symm/: New SSE2 implementations of Salsa20 and ChaCha.
[catacomb] / symm / salsa20.c
1 /* -*-c-*-
2 *
3 * Salsa20 stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Header files ------------------------------------------------------*/
9
10 #include "config.h"
11
12 #include <stdarg.h>
13
14 #include <mLib/bits.h>
15
16 #include "arena.h"
17 #include "dispatch.h"
18 #include "gcipher.h"
19 #include "grand.h"
20 #include "keysz.h"
21 #include "paranoia.h"
22 #include "salsa20.h"
23 #include "salsa20-core.h"
24
25 /*----- Global variables --------------------------------------------------*/
26
27 const octet salsa20_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
28
29 /*----- The Salsa20 core function and utilities ---------------------------*/
30
31 /* --- @core@ --- *
32 *
33 * Arguments: @unsigned r@ = number of rounds
34 * @const salsa20_matrix src@ = input matrix
35 * @salsa20_matrix dest@ = where to put the output
36 *
37 * Returns: ---
38 *
39 *
40 * Use: Apply the Salsa20/r core function to @src@, writing the
41 * result to @dest@. This consists of @r@ rounds followed by
42 * the feedforward step.
43 */
44
45 CPU_DISPATCH(static, (void),
46 void, core, (unsigned r, const salsa20_matrix src,
47 salsa20_matrix dest),
48 (r, src, dest),
49 pick_core, simple_core);
50
51 static void simple_core(unsigned r, const salsa20_matrix src,
52 salsa20_matrix dest)
53 { SALSA20_nR(dest, src, r); SALSA20_FFWD(dest, src); }
54
55 #ifdef CPUFAM_X86
56 extern core__functype salsa20_core_x86_sse2;
57 #endif
58
59 static core__functype *pick_core(void)
60 {
61 #ifdef CPUFAM_X86
62 if (cpu_feature_p(CPUFEAT_X86_SSE2)) return salsa20_core_x86_sse2;
63 #endif
64 return simple_core;
65 }
66
67 /* --- @populate@ --- *
68 *
69 * Arguments: @salsa20_matrix a@ = a matrix to fill in
70 * @const void *key@ = pointer to key material
71 * @size_t ksz@ = size of key
72 *
73 * Returns: ---
74 *
75 * Use: Fills in a Salsa20 matrix from the key, setting the
76 * appropriate constants according to the key length. The nonce
77 * and position words are left uninitialized.
78 */
79
80 static void populate(salsa20_matrix a, const void *key, size_t ksz)
81 {
82 const octet *k = key;
83
84 KSZ_ASSERT(salsa20, ksz);
85
86 /* Here's the pattern of key, constant, nonce, and counter pieces in the
87 * matrix, before and after our permutation.
88 *
89 * [ C0 K0 K1 K2 ] [ C0 C1 C2 C3 ]
90 * [ K3 C1 N0 N1 ] --> [ K3 T1 K7 K2 ]
91 * [ T0 T1 C2 K4 ] [ T0 K6 K1 N1 ]
92 * [ K5 K6 K7 C3 ] [ K5 K0 N0 K4 ]
93 */
94
95 a[13] = LOAD32_L(k + 0);
96 a[10] = LOAD32_L(k + 4);
97 if (ksz == 10) {
98 a[ 7] = LOAD16_L(k + 8);
99 a[ 4] = 0;
100 } else {
101 a[ 7] = LOAD32_L(k + 8);
102 a[ 4] = LOAD32_L(k + 12);
103 }
104 if (ksz <= 16) {
105 a[15] = a[13];
106 a[12] = a[10];
107 a[ 9] = a[ 7];
108 a[ 6] = a[ 4];
109 a[ 0] = SALSA20_A128;
110 a[ 1] = SALSA20_B128;
111 a[ 2] = ksz == 10 ? SALSA20_C80 : SALSA20_C128;
112 a[ 3] = SALSA20_D128;
113 } else {
114 a[15] = LOAD32_L(k + 16);
115 a[12] = LOAD32_L(k + 20);
116 a[ 9] = LOAD32_L(k + 24);
117 a[ 6] = LOAD32_L(k + 28);
118 a[ 0] = SALSA20_A256;
119 a[ 1] = SALSA20_B256;
120 a[ 2] = SALSA20_C256;
121 a[ 3] = SALSA20_D256;
122 }
123 }
124
125 /*----- Salsa20 implementation --------------------------------------------*/
126
127 /* --- @salsa20_init@ --- *
128 *
129 * Arguments: @salsa20_ctx *ctx@ = context to fill in
130 * @const void *key@ = pointer to key material
131 * @size_t ksz@ = size of key (either 32 or 16)
132 * @const void *nonce@ = initial nonce, or null
133 *
134 * Returns: ---
135 *
136 * Use: Initializes a Salsa20 context ready for use.
137 */
138
139 void salsa20_init(salsa20_ctx *ctx, const void *key, size_t ksz,
140 const void *nonce)
141 {
142 static const octet zerononce[SALSA20_NONCESZ];
143
144 populate(ctx->a, key, ksz);
145 salsa20_setnonce(ctx, nonce ? nonce : zerononce);
146 }
147
148 /* --- @salsa20_setnonce@ --- *
149 *
150 * Arguments: @salsa20_ctx *ctx@ = pointer to context
151 * @const void *nonce@ = the nonce (@SALSA20_NONCESZ@ bytes)
152 *
153 * Returns: ---
154 *
155 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
156 * different message. The stream position is reset to zero (see
157 * @salsa20_seek@ etc.).
158 */
159
160 void salsa20_setnonce(salsa20_ctx *ctx, const void *nonce)
161 {
162 const octet *n = nonce;
163
164 ctx->a[14] = LOAD32_L(n + 0);
165 ctx->a[11] = LOAD32_L(n + 4);
166 salsa20_seek(ctx, 0);
167 }
168
169 /* --- @salsa20_seek@, @salsa20_seeku64@ --- *
170 *
171 * Arguments: @salsa20_ctx *ctx@ = pointer to context
172 * @unsigned long i@, @kludge64 i@ = new position to set
173 *
174 * Returns: ---
175 *
176 * Use: Sets a new stream position, in units of Salsa20 output
177 * blocks, which are @SALSA20_OUTSZ@ bytes each. Byte
178 * granularity can be achieved by calling @salsa20R_encrypt@
179 * appropriately.
180 */
181
182 void salsa20_seek(salsa20_ctx *ctx, unsigned long i)
183 { kludge64 ii; ASSIGN64(ii, i); salsa20_seeku64(ctx, ii); }
184
185 void salsa20_seeku64(salsa20_ctx *ctx, kludge64 i)
186 {
187 ctx->a[8] = LO64(i); ctx->a[5] = HI64(i);
188 ctx->bufi = SALSA20_OUTSZ;
189 }
190
191 /* --- @salsa20_tell@, @salsa20_tellu64@ --- *
192 *
193 * Arguments: @salsa20_ctx *ctx@ = pointer to context
194 *
195 * Returns: The current position in the output stream, in blocks,
196 * rounding upwards.
197 */
198
199 unsigned long salsa20_tell(salsa20_ctx *ctx)
200 { kludge64 i = salsa20_tellu64(ctx); return (GET64(unsigned long, i)); }
201
202 kludge64 salsa20_tellu64(salsa20_ctx *ctx)
203 { kludge64 i; SET64(i, ctx->a[5], ctx->a[8]); return (i); }
204
205 /* --- @salsa20{,12,8}_encrypt@ --- *
206 *
207 * Arguments: @salsa20_ctx *ctx@ = pointer to context
208 * @const void *src@ = source buffer (or null)
209 * @void *dest@ = destination buffer (or null)
210 * @size_t sz@ = size of the buffers
211 *
212 * Returns: ---
213 *
214 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
215 * Salsa20 works by XORing plaintext with a keystream, so
216 * encryption and decryption are the same operation. If @dest@
217 * is null then ignore @src@ and skip @sz@ bytes of the
218 * keystream. If @src@ is null, then just write the keystream
219 * to @dest@.
220 */
221
222 #define SALSA20_ENCRYPT(r, ctx, src, dest, sz) \
223 SALSA20_DECOR(salsa20, r, _encrypt)(ctx, src, dest, sz)
224 #define DEFENCRYPT(r) \
225 void SALSA20_ENCRYPT(r, salsa20_ctx *ctx, const void *src, \
226 void *dest, size_t sz) \
227 { \
228 salsa20_matrix b; \
229 const octet *s = src; \
230 octet *d = dest; \
231 size_t n; \
232 kludge64 pos, delta; \
233 \
234 SALSA20_OUTBUF(ctx, d, s, sz); \
235 if (!sz) return; \
236 \
237 if (!dest) { \
238 n = sz/SALSA20_OUTSZ; \
239 pos = salsa20_tellu64(ctx); \
240 ASSIGN64(delta, n); \
241 ADD64(pos, pos, delta); \
242 salsa20_seeku64(ctx, pos); \
243 sz = sz%SALSA20_OUTSZ; \
244 } else if (!src) { \
245 while (sz >= SALSA20_OUTSZ) { \
246 core(r, ctx->a, b); \
247 SALSA20_STEP(ctx->a); \
248 SALSA20_GENFULL(b, d); \
249 sz -= SALSA20_OUTSZ; \
250 } \
251 } else { \
252 while (sz >= SALSA20_OUTSZ) { \
253 core(r, ctx->a, b); \
254 SALSA20_STEP(ctx->a); \
255 SALSA20_MIXFULL(b, d, s); \
256 sz -= SALSA20_OUTSZ; \
257 } \
258 } \
259 \
260 if (sz) { \
261 core(r, ctx->a, b); \
262 SALSA20_STEP(ctx->a); \
263 SALSA20_PREPBUF(ctx, b); \
264 SALSA20_OUTBUF(ctx, d, s, sz); \
265 assert(!sz); \
266 } \
267 }
268 SALSA20_VARS(DEFENCRYPT)
269
270 /*----- HSalsa20 implementation -------------------------------------------*/
271
272 #define HSALSA20_RAW(r, ctx, src, dest) \
273 SALSA20_DECOR(hsalsa20, r, _raw)(ctx, src, dest)
274 #define HSALSA20_PRF(r, ctx, src, dest) \
275 SALSA20_DECOR(hsalsa20, r, _prf)(ctx, src, dest)
276
277 /* --- @hsalsa20{,12,8}_prf@ --- *
278 *
279 * Arguments: @salsa20_ctx *ctx@ = pointer to context
280 * @const void *src@ = the input (@HSALSA20_INSZ@ bytes)
281 * @void *dest@ = the output (@HSALSA20_OUTSZ@ bytes)
282 *
283 * Returns: ---
284 *
285 * Use: Apply the HSalsa20/r pseudorandom function to @src@, writing
286 * the result to @out@.
287 */
288
289 #define DEFHSALSA20(r) \
290 static void HSALSA20_RAW(r, salsa20_matrix k, \
291 const uint32 *src, uint32 *dest) \
292 { \
293 salsa20_matrix a; \
294 int i; \
295 \
296 /* --- HSalsa20, computed from full Salsa20 --- * \
297 * \
298 * The security proof makes use of the fact that HSalsa20 (i.e., \
299 * without the final feedforward step) can be computed from full \
300 * Salsa20 using only knowledge of the non-secret input. I don't \
301 * want to compromise the performance of the main function by \
302 * making the feedforward step separate, but this operation is less \
303 * speed critical, so we do it the harder way. \
304 */ \
305 \
306 for (i = 0; i < 4; i++) k[14 - 3*i] = src[i]; \
307 core(r, k, a); \
308 for (i = 0; i < 4; i++) dest[i] = a[5*i] - k[i]; \
309 for (i = 4; i < 8; i++) dest[i] = a[i + 2] - k[26 - 3*i]; \
310 } \
311 \
312 void HSALSA20_PRF(r, salsa20_ctx *ctx, const void *src, void *dest) \
313 { \
314 const octet *s = src; \
315 octet *d = dest; \
316 uint32 in[4], out[8]; \
317 int i; \
318 \
319 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
320 HSALSA20_RAW(r, ctx->a, in, out); \
321 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
322 }
323 SALSA20_VARS(DEFHSALSA20)
324
325 /*----- XSalsa20 implementation -------------------------------------------*/
326
327 /* --- Some convenient macros for naming functions --- *
328 *
329 * Because the crypto core is involved in XSalsa20/r's per-nonce setup, we
330 * need to take an interest in the number of rounds in most of the various
331 * functions, and it will probably help if we distinguish the context
332 * structures for the various versions.
333 */
334
335 #define XSALSA20_CTX(r) SALSA20_DECOR(xsalsa20, r, _ctx)
336 #define XSALSA20_INIT(r, ctx, k, ksz, n) \
337 SALSA20_DECOR(xsalsa20, r, _init)(ctx, k, ksz, n)
338 #define XSALSA20_SETNONCE(r, ctx, n) \
339 SALSA20_DECOR(xsalsa20, r, _setnonce)(ctx, n)
340 #define XSALSA20_SEEK(r, ctx, i) \
341 SALSA20_DECOR(xsalsa20, r, _seek)(ctx, i)
342 #define XSALSA20_SEEKU64(r, ctx, i) \
343 SALSA20_DECOR(xsalsa20, r, _seeku64)(ctx, i)
344 #define XSALSA20_TELL(r, ctx) \
345 SALSA20_DECOR(xsalsa20, r, _tell)(ctx)
346 #define XSALSA20_TELLU64(r, ctx) \
347 SALSA20_DECOR(xsalsa20, r, _tellu64)(ctx)
348 #define XSALSA20_ENCRYPT(r, ctx, src, dest, sz) \
349 SALSA20_DECOR(xsalsa20, r, _encrypt)(ctx, src, dest, sz)
350
351 /* --- @xsalsa20{,12,8}_init@ --- *
352 *
353 * Arguments: @xsalsa20R_ctx *ctx@ = the context to fill in
354 * @const void *key@ = pointer to key material
355 * @size_t ksz@ = size of key (either 32 or 16)
356 * @const void *nonce@ = initial nonce, or null
357 *
358 * Returns: ---
359 *
360 * Use: Initializes an XSalsa20/r context ready for use.
361 *
362 * There is a different function for each number of rounds,
363 * unlike for plain Salsa20.
364 */
365
366 #define DEFXINIT(r) \
367 void XSALSA20_INIT(r, XSALSA20_CTX(r) *ctx, \
368 const void *key, size_t ksz, const void *nonce) \
369 { \
370 static const octet zerononce[XSALSA20_NONCESZ]; \
371 \
372 populate(ctx->k, key, ksz); \
373 ctx->s.a[ 0] = SALSA20_A256; \
374 ctx->s.a[ 1] = SALSA20_B256; \
375 ctx->s.a[ 2] = SALSA20_C256; \
376 ctx->s.a[ 3] = SALSA20_D256; \
377 XSALSA20_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
378 }
379 SALSA20_VARS(DEFXINIT)
380
381 /* --- @xsalsa20{,12,8}_setnonce@ --- *
382 *
383 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
384 * @const void *nonce@ = the nonce (@XSALSA20_NONCESZ@ bytes)
385 *
386 * Returns: ---
387 *
388 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
389 * different message. The stream position is reset to zero (see
390 * @salsa20_seek@ etc.).
391 *
392 * There is a different function for each number of rounds,
393 * unlike for plain Salsa20.
394 */
395
396 #define DEFXNONCE(r) \
397 void XSALSA20_SETNONCE(r, XSALSA20_CTX(r) *ctx, const void *nonce) \
398 { \
399 const octet *n = nonce; \
400 uint32 in[4], out[8]; \
401 int i; \
402 \
403 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
404 HSALSA20_RAW(r, ctx->k, in, out); \
405 for (i = 0; i < 4; i++) ctx->s.a[13 - 3*i] = out[i]; \
406 for (i = 4; i < 8; i++) ctx->s.a[27 - 3*i] = out[i]; \
407 salsa20_setnonce(&ctx->s, n + 16); \
408 }
409 SALSA20_VARS(DEFXNONCE)
410
411 /* --- @xsalsa20{,12,8}_seek@, @xsalsa20{,12,8}_seeku64@ --- *
412 *
413 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
414 * @unsigned long i@, @kludge64 i@ = new position to set
415 *
416 * Returns: ---
417 *
418 * Use: Sets a new stream position, in units of Salsa20 output
419 * blocks, which are @XSALSA20_OUTSZ@ bytes each. Byte
420 * granularity can be achieved by calling @xsalsa20R_encrypt@
421 * appropriately.
422 *
423 * There is a different function for each number of rounds,
424 * unlike for plain Salsa20, because the context structures are
425 * different.
426 */
427
428 /* --- @xsalsa20{,12,8}_tell@, @xsalsa20{,12,8}_tellu64@ --- *
429 *
430 * Arguments: @salsa20_ctx *ctx@ = pointer to context
431 *
432 * Returns: The current position in the output stream, in blocks,
433 * rounding upwards.
434 *
435 * There is a different function for each number of rounds,
436 * unlike for plain Salsa20, because the context structures are
437 * different.
438 */
439
440 /* --- @xsalsa20{,12,8}_encrypt@ --- *
441 *
442 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
443 * @const void *src@ = source buffer (or null)
444 * @void *dest@ = destination buffer (or null)
445 * @size_t sz@ = size of the buffers
446 *
447 * Returns: ---
448 *
449 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
450 * XSalsa20 works by XORing plaintext with a keystream, so
451 * encryption and decryption are the same operation. If @dest@
452 * is null then ignore @src@ and skip @sz@ bytes of the
453 * keystream. If @src@ is null, then just write the keystream
454 * to @dest@.
455 */
456
457 #define DEFXPASSTHRU(r) \
458 void XSALSA20_SEEK(r, XSALSA20_CTX(r) *ctx, unsigned long i) \
459 { salsa20_seek(&ctx->s, i); } \
460 void XSALSA20_SEEKU64(r, XSALSA20_CTX(r) *ctx, kludge64 i) \
461 { salsa20_seeku64(&ctx->s, i); } \
462 unsigned long XSALSA20_TELL(r, XSALSA20_CTX(r) *ctx) \
463 { return salsa20_tell(&ctx->s); } \
464 kludge64 XSALSA20_TELLU64(r, XSALSA20_CTX(r) *ctx) \
465 { return salsa20_tellu64(&ctx->s); } \
466 void XSALSA20_ENCRYPT(r, XSALSA20_CTX(r) *ctx, \
467 const void *src, void *dest, size_t sz) \
468 { SALSA20_ENCRYPT(r, &ctx->s, src, dest, sz); }
469 SALSA20_VARS(DEFXPASSTHRU)
470
471 /*----- Generic cipher interface ------------------------------------------*/
472
473 typedef struct gctx { gcipher c; salsa20_ctx ctx; } gctx;
474
475 static void gsetiv(gcipher *c, const void *iv)
476 { gctx *g = (gctx *)c; salsa20_setnonce(&g->ctx, iv); }
477
478 static void gdestroy(gcipher *c)
479 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
480
481 #define DEFGCIPHER(r) \
482 \
483 static const gcipher_ops gops_##r; \
484 \
485 static gcipher *ginit_##r(const void *k, size_t sz) \
486 { \
487 gctx *g = S_CREATE(gctx); \
488 g->c.ops = &gops_##r; \
489 salsa20_init(&g->ctx, k, sz, 0); \
490 return (&g->c); \
491 } \
492 \
493 static void gencrypt_##r(gcipher *c, const void *s, \
494 void *t, size_t sz) \
495 { gctx *g = (gctx *)c; SALSA20_ENCRYPT(r, &g->ctx, s, t, sz); } \
496 \
497 static const gcipher_ops gops_##r = { \
498 &SALSA20_DECOR(salsa20, r, ), \
499 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
500 }; \
501 \
502 const gccipher SALSA20_DECOR(salsa20, r, ) = { \
503 SALSA20_NAME_##r, salsa20_keysz, \
504 SALSA20_NONCESZ, ginit_##r \
505 };
506
507 SALSA20_VARS(DEFGCIPHER)
508
509 #define DEFGXCIPHER(r) \
510 \
511 typedef struct { gcipher c; XSALSA20_CTX(r) ctx; } gxctx_##r; \
512 \
513 static void gxsetiv_##r(gcipher *c, const void *iv) \
514 { gxctx_##r *g = (gxctx_##r *)c; XSALSA20_SETNONCE(r, &g->ctx, iv); } \
515 \
516 static void gxdestroy_##r(gcipher *c) \
517 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
518 \
519 static const gcipher_ops gxops_##r; \
520 \
521 static gcipher *gxinit_##r(const void *k, size_t sz) \
522 { \
523 gxctx_##r *g = S_CREATE(gxctx_##r); \
524 g->c.ops = &gxops_##r; \
525 XSALSA20_INIT(r, &g->ctx, k, sz, 0); \
526 return (&g->c); \
527 } \
528 \
529 static void gxencrypt_##r(gcipher *c, const void *s, \
530 void *t, size_t sz) \
531 { \
532 gxctx_##r *g = (gxctx_##r *)c; \
533 XSALSA20_ENCRYPT(r, &g->ctx, s, t, sz); \
534 } \
535 \
536 static const gcipher_ops gxops_##r = { \
537 &SALSA20_DECOR(xsalsa20, r, ), \
538 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
539 }; \
540 \
541 const gccipher SALSA20_DECOR(xsalsa20, r, ) = { \
542 "x" SALSA20_NAME_##r, salsa20_keysz, \
543 XSALSA20_NONCESZ, gxinit_##r \
544 };
545
546 SALSA20_VARS(DEFGXCIPHER)
547
548 /*----- Generic random number generator interface -------------------------*/
549
550 typedef struct grops {
551 size_t noncesz;
552 void (*seek)(void *, kludge64);
553 kludge64 (*tell)(void *);
554 void (*setnonce)(void *, const void *);
555 void (*generate)(void *, void *, size_t);
556 } grops;
557
558 typedef struct grbasectx {
559 grand r;
560 const grops *ops;
561 } grbasectx;
562
563 static int grmisc(grand *r, unsigned op, ...)
564 {
565 octet buf[XSALSA20_NONCESZ];
566 grbasectx *g = (grbasectx *)r;
567 grand *rr;
568 const octet *p;
569 size_t sz;
570 uint32 i;
571 unsigned long ul;
572 kludge64 pos;
573 va_list ap;
574 int rc = 0;
575
576 va_start(ap, op);
577
578 switch (op) {
579 case GRAND_CHECK:
580 switch (va_arg(ap, unsigned)) {
581 case GRAND_CHECK:
582 case GRAND_SEEDINT:
583 case GRAND_SEEDUINT32:
584 case GRAND_SEEDBLOCK:
585 case GRAND_SEEDRAND:
586 case SALSA20_SEEK:
587 case SALSA20_SEEKU64:
588 case SALSA20_TELL:
589 case SALSA20_TELLU64:
590 rc = 1;
591 break;
592 default:
593 rc = 0;
594 break;
595 }
596 break;
597
598 case GRAND_SEEDINT:
599 i = va_arg(ap, unsigned); STORE32_L(buf, i);
600 memset(buf + 4, 0, g->ops->noncesz - 4);
601 g->ops->setnonce(g, buf);
602 break;
603 case GRAND_SEEDUINT32:
604 i = va_arg(ap, uint32); STORE32_L(buf, i);
605 memset(buf + 4, 0, g->ops->noncesz - 4);
606 g->ops->setnonce(g, buf);
607 break;
608 case GRAND_SEEDBLOCK:
609 p = va_arg(ap, const void *);
610 sz = va_arg(ap, size_t);
611 if (sz < g->ops->noncesz) {
612 memcpy(buf, p, sz);
613 memset(buf + sz, 0, g->ops->noncesz - sz);
614 p = buf;
615 }
616 g->ops->setnonce(g, p);
617 break;
618 case GRAND_SEEDRAND:
619 rr = va_arg(ap, grand *);
620 rr->ops->fill(rr, buf, g->ops->noncesz);
621 g->ops->setnonce(g, buf);
622 break;
623 case SALSA20_SEEK:
624 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
625 g->ops->seek(g, pos);
626 break;
627 case SALSA20_SEEKU64:
628 pos = va_arg(ap, kludge64);
629 g->ops->seek(g, pos);
630 break;
631 case SALSA20_TELL:
632 pos = g->ops->tell(g);
633 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
634 break;
635 case SALSA20_TELLU64:
636 *va_arg(ap, kludge64 *) = g->ops->tell(g);
637 break;
638 default:
639 GRAND_BADOP;
640 break;
641 }
642
643 return (rc);
644 }
645
646 static octet grbyte(grand *r)
647 {
648 grbasectx *g = (grbasectx *)r;
649 octet o;
650 g->ops->generate(g, &o, 1);
651 return (o);
652 }
653
654 static uint32 grword(grand *r)
655 {
656 grbasectx *g = (grbasectx *)r;
657 octet b[4];
658 g->ops->generate(g, b, sizeof(b));
659 return (LOAD32_L(b));
660 }
661
662 static void grfill(grand *r, void *p, size_t sz)
663 {
664 grbasectx *g = (grbasectx *)r;
665 g->ops->generate(r, p, sz);
666 }
667
668 typedef struct grctx {
669 grbasectx r;
670 salsa20_ctx ctx;
671 } grctx;
672
673 static void gr_seek(void *r, kludge64 pos)
674 { grctx *g = r; salsa20_seeku64(&g->ctx, pos); }
675
676 static kludge64 gr_tell(void *r)
677 { grctx *g = r; return (salsa20_tellu64(&g->ctx)); }
678
679 static void gr_setnonce(void *r, const void *n)
680 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
681
682 static void grdestroy(grand *r)
683 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
684
685 #define DEFGRAND(rr) \
686 \
687 static void gr_generate_##rr(void *r, void *b, size_t sz) \
688 { grctx *g = r; SALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
689 \
690 static const grops grops_##rr = \
691 { SALSA20_NONCESZ, gr_seek, gr_tell, \
692 gr_setnonce, gr_generate_##rr }; \
693 \
694 static const grand_ops grops_rand_##rr = { \
695 SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
696 grmisc, grdestroy, grword, \
697 grbyte, grword, grand_range, grfill \
698 }; \
699 \
700 grand *SALSA20_DECOR(salsa20, rr, _rand) \
701 (const void *k, size_t ksz, const void *n) \
702 { \
703 grctx *g = S_CREATE(g); \
704 g->r.r.ops = &grops_rand_##rr; \
705 g->r.ops = &grops_##rr; \
706 salsa20_init(&g->ctx, k, ksz, n); \
707 return (&g->r.r); \
708 }
709 SALSA20_VARS(DEFGRAND)
710
711 #define DEFXGRAND(rr) \
712 \
713 typedef struct grxctx_##rr { \
714 grbasectx r; \
715 XSALSA20_CTX(rr) ctx; \
716 } grxctx_##rr; \
717 \
718 static void grx_seek_##rr(void *r, kludge64 pos) \
719 { grxctx_##rr *g = r; XSALSA20_SEEKU64(rr, &g->ctx, pos); } \
720 \
721 static kludge64 grx_tell_##rr(void *r) \
722 { grxctx_##rr *g = r; return (XSALSA20_TELLU64(rr, &g->ctx)); } \
723 \
724 static void grx_setnonce_##rr(void *r, const void *n) \
725 { grxctx_##rr *g = r; XSALSA20_SETNONCE(rr, &g->ctx, n); } \
726 \
727 static void grxdestroy_##rr(grand *r) \
728 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
729 \
730 static void grx_generate_##rr(void *r, void *b, size_t sz) \
731 { grxctx_##rr *g = r; XSALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
732 \
733 static const grops grxops_##rr = \
734 { XSALSA20_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
735 grx_setnonce_##rr, grx_generate_##rr }; \
736 \
737 static const grand_ops grxops_rand_##rr = { \
738 "x" SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
739 grmisc, grxdestroy_##rr, grword, \
740 grbyte, grword, grand_range, grfill \
741 }; \
742 \
743 grand *SALSA20_DECOR(xsalsa20, rr, _rand) \
744 (const void *k, size_t ksz, const void *n) \
745 { \
746 grxctx_##rr *g = S_CREATE(g); \
747 g->r.r.ops = &grxops_rand_##rr; \
748 g->r.ops = &grxops_##rr; \
749 XSALSA20_INIT(rr, &g->ctx, k, ksz, n); \
750 return (&g->r.r); \
751 }
752 SALSA20_VARS(DEFXGRAND)
753
754 /*----- Test rig ----------------------------------------------------------*/
755
756 #ifdef TEST_RIG
757
758 #include <stdio.h>
759 #include <string.h>
760
761 #include <mLib/quis.h>
762 #include <mLib/testrig.h>
763
764 static const int perm[] = {
765 0, 13, 10, 7,
766 4, 1, 14, 11,
767 8, 5, 2, 15,
768 12, 9, 6, 3
769 };
770
771 #define DEFVCORE(r) \
772 static int v_core_##r(dstr *v) \
773 { \
774 salsa20_matrix a, b; \
775 dstr d = DSTR_INIT; \
776 int i, j, n; \
777 int ok = 1; \
778 \
779 DENSURE(&d, SALSA20_OUTSZ); d.len = SALSA20_OUTSZ; \
780 n = *(int *)v[0].buf; \
781 for (i = 0; i < SALSA20_OUTSZ/4; i++) \
782 b[i] = LOAD32_L(v[1].buf + 4*i); \
783 for (i = 0; i < n; i++) { \
784 for (j = 0; j < 16; j++) a[perm[j]] = b[j]; \
785 core(r, a, b); \
786 memcpy(a, b, sizeof(a)); \
787 } \
788 for (i = 0; i < SALSA20_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, b[i]); \
789 \
790 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
791 ok = 0; \
792 printf("\nfail core:" \
793 "\n\titerations = %d" \
794 "\n\tin = ", n); \
795 type_hex.dump(&v[1], stdout); \
796 printf("\n\texpected = "); \
797 type_hex.dump(&v[2], stdout); \
798 printf("\n\tcalculated = "); \
799 type_hex.dump(&d, stdout); \
800 putchar('\n'); \
801 } \
802 \
803 dstr_destroy(&d); \
804 return (ok); \
805 }
806 SALSA20_VARS(DEFVCORE)
807
808 #define SALSA20_CTX(r) salsa20_ctx
809 #define SALSA20_INIT(r, ctx, k, ksz, n) salsa20_init(ctx, k, ksz, n)
810 #define SALSA20_SEEKU64(r, ctx, i) salsa20_seeku64(ctx, i)
811
812 #define DEFxVENC(base, BASE, r) \
813 static int v_encrypt_##base##_##r(dstr *v) \
814 { \
815 BASE##_CTX(r) ctx; \
816 dstr d = DSTR_INIT; \
817 kludge64 pos; \
818 const octet *p, *p0; \
819 octet *q; \
820 size_t sz, sz0, step; \
821 unsigned long skip; \
822 int ok = 1; \
823 \
824 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
825 else { p0 = 0; sz0 = v[5].len; } \
826 DENSURE(&d, sz0); d.len = sz0; \
827 skip = *(unsigned long *)v[3].buf; \
828 \
829 step = 0; \
830 while (step < sz0 + skip) { \
831 step = step ? 3*step + 4 : 1; \
832 if (step > sz0 + skip) step = sz0 + skip; \
833 BASE##_INIT(r, &ctx, v[0].buf, v[0].len, v[1].buf); \
834 if (v[2].len) { \
835 LOAD64_(pos, v[2].buf); \
836 BASE##_SEEKU64(r, &ctx, pos); \
837 } \
838 \
839 for (sz = skip; sz >= step; sz -= step) \
840 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
841 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
842 for (p = p0, q = (octet *)d.buf, sz = sz0; \
843 sz >= step; \
844 sz -= step, q += step) { \
845 BASE##_ENCRYPT(r, &ctx, p, q, step); \
846 if (p) p += step; \
847 } \
848 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
849 \
850 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
851 ok = 0; \
852 printf("\nfail encrypt:" \
853 "\n\tstep = %lu" \
854 "\n\tkey = ", (unsigned long)step); \
855 type_hex.dump(&v[0], stdout); \
856 printf("\n\tnonce = "); \
857 type_hex.dump(&v[1], stdout); \
858 printf("\n\tposition = "); \
859 type_hex.dump(&v[2], stdout); \
860 printf("\n\tskip = %lu", skip); \
861 printf("\n\tmessage = "); \
862 type_hex.dump(&v[4], stdout); \
863 printf("\n\texpected = "); \
864 type_hex.dump(&v[5], stdout); \
865 printf("\n\tcalculated = "); \
866 type_hex.dump(&d, stdout); \
867 putchar('\n'); \
868 } \
869 } \
870 \
871 dstr_destroy(&d); \
872 return (ok); \
873 }
874 #define DEFVENC(r) DEFxVENC(salsa20, SALSA20, r)
875 #define DEFXVENC(r) DEFxVENC(xsalsa20, XSALSA20, r)
876 SALSA20_VARS(DEFVENC)
877 SALSA20_VARS(DEFXVENC)
878
879 static test_chunk defs[] = {
880 #define DEFxTAB(pre, base, r) \
881 { pre SALSA20_NAME_##r, v_encrypt_##base##_##r, \
882 { &type_hex, &type_hex, &type_hex, &type_ulong, \
883 &type_hex, &type_hex, 0 } },
884 #define DEFTAB(r) \
885 { SALSA20_NAME_##r "-core", v_core_##r, \
886 { &type_int, &type_hex, &type_hex, 0 } }, \
887 DEFxTAB("", salsa20, r)
888 #define DEFXTAB(r) DEFxTAB("x", xsalsa20, r)
889 SALSA20_VARS(DEFTAB)
890 SALSA20_VARS(DEFXTAB)
891 { 0, 0, { 0 } }
892 };
893
894 int main(int argc, char *argv[])
895 {
896 test_run(argc, argv, defs, SRCDIR"/t/salsa20");
897 return (0);
898 }
899
900 #endif
901
902 /*----- That's all, folks -------------------------------------------------*/