493
494 /*----- Generic random number generator interface -------------------------*/
495
496 static void gdestroy(grand *r)
497 {
498 gctx *g = (gctx *)r;
499 if (g != &rand_global) {
500 BURN(*g);
501 S_DESTROY(g);
502 }
503 }
504
505 static int gmisc(grand *r, unsigned op, ...)
506 {
507 gctx *g = (gctx *)r;
508 va_list ap;
509 int rc = 0;
510 va_start(ap, op);
511
512 switch (op) {
513 case GRAND_CHECK:
514 switch (va_arg(ap, unsigned)) {
515 case GRAND_CHECK:
516 case GRAND_SEEDINT:
517 case GRAND_SEEDUINT32:
518 case GRAND_SEEDBLOCK:
519 case GRAND_SEEDRAND:
520 case RAND_GATE:
521 case RAND_STRETCH:
522 case RAND_KEY:
523 case RAND_NOISESRC:
524 case RAND_SEED:
525 case RAND_TIMER:
526 case RAND_GOODBITS:
527 case RAND_ADD:
528 rc = 1;
529 break;
530 default:
531 rc = 0;
532 break;
533 }
534 break;
535 case GRAND_SEEDINT: {
536 unsigned u = va_arg(ap, unsigned);
537 rand_add(&g->p, &u, sizeof(u), sizeof(u));
538 } break;
539 case GRAND_SEEDUINT32: {
540 uint32 i = va_arg(ap, uint32);
541 rand_add(&g->p, &i, sizeof(i), 4);
542 } break;
543 case GRAND_SEEDBLOCK: {
544 const void *p = va_arg(ap, const void *);
545 size_t sz = va_arg(ap, size_t);
546 rand_add(&g->p, p, sz, sz);
547 } break;
548 case GRAND_SEEDRAND: {
549 grand *rr = va_arg(ap, grand *);
550 octet buf[16];
551 rr->ops->fill(rr, buf, sizeof(buf));
552 rand_add(&g->p, buf, sizeof(buf), 8);
553 } break;
554 case RAND_GATE:
555 rand_gate(&g->p);
556 break;
557 case RAND_STRETCH:
558 rand_stretch(&g->p);
559 break;
560 case RAND_KEY: {
561 const void *k = va_arg(ap, const void *);
562 size_t sz = va_arg(ap, size_t);
563 rand_key(&g->p, k, sz);
564 } break;
565 case RAND_NOISESRC:
566 rand_noisesrc(&g->p, va_arg(ap, const rand_source *));
567 break;
568 case RAND_SEED:
569 rand_seed(&g->p, va_arg(ap, unsigned));
570 break;
571 case RAND_TIMER:
572 QUICK(&g->p);
573 break;
574 case RAND_GOODBITS:
575 rc = rand_goodbits(&g->p);
576 break;
577 case RAND_ADD: {
578 const void *p = va_arg(ap, const void *);
579 size_t sz = va_arg(ap, size_t);
580 unsigned goodbits = va_arg(ap, unsigned);
581 rand_add(&g->p, p, sz, goodbits);
582 } break;
583 default:
584 GRAND_BADOP;
585 break;
586 }
587
588 va_end(ap);
589 return (rc);
590 }
591
592 static octet gbyte(grand *r)
593 {
594 gctx *g = (gctx *)r;
595 octet o;
596 rand_getgood(&g->p, &o, 1);
597 return (o);
598 }
599
600 static uint32 gword(grand *r)
601 {
602 gctx *g = (gctx *)r;
603 octet b[4];
604 rand_getgood(&g->p, &b, sizeof(b));
605 return (LOAD32(b));
606 }
607
608 static void gfill(grand *r, void *p, size_t sz)
609 {
610 gctx *g = (gctx *)r;
611 rand_get(&g->p, p, sz);
612 }
613
614 static const grand_ops gops = {
615 "rand",
616 GRAND_CRYPTO, 0,
617 gmisc, gdestroy,
618 gword, gbyte, gword, grand_defaultrange, gfill
619 };
620
621 /* --- @rand_create@ --- *
622 *
623 * Arguments: ---
624 *
625 * Returns: Pointer to a generic generator.
626 *
627 * Use: Constructs a generic generator interface over a Catacomb
628 * entropy pool generator.
629 */
630
631 grand *rand_create(void)
632 {
633 gctx *g = S_CREATE(gctx);
634 g->r.ops = &gops;
635 rand_init(&g->p);
636 return (&g->r);
637 }
638
639 /*----- That's all, folks -------------------------------------------------*/