base/asm-common.h, *.S: Include metadata for 64-bit Windows stack unwinding.
[catacomb] / symm / chacha-x86ish-sse2.S
1 /// -*- mode: asm; asm-comment-char: ?/ -*-
2 ///
3 /// Fancy SIMD implementation of ChaCha
4 ///
5 /// (c) 2015 Straylight/Edgeware
6 ///
7
8 ///----- Licensing notice ---------------------------------------------------
9 ///
10 /// This file is part of Catacomb.
11 ///
12 /// Catacomb is free software; you can redistribute it and/or modify
13 /// it under the terms of the GNU Library General Public License as
14 /// published by the Free Software Foundation; either version 2 of the
15 /// License, or (at your option) any later version.
16 ///
17 /// Catacomb is distributed in the hope that it will be useful,
18 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
19 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 /// GNU Library General Public License for more details.
21 ///
22 /// You should have received a copy of the GNU Library General Public
23 /// License along with Catacomb; if not, write to the Free
24 /// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 /// MA 02111-1307, USA.
26
27 ///--------------------------------------------------------------------------
28 /// External definitions.
29
30 #include "config.h"
31 #include "asm-common.h"
32
33 ///--------------------------------------------------------------------------
34 /// Local utilities.
35
36 // Magic constants for shuffling.
37 #define ROTL 0x93
38 #define ROT2 0x4e
39 #define ROTR 0x39
40
41 ///--------------------------------------------------------------------------
42 /// Main code.
43
44 .arch pentium4
45 .text
46
47 FUNC(chacha_core_x86ish_sse2)
48
49 // Initial setup.
50
51 #if CPUFAM_X86
52 // Arguments come in on the stack, and will need to be collected. We
53 // we can get away with just the scratch registers for integer work,
54 // but we'll run out of XMM registers and will need some properly
55 // aligned space which we'll steal from the stack. I don't trust the
56 // stack pointer's alignment, so I'll have to mask the stack pointer,
57 // which in turn means I'll need to keep track of the old value.
58 // Hence I'm making a full i386-style stack frame here.
59 //
60 // The Windows and SysV ABIs are sufficiently similar that we don't
61 // need to worry about the differences here.
62
63 # define NR ecx
64 # define IN eax
65 # define OUT edx
66 # define SAVE0 xmm5
67 # define SAVE1 xmm6
68 # define SAVE2 xmm7
69 # define SAVE3 [esp]
70
71 push ebp
72 mov ebp, esp
73 sub esp, 16
74 mov IN, [ebp + 12]
75 mov OUT, [ebp + 16]
76 and esp, ~15
77 mov NR, [ebp + 8]
78 #endif
79
80 #if CPUFAM_AMD64 && ABI_SYSV
81 // This is nice. We have plenty of XMM registers, and the arguments
82 // are in useful places. There's no need to spill anything and we
83 // can just get on with the code.
84
85 # define NR edi
86 # define IN rsi
87 # define OUT rdx
88 # define SAVE0 xmm5
89 # define SAVE1 xmm6
90 # define SAVE2 xmm7
91 # define SAVE3 xmm8
92 #endif
93
94 #if CPUFAM_AMD64 && ABI_WIN
95 // Arguments come in registers, but they're different between Windows
96 // and everyone else (and everyone else is saner).
97 //
98 // The Windows ABI insists that we preserve some of the XMM
99 // registers, but we want more than we can use as scratch space. We
100 // only need to save a copy of the input for the feedforward at the
101 // end, so we might as well use memory rather than spill extra
102 // registers. (We need an extra 8 bytes to align the stack.)
103
104 # define NR ecx
105 # define IN rdx
106 # define OUT r8
107 # define SAVE0 xmm5
108 # define SAVE1 [rsp + 0]
109 # define SAVE2 [rsp + 16]
110 # define SAVE3 [rsp + 32]
111
112 sub rsp, 48 + 8
113 .seh_stackalloc 48 + 8
114 .seh_endprologue
115 #endif
116
117 // First job is to slurp the matrix into XMM registers. Be careful:
118 // the input matrix isn't likely to be properly aligned.
119 //
120 // [ 0 1 2 3] (a, xmm0)
121 // [ 4 5 6 7] (b, xmm1)
122 // [ 8 9 10 11] (c, xmm2)
123 // [12 13 14 15] (d, xmm3)
124 movdqu xmm0, [IN + 0]
125 movdqu xmm1, [IN + 16]
126 movdqu xmm2, [IN + 32]
127 movdqu xmm3, [IN + 48]
128
129 // Take a copy for later. This one is aligned properly, by
130 // construction.
131 movdqa SAVE0, xmm0
132 movdqa SAVE1, xmm1
133 movdqa SAVE2, xmm2
134 movdqa SAVE3, xmm3
135
136 0:
137 // Apply a column quarterround to each of the columns simultaneously.
138 // Alas, there doesn't seem to be a packed doubleword rotate, so we
139 // have to synthesize it.
140
141 // a += b; d ^= a; d <<<= 16
142 paddd xmm0, xmm1
143 pxor xmm3, xmm0
144 movdqa xmm4, xmm3
145 pslld xmm3, 16
146 psrld xmm4, 16
147 por xmm3, xmm4
148
149 // c += d; b ^= c; b <<<= 12
150 paddd xmm2, xmm3
151 pxor xmm1, xmm2
152 movdqa xmm4, xmm1
153 pslld xmm1, 12
154 psrld xmm4, 20
155 por xmm1, xmm4
156
157 // a += b; d ^= a; d <<<= 8
158 paddd xmm0, xmm1
159 pxor xmm3, xmm0
160 movdqa xmm4, xmm3
161 pslld xmm3, 8
162 psrld xmm4, 24
163 por xmm3, xmm4
164
165 // c += d; b ^= c; b <<<= 7
166 paddd xmm2, xmm3
167 pshufd xmm3, xmm3, ROTL
168 pxor xmm1, xmm2
169 pshufd xmm2, xmm2, ROT2
170 movdqa xmm4, xmm1
171 pslld xmm1, 7
172 psrld xmm4, 25
173 por xmm1, xmm4
174
175 // The not-quite-transpose conveniently only involves reordering
176 // elements of individual rows, which can be done quite easily. It
177 // doesn't involve any movement of elements between rows, or even
178 // renaming of the rows.
179 //
180 // [ 0 1 2 3] [ 0 1 2 3] (a, xmm0)
181 // [ 4 5 6 7] --> [ 5 6 7 4] (b, xmm1)
182 // [ 8 9 10 11] [10 11 8 9] (c, xmm2)
183 // [12 13 14 15] [15 12 13 14] (d, xmm3)
184 //
185 // The shuffles have quite high latency, so they've mostly been
186 // pushed upwards. The remaining one can't be moved, though.
187 pshufd xmm1, xmm1, ROTR
188
189 // Apply the diagonal quarterround to each of the columns
190 // simultaneously.
191
192 // a += b; d ^= a; d <<<= 16
193 paddd xmm0, xmm1
194 pxor xmm3, xmm0
195 movdqa xmm4, xmm3
196 pslld xmm3, 16
197 psrld xmm4, 16
198 por xmm3, xmm4
199
200 // c += d; b ^= c; b <<<= 12
201 paddd xmm2, xmm3
202 pxor xmm1, xmm2
203 movdqa xmm4, xmm1
204 pslld xmm1, 12
205 psrld xmm4, 20
206 por xmm1, xmm4
207
208 // a += b; d ^= a; d <<<= 8
209 paddd xmm0, xmm1
210 pxor xmm3, xmm0
211 movdqa xmm4, xmm3
212 pslld xmm3, 8
213 psrld xmm4, 24
214 por xmm3, xmm4
215
216 // c += d; b ^= c; b <<<= 7
217 paddd xmm2, xmm3
218 pshufd xmm3, xmm3, ROTR
219 pxor xmm1, xmm2
220 pshufd xmm2, xmm2, ROT2
221 movdqa xmm4, xmm1
222 pslld xmm1, 7
223 psrld xmm4, 25
224 por xmm1, xmm4
225
226 // Finally, finish off undoing the transpose, and we're done for this
227 // doubleround. Again, most of this was done above so we don't have
228 // to wait for the shuffles.
229 pshufd xmm1, xmm1, ROTL
230
231 // Decrement the loop counter and see if we should go round again.
232 sub NR, 2
233 ja 0b
234
235 // Almost there. Firstly, the feedforward addition.
236 paddd xmm0, SAVE0
237 paddd xmm1, SAVE1
238 paddd xmm2, SAVE2
239 paddd xmm3, SAVE3
240
241 // And now we write out the result. This one won't be aligned
242 // either.
243 movdqu [OUT + 0], xmm0
244 movdqu [OUT + 16], xmm1
245 movdqu [OUT + 32], xmm2
246 movdqu [OUT + 48], xmm3
247
248 // Tidy things up.
249 #if CPUFAM_X86
250 mov esp, ebp
251 pop ebp
252 #endif
253 #if CPUFAM_AMD64 && ABI_WIN
254 add rsp, 48 + 8
255 #endif
256
257 // And with that, we're done.
258 ret
259
260 ENDFUNC
261
262 ///----- That's all, folks --------------------------------------------------