symm/{chacha,salsa20}.c: Change how the test code sets up the cipher.
[catacomb] / symm / salsa20.c
1 /* -*-c-*-
2 *
3 * Salsa20 stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "dispatch.h"
38 #include "gcipher.h"
39 #include "grand.h"
40 #include "keysz.h"
41 #include "paranoia.h"
42 #include "salsa20.h"
43 #include "salsa20-core.h"
44
45 /*----- Global variables --------------------------------------------------*/
46
47 const octet salsa20_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
48
49 /*----- The Salsa20 core function and utilities ---------------------------*/
50
51 /* --- @core@ --- *
52 *
53 * Arguments: @unsigned r@ = number of rounds
54 * @const salsa20_matrix src@ = input matrix
55 * @salsa20_matrix dest@ = where to put the output
56 *
57 * Returns: ---
58 *
59 *
60 * Use: Apply the Salsa20/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
63 */
64
65 CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const salsa20_matrix src, salsa20_matrix dest),
67 (r, src, dest), pick_core, simple_core);
68
69 static void simple_core(unsigned r, const salsa20_matrix src,
70 salsa20_matrix dest)
71 { SALSA20_nR(dest, src, r); SALSA20_FFWD(dest, src); }
72
73 #if CPUFAM_X86 || CPUFAM_AMD64
74 extern core__functype salsa20_core_x86ish_sse2;
75 #endif
76
77 #if CPUFAM_ARMEL
78 extern core__functype salsa20_core_arm_neon;
79 #endif
80
81 static core__functype *pick_core(void)
82 {
83 #if CPUFAM_X86 || CPUFAM_AMD64
84 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_sse2,
85 cpu_feature_p(CPUFEAT_X86_SSE2));
86 #endif
87 #if CPUFAM_ARMEL
88 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm_neon,
89 cpu_feature_p(CPUFEAT_ARM_NEON));
90 #endif
91 DISPATCH_PICK_FALLBACK(salsa20_core, simple_core);
92 }
93
94 /* --- @populate@ --- *
95 *
96 * Arguments: @salsa20_matrix a@ = a matrix to fill in
97 * @const void *key@ = pointer to key material
98 * @size_t ksz@ = size of key
99 *
100 * Returns: ---
101 *
102 * Use: Fills in a Salsa20 matrix from the key, setting the
103 * appropriate constants according to the key length. The nonce
104 * and position words are left uninitialized.
105 */
106
107 static void populate(salsa20_matrix a, const void *key, size_t ksz)
108 {
109 const octet *k = key;
110
111 KSZ_ASSERT(salsa20, ksz);
112
113 /* Here's the pattern of key, constant, nonce, and counter pieces in the
114 * matrix, before and after our permutation.
115 *
116 * [ C0 K0 K1 K2 ] [ C0 C1 C2 C3 ]
117 * [ K3 C1 N0 N1 ] --> [ K3 T1 K7 K2 ]
118 * [ T0 T1 C2 K4 ] [ T0 K6 K1 N1 ]
119 * [ K5 K6 K7 C3 ] [ K5 K0 N0 K4 ]
120 */
121
122 a[13] = LOAD32_L(k + 0);
123 a[10] = LOAD32_L(k + 4);
124 if (ksz == 10) {
125 a[ 7] = LOAD16_L(k + 8);
126 a[ 4] = 0;
127 } else {
128 a[ 7] = LOAD32_L(k + 8);
129 a[ 4] = LOAD32_L(k + 12);
130 }
131 if (ksz <= 16) {
132 a[15] = a[13];
133 a[12] = a[10];
134 a[ 9] = a[ 7];
135 a[ 6] = a[ 4];
136 a[ 0] = SALSA20_A128;
137 a[ 1] = SALSA20_B128;
138 a[ 2] = ksz == 10 ? SALSA20_C80 : SALSA20_C128;
139 a[ 3] = SALSA20_D128;
140 } else {
141 a[15] = LOAD32_L(k + 16);
142 a[12] = LOAD32_L(k + 20);
143 a[ 9] = LOAD32_L(k + 24);
144 a[ 6] = LOAD32_L(k + 28);
145 a[ 0] = SALSA20_A256;
146 a[ 1] = SALSA20_B256;
147 a[ 2] = SALSA20_C256;
148 a[ 3] = SALSA20_D256;
149 }
150 }
151
152 /*----- Salsa20 implementation --------------------------------------------*/
153
154 /* --- @salsa20_init@ --- *
155 *
156 * Arguments: @salsa20_ctx *ctx@ = context to fill in
157 * @const void *key@ = pointer to key material
158 * @size_t ksz@ = size of key (either 32 or 16)
159 * @const void *nonce@ = initial nonce, or null
160 *
161 * Returns: ---
162 *
163 * Use: Initializes a Salsa20 context ready for use.
164 */
165
166 void salsa20_init(salsa20_ctx *ctx, const void *key, size_t ksz,
167 const void *nonce)
168 {
169 static const octet zerononce[SALSA20_NONCESZ];
170
171 populate(ctx->a, key, ksz);
172 salsa20_setnonce(ctx, nonce ? nonce : zerononce);
173 }
174
175 /* --- @salsa20_setnonce@ --- *
176 *
177 * Arguments: @salsa20_ctx *ctx@ = pointer to context
178 * @const void *nonce@ = the nonce (@SALSA20_NONCESZ@ bytes)
179 *
180 * Returns: ---
181 *
182 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
183 * different message. The stream position is reset to zero (see
184 * @salsa20_seek@ etc.).
185 */
186
187 void salsa20_setnonce(salsa20_ctx *ctx, const void *nonce)
188 {
189 const octet *n = nonce;
190
191 ctx->a[14] = LOAD32_L(n + 0);
192 ctx->a[11] = LOAD32_L(n + 4);
193 salsa20_seek(ctx, 0);
194 }
195
196 /* --- @salsa20_seek{,u64}@ --- *
197 *
198 * Arguments: @salsa20_ctx *ctx@ = pointer to context
199 * @unsigned long i@, @kludge64 i@ = new position to set
200 *
201 * Returns: ---
202 *
203 * Use: Sets a new stream position, in units of Salsa20 output
204 * blocks, which are @SALSA20_OUTSZ@ bytes each. Byte
205 * granularity can be achieved by calling @salsa20R_encrypt@
206 * appropriately.
207 */
208
209 void salsa20_seek(salsa20_ctx *ctx, unsigned long i)
210 { kludge64 ii; ASSIGN64(ii, i); salsa20_seeku64(ctx, ii); }
211
212 void salsa20_seeku64(salsa20_ctx *ctx, kludge64 i)
213 {
214 ctx->a[8] = LO64(i); ctx->a[5] = HI64(i);
215 ctx->bufi = SALSA20_OUTSZ;
216 }
217
218 /* --- @salsa20_tell{,u64}@ --- *
219 *
220 * Arguments: @salsa20_ctx *ctx@ = pointer to context
221 *
222 * Returns: The current position in the output stream, in blocks,
223 * rounding upwards.
224 */
225
226 unsigned long salsa20_tell(salsa20_ctx *ctx)
227 { kludge64 i = salsa20_tellu64(ctx); return (GET64(unsigned long, i)); }
228
229 kludge64 salsa20_tellu64(salsa20_ctx *ctx)
230 { kludge64 i; SET64(i, ctx->a[5], ctx->a[8]); return (i); }
231
232 /* --- @salsa20{,12,8}_encrypt@ --- *
233 *
234 * Arguments: @salsa20_ctx *ctx@ = pointer to context
235 * @const void *src@ = source buffer (or null)
236 * @void *dest@ = destination buffer (or null)
237 * @size_t sz@ = size of the buffers
238 *
239 * Returns: ---
240 *
241 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
242 * Salsa20 works by XORing plaintext with a keystream, so
243 * encryption and decryption are the same operation. If @dest@
244 * is null then ignore @src@ and skip @sz@ bytes of the
245 * keystream. If @src@ is null, then just write the keystream
246 * to @dest@.
247 */
248
249 #define SALSA20_ENCRYPT(r, ctx, src, dest, sz) \
250 SALSA20_DECOR(salsa20, r, _encrypt)(ctx, src, dest, sz)
251 #define DEFENCRYPT(r) \
252 void SALSA20_ENCRYPT(r, salsa20_ctx *ctx, const void *src, \
253 void *dest, size_t sz) \
254 { \
255 salsa20_matrix b; \
256 const octet *s = src; \
257 octet *d = dest; \
258 size_t n; \
259 kludge64 pos, delta; \
260 \
261 SALSA20_OUTBUF(ctx, d, s, sz); \
262 if (!sz) return; \
263 \
264 if (!dest) { \
265 n = sz/SALSA20_OUTSZ; \
266 pos = salsa20_tellu64(ctx); \
267 ASSIGN64(delta, n); \
268 ADD64(pos, pos, delta); \
269 salsa20_seeku64(ctx, pos); \
270 sz = sz%SALSA20_OUTSZ; \
271 } else if (!src) { \
272 while (sz >= SALSA20_OUTSZ) { \
273 core(r, ctx->a, b); \
274 SALSA20_STEP(ctx->a); \
275 SALSA20_GENFULL(b, d); \
276 sz -= SALSA20_OUTSZ; \
277 } \
278 } else { \
279 while (sz >= SALSA20_OUTSZ) { \
280 core(r, ctx->a, b); \
281 SALSA20_STEP(ctx->a); \
282 SALSA20_MIXFULL(b, d, s); \
283 sz -= SALSA20_OUTSZ; \
284 } \
285 } \
286 \
287 if (sz) { \
288 core(r, ctx->a, b); \
289 SALSA20_STEP(ctx->a); \
290 SALSA20_PREPBUF(ctx, b); \
291 SALSA20_OUTBUF(ctx, d, s, sz); \
292 assert(!sz); \
293 } \
294 }
295 SALSA20_VARS(DEFENCRYPT)
296
297 /*----- HSalsa20 implementation -------------------------------------------*/
298
299 #define HSALSA20_RAW(r, ctx, src, dest) \
300 SALSA20_DECOR(hsalsa20, r, _raw)(ctx, src, dest)
301 #define HSALSA20_PRF(r, ctx, src, dest) \
302 SALSA20_DECOR(hsalsa20, r, _prf)(ctx, src, dest)
303
304 /* --- @hsalsa20{,12,8}_prf@ --- *
305 *
306 * Arguments: @salsa20_ctx *ctx@ = pointer to context
307 * @const void *src@ = the input (@HSALSA20_INSZ@ bytes)
308 * @void *dest@ = the output (@HSALSA20_OUTSZ@ bytes)
309 *
310 * Returns: ---
311 *
312 * Use: Apply the HSalsa20/r pseudorandom function to @src@, writing
313 * the result to @out@.
314 */
315
316 #define DEFHSALSA20(r) \
317 static void HSALSA20_RAW(r, salsa20_matrix k, \
318 const uint32 *src, uint32 *dest) \
319 { \
320 salsa20_matrix a; \
321 int i; \
322 \
323 /* --- HSalsa20, computed from full Salsa20 --- * \
324 * \
325 * The security proof makes use of the fact that HSalsa20 (i.e., \
326 * without the final feedforward step) can be computed from full \
327 * Salsa20 using only knowledge of the non-secret input. I don't \
328 * want to compromise the performance of the main function by \
329 * making the feedforward step separate, but this operation is less \
330 * speed critical, so we do it the harder way. \
331 */ \
332 \
333 for (i = 0; i < 4; i++) k[14 - 3*i] = src[i]; \
334 core(r, k, a); \
335 for (i = 0; i < 4; i++) dest[i] = a[5*i] - k[i]; \
336 for (i = 4; i < 8; i++) dest[i] = a[i + 2] - k[26 - 3*i]; \
337 } \
338 \
339 void HSALSA20_PRF(r, salsa20_ctx *ctx, const void *src, void *dest) \
340 { \
341 const octet *s = src; \
342 octet *d = dest; \
343 uint32 in[4], out[8]; \
344 int i; \
345 \
346 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
347 HSALSA20_RAW(r, ctx->a, in, out); \
348 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
349 }
350 SALSA20_VARS(DEFHSALSA20)
351
352 /*----- XSalsa20 implementation -------------------------------------------*/
353
354 /* --- Some convenient macros for naming functions --- *
355 *
356 * Because the crypto core is involved in XSalsa20/r's per-nonce setup, we
357 * need to take an interest in the number of rounds in most of the various
358 * functions, and it will probably help if we distinguish the context
359 * structures for the various versions.
360 */
361
362 #define XSALSA20_CTX(r) SALSA20_DECOR(xsalsa20, r, _ctx)
363 #define XSALSA20_INIT(r, ctx, k, ksz, n) \
364 SALSA20_DECOR(xsalsa20, r, _init)(ctx, k, ksz, n)
365 #define XSALSA20_SETNONCE(r, ctx, n) \
366 SALSA20_DECOR(xsalsa20, r, _setnonce)(ctx, n)
367 #define XSALSA20_SEEK(r, ctx, i) \
368 SALSA20_DECOR(xsalsa20, r, _seek)(ctx, i)
369 #define XSALSA20_SEEKU64(r, ctx, i) \
370 SALSA20_DECOR(xsalsa20, r, _seeku64)(ctx, i)
371 #define XSALSA20_TELL(r, ctx) \
372 SALSA20_DECOR(xsalsa20, r, _tell)(ctx)
373 #define XSALSA20_TELLU64(r, ctx) \
374 SALSA20_DECOR(xsalsa20, r, _tellu64)(ctx)
375 #define XSALSA20_ENCRYPT(r, ctx, src, dest, sz) \
376 SALSA20_DECOR(xsalsa20, r, _encrypt)(ctx, src, dest, sz)
377
378 /* --- @xsalsa20{,12,8}_init@ --- *
379 *
380 * Arguments: @xsalsa20R_ctx *ctx@ = the context to fill in
381 * @const void *key@ = pointer to key material
382 * @size_t ksz@ = size of key (either 32 or 16)
383 * @const void *nonce@ = initial nonce, or null
384 *
385 * Returns: ---
386 *
387 * Use: Initializes an XSalsa20/r context ready for use.
388 *
389 * There is a different function for each number of rounds,
390 * unlike for plain Salsa20.
391 */
392
393 #define DEFXINIT(r) \
394 void XSALSA20_INIT(r, XSALSA20_CTX(r) *ctx, \
395 const void *key, size_t ksz, const void *nonce) \
396 { \
397 static const octet zerononce[XSALSA20_NONCESZ]; \
398 \
399 populate(ctx->k, key, ksz); \
400 ctx->s.a[ 0] = SALSA20_A256; \
401 ctx->s.a[ 1] = SALSA20_B256; \
402 ctx->s.a[ 2] = SALSA20_C256; \
403 ctx->s.a[ 3] = SALSA20_D256; \
404 XSALSA20_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
405 }
406 SALSA20_VARS(DEFXINIT)
407
408 /* --- @xsalsa20{,12,8}_setnonce@ --- *
409 *
410 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
411 * @const void *nonce@ = the nonce (@XSALSA20_NONCESZ@ bytes)
412 *
413 * Returns: ---
414 *
415 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
416 * different message. The stream position is reset to zero (see
417 * @salsa20_seek@ etc.).
418 *
419 * There is a different function for each number of rounds,
420 * unlike for plain Salsa20.
421 */
422
423 #define DEFXNONCE(r) \
424 void XSALSA20_SETNONCE(r, XSALSA20_CTX(r) *ctx, const void *nonce) \
425 { \
426 const octet *n = nonce; \
427 uint32 in[4], out[8]; \
428 int i; \
429 \
430 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
431 HSALSA20_RAW(r, ctx->k, in, out); \
432 for (i = 0; i < 4; i++) ctx->s.a[13 - 3*i] = out[i]; \
433 for (i = 4; i < 8; i++) ctx->s.a[27 - 3*i] = out[i]; \
434 salsa20_setnonce(&ctx->s, n + 16); \
435 }
436 SALSA20_VARS(DEFXNONCE)
437
438 /* --- @xsalsa20{,12,8}_seek{,u64}@ --- *
439 *
440 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
441 * @unsigned long i@, @kludge64 i@ = new position to set
442 *
443 * Returns: ---
444 *
445 * Use: Sets a new stream position, in units of Salsa20 output
446 * blocks, which are @XSALSA20_OUTSZ@ bytes each. Byte
447 * granularity can be achieved by calling @xsalsa20R_encrypt@
448 * appropriately.
449 *
450 * There is a different function for each number of rounds,
451 * unlike for plain Salsa20, because the context structures are
452 * different.
453 */
454
455 /* --- @xsalsa20{,12,8}_tell{,u64}@ --- *
456 *
457 * Arguments: @salsa20_ctx *ctx@ = pointer to context
458 *
459 * Returns: The current position in the output stream, in blocks,
460 * rounding upwards.
461 *
462 * There is a different function for each number of rounds,
463 * unlike for plain Salsa20, because the context structures are
464 * different.
465 */
466
467 /* --- @xsalsa20{,12,8}_encrypt@ --- *
468 *
469 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
470 * @const void *src@ = source buffer (or null)
471 * @void *dest@ = destination buffer (or null)
472 * @size_t sz@ = size of the buffers
473 *
474 * Returns: ---
475 *
476 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
477 * XSalsa20 works by XORing plaintext with a keystream, so
478 * encryption and decryption are the same operation. If @dest@
479 * is null then ignore @src@ and skip @sz@ bytes of the
480 * keystream. If @src@ is null, then just write the keystream
481 * to @dest@.
482 */
483
484 #define DEFXPASSTHRU(r) \
485 void XSALSA20_SEEK(r, XSALSA20_CTX(r) *ctx, unsigned long i) \
486 { salsa20_seek(&ctx->s, i); } \
487 void XSALSA20_SEEKU64(r, XSALSA20_CTX(r) *ctx, kludge64 i) \
488 { salsa20_seeku64(&ctx->s, i); } \
489 unsigned long XSALSA20_TELL(r, XSALSA20_CTX(r) *ctx) \
490 { return salsa20_tell(&ctx->s); } \
491 kludge64 XSALSA20_TELLU64(r, XSALSA20_CTX(r) *ctx) \
492 { return salsa20_tellu64(&ctx->s); } \
493 void XSALSA20_ENCRYPT(r, XSALSA20_CTX(r) *ctx, \
494 const void *src, void *dest, size_t sz) \
495 { SALSA20_ENCRYPT(r, &ctx->s, src, dest, sz); }
496 SALSA20_VARS(DEFXPASSTHRU)
497
498 /*----- Generic cipher interface ------------------------------------------*/
499
500 typedef struct gctx { gcipher c; salsa20_ctx ctx; } gctx;
501
502 static void gsetiv(gcipher *c, const void *iv)
503 { gctx *g = (gctx *)c; salsa20_setnonce(&g->ctx, iv); }
504
505 static void gdestroy(gcipher *c)
506 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
507
508 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
509 {
510 gctx *g = S_CREATE(gctx);
511 g->c.ops = ops;
512 salsa20_init(&g->ctx, k, sz, 0);
513 return (&g->c);
514 }
515
516 #define DEFGCIPHER(r) \
517 \
518 static const gcipher_ops gops_##r; \
519 \
520 static gcipher *ginit_##r(const void *k, size_t sz) \
521 { return (ginit(k, sz, &gops_##r)); } \
522 \
523 static void gencrypt_##r(gcipher *c, const void *s, \
524 void *t, size_t sz) \
525 { gctx *g = (gctx *)c; SALSA20_ENCRYPT(r, &g->ctx, s, t, sz); } \
526 \
527 static const gcipher_ops gops_##r = { \
528 &SALSA20_DECOR(salsa20, r, ), \
529 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
530 }; \
531 \
532 const gccipher SALSA20_DECOR(salsa20, r, ) = { \
533 SALSA20_NAME_##r, salsa20_keysz, \
534 SALSA20_NONCESZ, ginit_##r \
535 };
536
537 SALSA20_VARS(DEFGCIPHER)
538
539 #define DEFGXCIPHER(r) \
540 \
541 typedef struct { gcipher c; XSALSA20_CTX(r) ctx; } gxctx_##r; \
542 \
543 static void gxsetiv_##r(gcipher *c, const void *iv) \
544 { gxctx_##r *g = (gxctx_##r *)c; XSALSA20_SETNONCE(r, &g->ctx, iv); } \
545 \
546 static void gxdestroy_##r(gcipher *c) \
547 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
548 \
549 static const gcipher_ops gxops_##r; \
550 \
551 static gcipher *gxinit_##r(const void *k, size_t sz) \
552 { \
553 gxctx_##r *g = S_CREATE(gxctx_##r); \
554 g->c.ops = &gxops_##r; \
555 XSALSA20_INIT(r, &g->ctx, k, sz, 0); \
556 return (&g->c); \
557 } \
558 \
559 static void gxencrypt_##r(gcipher *c, const void *s, \
560 void *t, size_t sz) \
561 { \
562 gxctx_##r *g = (gxctx_##r *)c; \
563 XSALSA20_ENCRYPT(r, &g->ctx, s, t, sz); \
564 } \
565 \
566 static const gcipher_ops gxops_##r = { \
567 &SALSA20_DECOR(xsalsa20, r, ), \
568 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
569 }; \
570 \
571 const gccipher SALSA20_DECOR(xsalsa20, r, ) = { \
572 "x" SALSA20_NAME_##r, salsa20_keysz, \
573 XSALSA20_NONCESZ, gxinit_##r \
574 };
575
576 SALSA20_VARS(DEFGXCIPHER)
577
578 /*----- Generic random number generator interface -------------------------*/
579
580 typedef struct grops {
581 size_t noncesz;
582 void (*seek)(void *, kludge64);
583 kludge64 (*tell)(void *);
584 void (*setnonce)(void *, const void *);
585 void (*generate)(void *, void *, size_t);
586 } grops;
587
588 typedef struct grbasectx {
589 grand r;
590 const grops *ops;
591 } grbasectx;
592
593 static int grmisc(grand *r, unsigned op, ...)
594 {
595 octet buf[XSALSA20_NONCESZ];
596 grbasectx *g = (grbasectx *)r;
597 grand *rr;
598 const octet *p;
599 size_t sz;
600 uint32 i;
601 unsigned long ul;
602 kludge64 pos;
603 va_list ap;
604 int rc = 0;
605
606 va_start(ap, op);
607
608 switch (op) {
609 case GRAND_CHECK:
610 switch (va_arg(ap, unsigned)) {
611 case GRAND_CHECK:
612 case GRAND_SEEDINT:
613 case GRAND_SEEDUINT32:
614 case GRAND_SEEDBLOCK:
615 case GRAND_SEEDRAND:
616 case SALSA20_SEEK:
617 case SALSA20_SEEKU64:
618 case SALSA20_TELL:
619 case SALSA20_TELLU64:
620 rc = 1;
621 break;
622 default:
623 rc = 0;
624 break;
625 }
626 break;
627
628 case GRAND_SEEDINT:
629 i = va_arg(ap, unsigned); STORE32_L(buf, i);
630 memset(buf + 4, 0, g->ops->noncesz - 4);
631 g->ops->setnonce(g, buf);
632 break;
633 case GRAND_SEEDUINT32:
634 i = va_arg(ap, uint32); STORE32_L(buf, i);
635 memset(buf + 4, 0, g->ops->noncesz - 4);
636 g->ops->setnonce(g, buf);
637 break;
638 case GRAND_SEEDBLOCK:
639 p = va_arg(ap, const void *);
640 sz = va_arg(ap, size_t);
641 if (sz < g->ops->noncesz) {
642 memcpy(buf, p, sz);
643 memset(buf + sz, 0, g->ops->noncesz - sz);
644 p = buf;
645 }
646 g->ops->setnonce(g, p);
647 break;
648 case GRAND_SEEDRAND:
649 rr = va_arg(ap, grand *);
650 rr->ops->fill(rr, buf, g->ops->noncesz);
651 g->ops->setnonce(g, buf);
652 break;
653 case SALSA20_SEEK:
654 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
655 g->ops->seek(g, pos);
656 break;
657 case SALSA20_SEEKU64:
658 pos = va_arg(ap, kludge64);
659 g->ops->seek(g, pos);
660 break;
661 case SALSA20_TELL:
662 pos = g->ops->tell(g);
663 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
664 break;
665 case SALSA20_TELLU64:
666 *va_arg(ap, kludge64 *) = g->ops->tell(g);
667 break;
668 default:
669 GRAND_BADOP;
670 break;
671 }
672
673 return (rc);
674 }
675
676 static octet grbyte(grand *r)
677 {
678 grbasectx *g = (grbasectx *)r;
679 octet o;
680 g->ops->generate(g, &o, 1);
681 return (o);
682 }
683
684 static uint32 grword(grand *r)
685 {
686 grbasectx *g = (grbasectx *)r;
687 octet b[4];
688 g->ops->generate(g, b, sizeof(b));
689 return (LOAD32_L(b));
690 }
691
692 static void grfill(grand *r, void *p, size_t sz)
693 {
694 grbasectx *g = (grbasectx *)r;
695 g->ops->generate(r, p, sz);
696 }
697
698 typedef struct grctx {
699 grbasectx r;
700 salsa20_ctx ctx;
701 } grctx;
702
703 static void gr_seek(void *r, kludge64 pos)
704 { grctx *g = r; salsa20_seeku64(&g->ctx, pos); }
705
706 static kludge64 gr_tell(void *r)
707 { grctx *g = r; return (salsa20_tellu64(&g->ctx)); }
708
709 static void gr_setnonce(void *r, const void *n)
710 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
711
712 static void grdestroy(grand *r)
713 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
714
715 static grand *grinit(const void *k, size_t ksz, const void *n,
716 const grand_ops *ops, const grops *myops)
717 {
718 grctx *g = S_CREATE(grctx);
719 g->r.r.ops = ops;
720 g->r.ops = myops;
721 salsa20_init(&g->ctx, k, ksz, 0);
722 myops->setnonce(g, n);
723 return (&g->r.r);
724 }
725
726 #define DEFGRAND(rr) \
727 \
728 static void gr_generate_##rr(void *r, void *b, size_t sz) \
729 { grctx *g = r; SALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
730 \
731 static const grops grops_##rr = \
732 { SALSA20_NONCESZ, gr_seek, gr_tell, \
733 gr_setnonce, gr_generate_##rr }; \
734 \
735 static const grand_ops grops_rand_##rr = { \
736 SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
737 grmisc, grdestroy, grword, \
738 grbyte, grword, grand_defaultrange, grfill \
739 }; \
740 \
741 grand *SALSA20_DECOR(salsa20, rr, _rand) \
742 (const void *k, size_t ksz, const void *n) \
743 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); }
744 SALSA20_VARS(DEFGRAND)
745
746 #define DEFXGRAND(rr) \
747 \
748 typedef struct grxctx_##rr { \
749 grbasectx r; \
750 XSALSA20_CTX(rr) ctx; \
751 } grxctx_##rr; \
752 \
753 static void grx_seek_##rr(void *r, kludge64 pos) \
754 { grxctx_##rr *g = r; XSALSA20_SEEKU64(rr, &g->ctx, pos); } \
755 \
756 static kludge64 grx_tell_##rr(void *r) \
757 { grxctx_##rr *g = r; return (XSALSA20_TELLU64(rr, &g->ctx)); } \
758 \
759 static void grx_setnonce_##rr(void *r, const void *n) \
760 { grxctx_##rr *g = r; XSALSA20_SETNONCE(rr, &g->ctx, n); } \
761 \
762 static void grxdestroy_##rr(grand *r) \
763 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
764 \
765 static void grx_generate_##rr(void *r, void *b, size_t sz) \
766 { grxctx_##rr *g = r; XSALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
767 \
768 static const grops grxops_##rr = \
769 { XSALSA20_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
770 grx_setnonce_##rr, grx_generate_##rr }; \
771 \
772 static const grand_ops grxops_rand_##rr = { \
773 "x" SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
774 grmisc, grxdestroy_##rr, grword, \
775 grbyte, grword, grand_defaultrange, grfill \
776 }; \
777 \
778 grand *SALSA20_DECOR(xsalsa20, rr, _rand) \
779 (const void *k, size_t ksz, const void *n) \
780 { \
781 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
782 g->r.r.ops = &grxops_rand_##rr; \
783 g->r.ops = &grxops_##rr; \
784 XSALSA20_INIT(rr, &g->ctx, k, ksz, n); \
785 return (&g->r.r); \
786 }
787 SALSA20_VARS(DEFXGRAND)
788
789 /*----- Test rig ----------------------------------------------------------*/
790
791 #ifdef TEST_RIG
792
793 #include <stdio.h>
794 #include <string.h>
795
796 #include <mLib/quis.h>
797 #include <mLib/testrig.h>
798
799 static const int perm[] = {
800 0, 13, 10, 7,
801 4, 1, 14, 11,
802 8, 5, 2, 15,
803 12, 9, 6, 3
804 };
805
806 #define DEFVCORE(r) \
807 static int v_core_##r(dstr *v) \
808 { \
809 salsa20_matrix a, b; \
810 dstr d = DSTR_INIT; \
811 int i, j, n; \
812 int ok = 1; \
813 \
814 DENSURE(&d, SALSA20_OUTSZ); d.len = SALSA20_OUTSZ; \
815 n = *(int *)v[0].buf; \
816 for (i = 0; i < SALSA20_OUTSZ/4; i++) \
817 b[i] = LOAD32_L(v[1].buf + 4*i); \
818 for (i = 0; i < n; i++) { \
819 for (j = 0; j < 16; j++) a[perm[j]] = b[j]; \
820 core(r, a, b); \
821 memcpy(a, b, sizeof(a)); \
822 } \
823 for (i = 0; i < SALSA20_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, b[i]); \
824 \
825 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
826 ok = 0; \
827 printf("\nfail core:" \
828 "\n\titerations = %d" \
829 "\n\tin = ", n); \
830 type_hex.dump(&v[1], stdout); \
831 printf("\n\texpected = "); \
832 type_hex.dump(&v[2], stdout); \
833 printf("\n\tcalculated = "); \
834 type_hex.dump(&d, stdout); \
835 putchar('\n'); \
836 } \
837 \
838 dstr_destroy(&d); \
839 return (ok); \
840 }
841 SALSA20_VARS(DEFVCORE)
842
843 #define SALSA20_CTX(r) salsa20_ctx
844
845 #define SALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
846 kludge64 pos64; \
847 salsa20_init(ctx, k, ksz, 0); \
848 if (nsz == 8) salsa20_setnonce(ctx, n); \
849 if (psz == 8) { LOAD64_(pos64, p); salsa20_seeku64(ctx, pos64); } \
850 } while (0)
851
852 #define XSALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
853 kludge64 pos64; \
854 XSALSA20_INIT(r, ctx, k, ksz, 0); \
855 if (nsz == 24) XSALSA20_SETNONCE(r, ctx, n); \
856 if (psz == 8) { LOAD64_(pos64, p); XSALSA20_SEEKU64(r, ctx, pos64); } \
857 } while (0)
858
859 #define DEFxVENC(base, BASE, r) \
860 static int v_encrypt_##base##_##r(dstr *v) \
861 { \
862 BASE##_CTX(r) ctx; \
863 dstr d = DSTR_INIT; \
864 const octet *p, *p0; \
865 octet *q; \
866 size_t sz, sz0, step; \
867 unsigned long skip; \
868 int ok = 1; \
869 \
870 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
871 else { p0 = 0; sz0 = v[5].len; } \
872 DENSURE(&d, sz0); d.len = sz0; \
873 skip = *(unsigned long *)v[3].buf; \
874 \
875 step = 0; \
876 while (step < sz0 + skip) { \
877 step = step ? 3*step + 4 : 1; \
878 if (step > sz0 + skip) step = sz0 + skip; \
879 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
880 v[1].buf, v[1].len, v[2].buf, v[2].len); \
881 \
882 for (sz = skip; sz >= step; sz -= step) \
883 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
884 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
885 for (p = p0, q = (octet *)d.buf, sz = sz0; \
886 sz >= step; \
887 sz -= step, q += step) { \
888 BASE##_ENCRYPT(r, &ctx, p, q, step); \
889 if (p) p += step; \
890 } \
891 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
892 \
893 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
894 ok = 0; \
895 printf("\nfail encrypt:" \
896 "\n\tstep = %lu" \
897 "\n\tkey = ", (unsigned long)step); \
898 type_hex.dump(&v[0], stdout); \
899 printf("\n\tnonce = "); \
900 type_hex.dump(&v[1], stdout); \
901 printf("\n\tposition = "); \
902 type_hex.dump(&v[2], stdout); \
903 printf("\n\tskip = %lu", skip); \
904 printf("\n\tmessage = "); \
905 type_hex.dump(&v[4], stdout); \
906 printf("\n\texpected = "); \
907 type_hex.dump(&v[5], stdout); \
908 printf("\n\tcalculated = "); \
909 type_hex.dump(&d, stdout); \
910 putchar('\n'); \
911 } \
912 } \
913 \
914 dstr_destroy(&d); \
915 return (ok); \
916 }
917 #define DEFVENC(r) DEFxVENC(salsa20, SALSA20, r)
918 #define DEFXVENC(r) DEFxVENC(xsalsa20, XSALSA20, r)
919 SALSA20_VARS(DEFVENC)
920 SALSA20_VARS(DEFXVENC)
921
922 static test_chunk defs[] = {
923 #define DEFxTAB(pre, base, r) \
924 { pre SALSA20_NAME_##r, v_encrypt_##base##_##r, \
925 { &type_hex, &type_hex, &type_hex, &type_ulong, \
926 &type_hex, &type_hex, 0 } },
927 #define DEFTAB(r) \
928 { SALSA20_NAME_##r "-core", v_core_##r, \
929 { &type_int, &type_hex, &type_hex, 0 } }, \
930 DEFxTAB("", salsa20, r)
931 #define DEFXTAB(r) DEFxTAB("x", xsalsa20, r)
932 SALSA20_VARS(DEFTAB)
933 SALSA20_VARS(DEFXTAB)
934 { 0, 0, { 0 } }
935 };
936
937 int main(int argc, char *argv[])
938 {
939 test_run(argc, argv, defs, SRCDIR"/t/salsa20");
940 return (0);
941 }
942
943 #endif
944
945 /*----- That's all, folks -------------------------------------------------*/