d3d0a04a88947c463234c8b89c57f0b4eed860e5
[catacomb] / math / mpx.c
1 /* -*-c-*-
2 *
3 * Low-level multiprecision arithmetic
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36
37 #include <mLib/bits.h>
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41 #include "mptypes.h"
42 #include "mpx.h"
43 #include "bitops.h"
44
45 /*----- Loading and storing -----------------------------------------------*/
46
47 /* --- These are all variations on a theme --- *
48 *
49 * Essentially we want to feed bits into a shift register, @ibits@ bits at a
50 * time, and extract them @obits@ bits at a time whenever there are enough.
51 * Of course, @i@ and @o@ will, in general, be different sizes, and we don't
52 * necessarily know which is larger.
53 *
54 * During an operation, we have a shift register @w@ and a most-recent input
55 * @t@. Together, these hold @bits@ significant bits of input. We arrange
56 * that @bits < ibits + obits <= 2*MPW_BITS@, so we can get away with using
57 * an @mpw@ for both of these quantitities.
58 */
59
60 /* --- @MPX_GETBITS@ --- *
61 *
62 * Arguments: @ibits@ = width of input units, in bits
63 * @obits@ = width of output units, in bits
64 * @iavail@ = condition expression: is input data available?
65 * @getbits@ = function or macro: set argument to next input
66 *
67 * Use: Read an input unit into @t@ and update the necessary
68 * variables.
69 *
70 * It is assumed on entry that @bits < obits@. On exit, we have
71 * @bits < ibits + obits@, and @t@ is live.
72 */
73
74 #define MPX_GETBITS(ibits, obits, iavail, getbits) do { \
75 if (!iavail) goto flush; \
76 if (bits >= ibits) w |= t << (bits - ibits); \
77 getbits(t); \
78 bits += ibits; \
79 } while (0)
80
81 /* --- @MPX_PUTBITS@ --- *
82 *
83 * Arguments: @ibits@ = width of input units, in bits
84 * @obits@ = width of output units, in bits
85 * @oavail@ = condition expression: is output space available?
86 * @putbits@ = function or macro: write its argument to output
87 *
88 * Use: Emit an output unit, and update the necessary variables. If
89 * the output buffer is full, then force an immediate return.
90 *
91 * We assume that @bits < ibits + obits@, and that @t@ is only
92 * relevant if @bits >= ibits@. (The @MPX_GETBITS@ macro
93 * ensures that this is true.)
94 */
95
96 #define SHRW(w, b) ((b) < MPW_BITS ? (w) >> (b) : 0)
97
98 #define MPX_PUTBITS(ibits, obits, oavail, putbits) do { \
99 if (!oavail) return; \
100 if (bits < ibits) { \
101 putbits(w); \
102 bits -= obits; \
103 w = SHRW(w, obits); \
104 } else { \
105 putbits(w | (t << (bits - ibits))); \
106 bits -= obits; \
107 if (bits >= ibits) w = SHRW(w, obits) | (t << (bits - ibits)); \
108 else w = SHRW(w, obits) | (t >> (ibits - bits)); \
109 t = 0; \
110 } \
111 } while (0)
112
113 /* --- @MPX_LOADSTORE@ --- *
114 *
115 * Arguments: @name@ = name of function to create, without @mpx_@ prefix
116 * @wconst@ = qualifiers for @mpw *@ arguments
117 * @oconst@ = qualifiers for octet pointers
118 * @decls@ = additional declarations needed
119 * @ibits@ = width of input units, in bits
120 * @iavail@ = condition expression: is input data available?
121 * @getbits@ = function or macro: set argument to next input
122 * @obits@ = width of output units, in bits
123 * @oavail@ = condition expression: is output space available?
124 * @putbits@ = function or macro: write its argument to output
125 * @fixfinal@ = statements to fix shift register at the end
126 * @clear@ = statements to clear remainder of output
127 *
128 * Use: Generates a function to convert between a sequence of
129 * multiprecision words and a vector of octets.
130 *
131 * The arguments @ibits@, @iavail@ and @getbits@ are passed on
132 * to @MPX_GETBITS@; similarly, @obits@, @oavail@, and @putbits@
133 * are passed on to @MPX_PUTBITS@.
134 *
135 * The following variables are in scope: @v@ and @vl are the
136 * current base and limit of the word vector; @p@ and @q@ are
137 * the base and limit of the octet vector; @w@ and @t@ form the
138 * shift register used during the conversion (see commentary
139 * above); and @bits@ tracks the number of live bits in the
140 * shift register.
141 */
142
143 #define MPX_LOADSTORE(name, wconst, oconst, decls, \
144 ibits, iavail, getbits, obits, oavail, putbits, \
145 fixfinal, clear) \
146 \
147 void mpx_##name(wconst mpw *v, wconst mpw *vl, \
148 oconst void *pp, size_t sz) \
149 { \
150 mpw t = 0, w = 0; \
151 oconst octet *p = pp, *q = p + sz; \
152 int bits = 0; \
153 decls \
154 \
155 for (;;) { \
156 while (bits < obits) MPX_GETBITS(ibits, obits, iavail, getbits); \
157 while (bits >= obits) MPX_PUTBITS(ibits, obits, oavail, putbits); \
158 } \
159 \
160 flush: \
161 if (bits) { \
162 fixfinal; \
163 while (bits > 0) MPX_PUTBITS(ibits, obits, oavail, putbits); \
164 } \
165 clear; \
166 }
167
168 #define EMPTY
169
170 /* --- Macros for @getbits@ and @putbits@ --- */
171
172 #define GETMPW(t) do { t = *v++; } while (0)
173 #define PUTMPW(x) do { *v++ = MPW(x); } while (0)
174
175 #define GETOCTETI(t) do { t = *p++; } while (0)
176 #define PUTOCTETD(x) do { *--q = U8(x); } while (0)
177
178 #define PUTOCTETI(x) do { *p++ = U8(x); } while (0)
179 #define GETOCTETD(t) do { t = *--q; } while (0)
180
181 /* --- Machinery for two's complement I/O --- */
182
183 #define DECL_2CN \
184 unsigned c = 1;
185
186 #define GETMPW_2CN(t) do { \
187 t = MPW(~*v++ + c); \
188 c = c && !t; \
189 } while (0)
190
191 #define PUTMPW_2CN(t) do { \
192 mpw _t = MPW(~(t) + c); \
193 c = c && !_t; \
194 *v++ = _t; \
195 } while (0)
196
197 #define FIXFINALW_2CN do { \
198 if (c && !w && !t); \
199 else if (bits == 8) t ^= ~(mpw)0xffu; \
200 else t ^= ((mpw)1 << (MPW_BITS - bits + 8)) - 256u; \
201 } while (0)
202
203 #define FLUSHO_2CN do { \
204 memset(p, c ? 0 : 0xff, q - p); \
205 } while (0)
206
207 /* --- @mpx_storel@ --- *
208 *
209 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
210 * @void *pp@ = pointer to octet array
211 * @size_t sz@ = size of octet array
212 *
213 * Returns: ---
214 *
215 * Use: Stores an MP in an octet array, least significant octet
216 * first. High-end octets are silently discarded if there
217 * isn't enough space for them.
218 */
219
220 MPX_LOADSTORE(storel, const, EMPTY, EMPTY,
221 MPW_BITS, (v < vl), GETMPW,
222 8, (p < q), PUTOCTETI,
223 EMPTY, { memset(p, 0, q - p); })
224
225 /* --- @mpx_loadl@ --- *
226 *
227 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
228 * @const void *pp@ = pointer to octet array
229 * @size_t sz@ = size of octet array
230 *
231 * Returns: ---
232 *
233 * Use: Loads an MP in an octet array, least significant octet
234 * first. High-end octets are ignored if there isn't enough
235 * space for them.
236 */
237
238 MPX_LOADSTORE(loadl, EMPTY, const, EMPTY,
239 8, (p < q), GETOCTETI,
240 MPW_BITS, (v < vl), PUTMPW,
241 EMPTY, { MPX_ZERO(v, vl); })
242
243
244 /* --- @mpx_storeb@ --- *
245 *
246 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
247 * @void *pp@ = pointer to octet array
248 * @size_t sz@ = size of octet array
249 *
250 * Returns: ---
251 *
252 * Use: Stores an MP in an octet array, most significant octet
253 * first. High-end octets are silently discarded if there
254 * isn't enough space for them.
255 */
256
257 MPX_LOADSTORE(storeb, const, EMPTY, EMPTY,
258 MPW_BITS, (v < vl), GETMPW,
259 8, (p < q), PUTOCTETD,
260 EMPTY, { memset(p, 0, q - p); })
261
262 /* --- @mpx_loadb@ --- *
263 *
264 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
265 * @const void *pp@ = pointer to octet array
266 * @size_t sz@ = size of octet array
267 *
268 * Returns: ---
269 *
270 * Use: Loads an MP in an octet array, most significant octet
271 * first. High-end octets are ignored if there isn't enough
272 * space for them.
273 */
274
275 MPX_LOADSTORE(loadb, EMPTY, const, EMPTY,
276 8, (p < q), GETOCTETD,
277 MPW_BITS, (v < vl), PUTMPW,
278 EMPTY, { MPX_ZERO(v, vl); })
279
280 /* --- @mpx_storel2cn@ --- *
281 *
282 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
283 * @void *pp@ = pointer to octet array
284 * @size_t sz@ = size of octet array
285 *
286 * Returns: ---
287 *
288 * Use: Stores a negative MP in an octet array, least significant
289 * octet first, as two's complement. High-end octets are
290 * silently discarded if there isn't enough space for them.
291 * This obviously makes the output bad.
292 */
293
294 MPX_LOADSTORE(storel2cn, const, EMPTY, DECL_2CN,
295 MPW_BITS, (v < vl), GETMPW_2CN,
296 8, (p < q), PUTOCTETI,
297 EMPTY, { FLUSHO_2CN; })
298
299 /* --- @mpx_loadl2cn@ --- *
300 *
301 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
302 * @const void *pp@ = pointer to octet array
303 * @size_t sz@ = size of octet array
304 *
305 * Returns: ---
306 *
307 * Use: Loads a negative MP in an octet array, least significant
308 * octet first, as two's complement. High-end octets are
309 * ignored if there isn't enough space for them. This probably
310 * means you made the wrong choice coming here.
311 */
312
313 MPX_LOADSTORE(loadl2cn, EMPTY, const, DECL_2CN,
314 8, (p < q), GETOCTETI,
315 MPW_BITS, (v < vl), PUTMPW_2CN,
316 { FIXFINALW_2CN; }, { MPX_ZERO(v, vl); })
317
318 /* --- @mpx_storeb2cn@ --- *
319 *
320 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
321 * @void *pp@ = pointer to octet array
322 * @size_t sz@ = size of octet array
323 *
324 * Returns: ---
325 *
326 * Use: Stores a negative MP in an octet array, most significant
327 * octet first, as two's complement. High-end octets are
328 * silently discarded if there isn't enough space for them,
329 * which probably isn't what you meant.
330 */
331
332 MPX_LOADSTORE(storeb2cn, const, EMPTY, DECL_2CN,
333 MPW_BITS, (v < vl), GETMPW_2CN,
334 8, (p < q), PUTOCTETD,
335 EMPTY, { FLUSHO_2CN; })
336
337 /* --- @mpx_loadb2cn@ --- *
338 *
339 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
340 * @const void *pp@ = pointer to octet array
341 * @size_t sz@ = size of octet array
342 *
343 * Returns: ---
344 *
345 * Use: Loads a negative MP in an octet array, most significant octet
346 * first as two's complement. High-end octets are ignored if
347 * there isn't enough space for them. This probably means you
348 * chose this function wrongly.
349 */
350
351 MPX_LOADSTORE(loadb2cn, EMPTY, const, DECL_2CN,
352 8, (p < q), GETOCTETD,
353 MPW_BITS, (v < vl), PUTMPW_2CN,
354 { FIXFINALW_2CN; }, { MPX_ZERO(v, vl); })
355
356 /*----- Logical shifting --------------------------------------------------*/
357
358 /* --- @MPX_SHIFT1@ --- *
359 *
360 * Arguments: @init@ = initial accumulator value
361 * @out@ = expression to store in each output word
362 * @next@ = expression for next accumulator value
363 *
364 * Use: Performs a single-position shift. The input is scanned
365 * right-to-left. In the expressions @out@ and @next@, the
366 * accumulator is available in @w@ and the current input word is
367 * in @t@.
368 *
369 * This macro is intended to be used in the @shift1@ argument of
370 * @MPX_SHIFTOP@, and expects variables describing the operation
371 * to be set up accordingly.
372 */
373
374 #define MPX_SHIFT1(init, out, next) do { \
375 mpw t, w = (init); \
376 while (av < avl) { \
377 if (dv >= dvl) break; \
378 t = MPW(*av++); \
379 *dv++ = (out); \
380 w = (next); \
381 } \
382 if (dv < dvl) { *dv++ = MPW(w); MPX_ZERO(dv, dvl); } \
383 } while (0)
384
385 /* --- @MPX_SHIFTW@ --- *
386 *
387 * Arguments: @max@ = the maximum shift (in words) which is nontrivial
388 * @clear@ = function (or macro) to clear low-order output words
389 * @copy@ = statement to copy words from input to output
390 *
391 * Use: Performs a shift by a whole number of words. If the shift
392 * amount is @max@ or more words, then the destination is
393 * @clear@ed entirely; otherwise, @copy@ is executed.
394 *
395 * This macro is intended to be used in the @shiftw@ argument of
396 * @MPX_SHIFTOP@, and expects variables describing the operation
397 * to be set up accordingly.
398 */
399
400 #define MPX_SHIFTW(max, clear, copy) do { \
401 if (nw >= (max)) clear(dv, dvl); \
402 else copy \
403 } while (0)
404
405 /* --- @MPX_SHIFTOP@ --- *
406 *
407 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
408 * @shift1@ = statement to shift by a single bit
409 * @shiftw@ = statement to shift by a whole number of words
410 * @shift@ = statement to perform a general shift
411 *
412 * Use: Emits a shift operation. The input is @av@..@avl@; the
413 * output is @dv@..@dvl@; and the shift amount (in bits) is
414 * @n@. In @shiftw@ and @shift@, @nw@ and @nb@ are set up such
415 * that @n = nw*MPW_BITS + nb@ and @nb < MPW_BITS@.
416 */
417
418 #define MPX_SHIFTOP(name, shift1, shiftw, shift) \
419 \
420 void mpx_##name(mpw *dv, mpw *dvl, \
421 const mpw *av, const mpw *avl, \
422 size_t n) \
423 { \
424 \
425 if (n == 0) \
426 MPX_COPY(dv, dvl, av, avl); \
427 else if (n == 1) \
428 do shift1 while (0); \
429 else { \
430 size_t nw = n/MPW_BITS; \
431 unsigned nb = n%MPW_BITS; \
432 if (!nb) do shiftw while (0); \
433 else do shift while (0); \
434 } \
435 }
436
437 /* --- @MPX_SHIFT_LEFT@ --- *
438 *
439 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
440 * @init1@ = initializer for single-bit shift accumulator
441 * @clear@ = function (or macro) to clear low-order output words
442 * @flush@ = expression for low-order nontrivial output word
443 *
444 * Use: Emits a left-shift operation. This expands to a call on
445 * @MPX_SHIFTOP@, but implements the complicated @shift@
446 * statement.
447 *
448 * The @init1@ argument is as for @MPX_SHIFT1@, and @clear@ is
449 * as for @MPX_SHIFTW@ (though is used elsewhere). In a general
450 * shift, @nw@ whole low-order output words are set using
451 * @clear@; high-order words are zeroed; and the remaining words
452 * set with a left-to-right pass across the input; at the end of
453 * the operation, the least significant output word above those
454 * @clear@ed is set using @flush@, which may use the accumulator
455 * @w@ = @av[0] << nb@.
456 */
457
458 #define MPX_SHIFT_LEFT(name, init1, clear, flush) \
459 MPX_SHIFTOP(name, { \
460 MPX_SHIFT1(init1, \
461 w | (t << 1), \
462 t >> (MPW_BITS - 1)); \
463 }, { \
464 MPX_SHIFTW(dvl - dv, clear, { \
465 MPX_COPY(dv + nw, dvl, av, avl); \
466 clear(dv, dv + nw); \
467 }); \
468 }, { \
469 size_t nr = MPW_BITS - nb; \
470 size_t dvn = dvl - dv; \
471 size_t avn = avl - av; \
472 mpw w; \
473 \
474 if (dvn <= nw) { \
475 clear(dv, dvl); \
476 break; \
477 } \
478 \
479 if (dvn <= avn + nw) { \
480 avl = av + dvn - nw; \
481 w = *--avl << nb; \
482 } else { \
483 size_t off = avn + nw + 1; \
484 MPX_ZERO(dv + off, dvl); \
485 dvl = dv + off; \
486 w = 0; \
487 } \
488 \
489 while (avl > av) { \
490 mpw t = *--avl; \
491 *--dvl = MPW(w | (t >> nr)); \
492 w = t << nb; \
493 } \
494 \
495 *--dvl = MPW(flush); \
496 clear(dv, dvl); \
497 })
498
499 /* --- @mpx_lsl@ --- *
500 *
501 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
502 * @const mpw *av, *avl@ = source vector base and limit
503 * @size_t n@ = number of bit positions to shift by
504 *
505 * Returns: ---
506 *
507 * Use: Performs a logical shift left operation on an integer.
508 */
509
510 MPX_SHIFT_LEFT(lsl, 0, MPX_ZERO, w)
511
512 /* --- @mpx_lslc@ --- *
513 *
514 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
515 * @const mpw *av, *avl@ = source vector base and limit
516 * @size_t n@ = number of bit positions to shift by
517 *
518 * Returns: ---
519 *
520 * Use: Performs a logical shift left operation on an integer, only
521 * it fills in the bits with ones instead of zeroes.
522 */
523
524 MPX_SHIFT_LEFT(lslc, 1, MPX_ONE, w | (MPW_MAX >> nr))
525
526 /* --- @mpx_lsr@ --- *
527 *
528 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
529 * @const mpw *av, *avl@ = source vector base and limit
530 * @size_t n@ = number of bit positions to shift by
531 *
532 * Returns: ---
533 *
534 * Use: Performs a logical shift right operation on an integer.
535 */
536
537 MPX_SHIFTOP(lsr, {
538 MPX_SHIFT1(av < avl ? *av++ >> 1 : 0,
539 w | (t << (MPW_BITS - 1)),
540 t >> 1);
541 }, {
542 MPX_SHIFTW(avl - av, MPX_ZERO,
543 { MPX_COPY(dv, dvl, av + nw, avl); });
544 }, {
545 size_t nr = MPW_BITS - nb;
546 mpw w;
547
548 if (nw >= avl - av)
549 w = 0;
550 else {
551 av += nw;
552 w = *av++;
553
554 while (av < avl) {
555 mpw t;
556 if (dv >= dvl) goto done;
557 t = *av++;
558 *dv++ = MPW((w >> nb) | (t << nr));
559 w = t;
560 }
561 }
562
563 if (dv < dvl) {
564 *dv++ = MPW(w >> nb);
565 MPX_ZERO(dv, dvl);
566 }
567 done:;
568 })
569
570 /*----- Bitwise operations ------------------------------------------------*/
571
572 /* --- @mpx_bitop@ --- *
573 *
574 * Arguments: @mpw *dv, *dvl@ = destination vector
575 * @const mpw *av, *avl@ = first source vector
576 * @const mpw *bv, *bvl@ = second source vector
577 *
578 * Returns: ---
579 *
580 * Use; Provides the dyadic boolean functions.
581 */
582
583 #define MPX_BITBINOP(string) \
584 \
585 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
586 const mpw *bv, const mpw *bvl) \
587 { \
588 MPX_SHRINK(av, avl); \
589 MPX_SHRINK(bv, bvl); \
590 \
591 while (dv < dvl) { \
592 mpw a, b; \
593 a = (av < avl) ? *av++ : 0; \
594 b = (bv < bvl) ? *bv++ : 0; \
595 *dv++ = B##string(a, b); \
596 IGNORE(a); IGNORE(b); \
597 } \
598 }
599
600 MPX_DOBIN(MPX_BITBINOP)
601
602 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
603 {
604 MPX_SHRINK(av, avl);
605
606 while (dv < dvl) {
607 mpw a;
608 a = (av < avl) ? *av++ : 0;
609 *dv++ = ~a;
610 }
611 }
612
613 /*----- Unsigned arithmetic -----------------------------------------------*/
614
615 /* --- @mpx_2c@ --- *
616 *
617 * Arguments: @mpw *dv, *dvl@ = destination vector
618 * @const mpw *v, *vl@ = source vector
619 *
620 * Returns: ---
621 *
622 * Use: Calculates the two's complement of @v@.
623 */
624
625 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
626 {
627 mpw c = 0;
628 while (dv < dvl && v < vl)
629 *dv++ = c = MPW(~*v++);
630 if (dv < dvl) {
631 if (c > MPW_MAX / 2)
632 c = MPW(~0);
633 while (dv < dvl)
634 *dv++ = c;
635 }
636 MPX_UADDN(dv, dvl, 1);
637 }
638
639 /* --- @mpx_ueq@ --- *
640 *
641 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
642 * @const mpw *bv, *bvl@ = second argument vector base and limit
643 *
644 * Returns: Nonzero if the two vectors are equal.
645 *
646 * Use: Performs an unsigned integer test for equality.
647 */
648
649 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
650 {
651 MPX_SHRINK(av, avl);
652 MPX_SHRINK(bv, bvl);
653 if (avl - av != bvl - bv)
654 return (0);
655 while (av < avl) {
656 if (*av++ != *bv++)
657 return (0);
658 }
659 return (1);
660 }
661
662 /* --- @mpx_ucmp@ --- *
663 *
664 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
665 * @const mpw *bv, *bvl@ = second argument vector base and limit
666 *
667 * Returns: Less than, equal to, or greater than zero depending on
668 * whether @a@ is less than, equal to or greater than @b@,
669 * respectively.
670 *
671 * Use: Performs an unsigned integer comparison.
672 */
673
674 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
675 {
676 MPX_SHRINK(av, avl);
677 MPX_SHRINK(bv, bvl);
678
679 if (avl - av > bvl - bv)
680 return (+1);
681 else if (avl - av < bvl - bv)
682 return (-1);
683 else while (avl > av) {
684 mpw a = *--avl, b = *--bvl;
685 if (a > b)
686 return (+1);
687 else if (a < b)
688 return (-1);
689 }
690 return (0);
691 }
692
693 /* --- @mpx_uadd@ --- *
694 *
695 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
696 * @const mpw *av, *avl@ = first addend vector base and limit
697 * @const mpw *bv, *bvl@ = second addend vector base and limit
698 *
699 * Returns: ---
700 *
701 * Use: Performs unsigned integer addition. If the result overflows
702 * the destination vector, high-order bits are discarded. This
703 * means that two's complement addition happens more or less for
704 * free, although that's more a side-effect than anything else.
705 * The result vector may be equal to either or both source
706 * vectors, but may not otherwise overlap them.
707 */
708
709 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
710 const mpw *bv, const mpw *bvl)
711 {
712 mpw c = 0;
713
714 while (av < avl || bv < bvl) {
715 mpw a, b;
716 mpd x;
717 if (dv >= dvl)
718 return;
719 a = (av < avl) ? *av++ : 0;
720 b = (bv < bvl) ? *bv++ : 0;
721 x = (mpd)a + (mpd)b + c;
722 *dv++ = MPW(x);
723 c = x >> MPW_BITS;
724 }
725 if (dv < dvl) {
726 *dv++ = c;
727 MPX_ZERO(dv, dvl);
728 }
729 }
730
731 /* --- @mpx_uaddn@ --- *
732 *
733 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
734 * @mpw n@ = other addend
735 *
736 * Returns: ---
737 *
738 * Use: Adds a small integer to a multiprecision number.
739 */
740
741 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
742
743 /* --- @mpx_uaddnlsl@ --- *
744 *
745 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
746 * @mpw a@ = second argument
747 * @unsigned o@ = offset in bits
748 *
749 * Returns: ---
750 *
751 * Use: Computes %$d + 2^o a$%. If the result overflows then
752 * high-order bits are discarded, as usual. We must have
753 * @0 < o < MPW_BITS@.
754 */
755
756 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
757 {
758 mpd x = (mpd)a << o;
759
760 while (x && dv < dvl) {
761 x += *dv;
762 *dv++ = MPW(x);
763 x >>= MPW_BITS;
764 }
765 }
766
767 /* --- @mpx_usub@ --- *
768 *
769 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
770 * @const mpw *av, *avl@ = first argument vector base and limit
771 * @const mpw *bv, *bvl@ = second argument vector base and limit
772 *
773 * Returns: ---
774 *
775 * Use: Performs unsigned integer subtraction. If the result
776 * overflows the destination vector, high-order bits are
777 * discarded. This means that two's complement subtraction
778 * happens more or less for free, althuogh that's more a side-
779 * effect than anything else. The result vector may be equal to
780 * either or both source vectors, but may not otherwise overlap
781 * them.
782 */
783
784 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
785 const mpw *bv, const mpw *bvl)
786 {
787 mpw c = 0;
788
789 while (av < avl || bv < bvl) {
790 mpw a, b;
791 mpd x;
792 if (dv >= dvl)
793 return;
794 a = (av < avl) ? *av++ : 0;
795 b = (bv < bvl) ? *bv++ : 0;
796 x = (mpd)a - (mpd)b - c;
797 *dv++ = MPW(x);
798 if (x >> MPW_BITS)
799 c = 1;
800 else
801 c = 0;
802 }
803 if (c)
804 c = MPW_MAX;
805 while (dv < dvl)
806 *dv++ = c;
807 }
808
809 /* --- @mpx_usubn@ --- *
810 *
811 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
812 * @n@ = subtrahend
813 *
814 * Returns: ---
815 *
816 * Use: Subtracts a small integer from a multiprecision number.
817 */
818
819 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
820
821 /* --- @mpx_usubnlsl@ --- *
822 *
823 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
824 * @mpw a@ = second argument
825 * @unsigned o@ = offset in bits
826 *
827 * Returns: ---
828 *
829 * Use: Computes %$d + 2^o a$%. If the result overflows then
830 * high-order bits are discarded, as usual. We must have
831 * @0 < o < MPW_BITS@.
832 */
833
834 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
835 {
836 mpw b = a >> (MPW_BITS - o);
837 a <<= o;
838
839 if (dv < dvl) {
840 mpd x = (mpd)*dv - MPW(a);
841 *dv++ = MPW(x);
842 if (x >> MPW_BITS)
843 b++;
844 MPX_USUBN(dv, dvl, b);
845 }
846 }
847
848 /* --- @mpx_umul@ --- *
849 *
850 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
851 * @const mpw *av, *avl@ = multiplicand vector base and limit
852 * @const mpw *bv, *bvl@ = multiplier vector base and limit
853 *
854 * Returns: ---
855 *
856 * Use: Performs unsigned integer multiplication. If the result
857 * overflows the desination vector, high-order bits are
858 * discarded. The result vector may not overlap the argument
859 * vectors in any way.
860 */
861
862 CPU_DISPATCH(EMPTY, (void), void, mpx_umul,
863 (mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
864 const mpw *bv, const mpw *bvl),
865 (dv, dvl, av, avl, bv, bvl), pick_umul, simple_umul);
866
867 static void simple_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
868 const mpw *bv, const mpw *bvl)
869 {
870 /* --- This is probably worthwhile on a multiply --- */
871
872 MPX_SHRINK(av, avl);
873 MPX_SHRINK(bv, bvl);
874
875 /* --- Deal with a multiply by zero --- */
876
877 if (bv == bvl) {
878 MPX_ZERO(dv, dvl);
879 return;
880 }
881
882 /* --- Do the initial multiply and initialize the accumulator --- */
883
884 MPX_UMULN(dv, dvl, av, avl, *bv++);
885
886 /* --- Do the remaining multiply/accumulates --- */
887
888 while (dv < dvl && bv < bvl) {
889 mpw m = *bv++;
890 mpw c = 0;
891 const mpw *avv = av;
892 mpw *dvv = ++dv;
893
894 while (avv < avl) {
895 mpd x;
896 if (dvv >= dvl)
897 goto next;
898 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
899 *dvv++ = MPW(x);
900 c = x >> MPW_BITS;
901 }
902 MPX_UADDN(dvv, dvl, c);
903 next:;
904 }
905 }
906
907 #define MAYBE_UMUL4(impl) \
908 extern void mpx_umul4_##impl(mpw */*dv*/, \
909 const mpw */*av*/, const mpw */*avl*/, \
910 const mpw */*bv*/, const mpw */*bvl*/); \
911 static void maybe_umul4_##impl(mpw *dv, mpw *dvl, \
912 const mpw *av, const mpw *avl, \
913 const mpw *bv, const mpw *bvl) \
914 { \
915 size_t an = avl - av, bn = bvl - bv, dn = dvl - dv; \
916 if (!an || an%4 != 0 || !bn || bn%4 != 0 || dn < an + bn) \
917 simple_umul(dv, dvl, av, avl, bv, bvl); \
918 else { \
919 mpx_umul4_##impl(dv, av, avl, bv, bvl); \
920 MPX_ZERO(dv + an + bn, dvl); \
921 } \
922 }
923
924 #if CPUFAM_X86
925 MAYBE_UMUL4(x86_sse2)
926 MAYBE_UMUL4(x86_avx)
927 #endif
928
929 #if CPUFAM_AMD64
930 MAYBE_UMUL4(amd64_sse2)
931 MAYBE_UMUL4(amd64_avx)
932 #endif
933
934 #if CPUFAM_ARMEL
935 MAYBE_UMUL4(arm_neon)
936 #endif
937
938 #if CPUFAM_ARM64
939 MAYBE_UMUL4(arm64_simd)
940 #endif
941
942 static mpx_umul__functype *pick_umul(void)
943 {
944 #if CPUFAM_X86
945 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_x86_avx,
946 cpu_feature_p(CPUFEAT_X86_AVX));
947 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_x86_sse2,
948 cpu_feature_p(CPUFEAT_X86_SSE2));
949 #endif
950 #if CPUFAM_AMD64
951 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_amd64_avx,
952 cpu_feature_p(CPUFEAT_X86_AVX));
953 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_amd64_sse2,
954 cpu_feature_p(CPUFEAT_X86_SSE2));
955 #endif
956 #if CPUFAM_ARMEL
957 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_arm_neon,
958 cpu_feature_p(CPUFEAT_ARM_NEON));
959 #endif
960 #if CPUFAM_ARM64
961 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_arm64_simd, 1);
962 #endif
963 DISPATCH_PICK_FALLBACK(mpx_umul, simple_umul);
964 }
965
966 /* --- @mpx_umuln@ --- *
967 *
968 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
969 * @const mpw *av, *avl@ = multiplicand vector base and limit
970 * @mpw m@ = multiplier
971 *
972 * Returns: ---
973 *
974 * Use: Multiplies a multiprecision integer by a single-word value.
975 * The destination and source may be equal. The destination
976 * is completely cleared after use.
977 */
978
979 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
980 { MPX_UMULN(dv, dvl, av, avl, m); }
981
982 /* --- @mpx_umlan@ --- *
983 *
984 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
985 * @const mpw *av, *avl@ = multiplicand vector base and limit
986 * @mpw m@ = multiplier
987 *
988 * Returns: ---
989 *
990 * Use: Multiplies a multiprecision integer by a single-word value
991 * and adds the result to an accumulator.
992 */
993
994 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
995 { MPX_UMLAN(dv, dvl, av, avl, m); }
996
997 /* --- @mpx_usqr@ --- *
998 *
999 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
1000 * @const mpw *av, *av@ = source vector base and limit
1001 *
1002 * Returns: ---
1003 *
1004 * Use: Performs unsigned integer squaring. The result vector must
1005 * not overlap the source vector in any way.
1006 */
1007
1008 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
1009 {
1010 MPX_ZERO(dv, dvl);
1011
1012 /* --- Main loop --- */
1013
1014 while (av < avl) {
1015 const mpw *avv = av;
1016 mpw *dvv = dv;
1017 mpw a = *av;
1018 mpd c;
1019
1020 /* --- Stop if I've run out of destination --- */
1021
1022 if (dvv >= dvl)
1023 break;
1024
1025 /* --- Work out the square at this point in the proceedings --- */
1026
1027 {
1028 mpd x = (mpd)a * (mpd)a + *dvv;
1029 *dvv++ = MPW(x);
1030 c = MPW(x >> MPW_BITS);
1031 }
1032
1033 /* --- Now fix up the rest of the vector upwards --- */
1034
1035 avv++;
1036 while (dvv < dvl && avv < avl) {
1037 mpd x = (mpd)a * (mpd)*avv++;
1038 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1039 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1040 *dvv++ = MPW(y);
1041 }
1042 while (dvv < dvl && c) {
1043 mpd x = c + *dvv;
1044 *dvv++ = MPW(x);
1045 c = x >> MPW_BITS;
1046 }
1047
1048 /* --- Get ready for the next round --- */
1049
1050 av++;
1051 dv += 2;
1052 }
1053 }
1054
1055 /* --- @mpx_udiv@ --- *
1056 *
1057 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1058 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1059 * @const mpw *dv, *dvl@ = divisor vector base and limit
1060 * @mpw *sv, *svl@ = scratch workspace
1061 *
1062 * Returns: ---
1063 *
1064 * Use: Performs unsigned integer division. If the result overflows
1065 * the quotient vector, high-order bits are discarded. (Clearly
1066 * the remainder vector can't overflow.) The various vectors
1067 * may not overlap in any way. Yes, I know it's a bit odd
1068 * requiring the dividend to be in the result position but it
1069 * does make some sense really. The remainder must have
1070 * headroom for at least two extra words. The scratch space
1071 * must be at least one word larger than the divisor.
1072 */
1073
1074 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1075 const mpw *dv, const mpw *dvl,
1076 mpw *sv, mpw *svl)
1077 {
1078 unsigned norm = 0;
1079 size_t scale;
1080 mpw d, dd;
1081
1082 /* --- Initialize the quotient --- */
1083
1084 MPX_ZERO(qv, qvl);
1085
1086 /* --- Perform some sanity checks --- */
1087
1088 MPX_SHRINK(dv, dvl);
1089 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1090
1091 /* --- Normalize the divisor --- *
1092 *
1093 * The algorithm requires that the divisor be at least two digits long.
1094 * This is easy to fix.
1095 */
1096
1097 {
1098 unsigned b;
1099
1100 d = dvl[-1];
1101 for (b = MPW_P2; b; b >>= 1) {
1102 if (d <= (MPW_MAX >> b)) {
1103 d <<= b;
1104 norm += b;
1105 }
1106 }
1107 if (dv + 1 == dvl)
1108 norm += MPW_BITS;
1109 }
1110
1111 /* --- Normalize the dividend/remainder to match --- */
1112
1113 if (norm) {
1114 mpx_lsl(rv, rvl, rv, rvl, norm);
1115 mpx_lsl(sv, svl, dv, dvl, norm);
1116 dv = sv;
1117 dvl = svl;
1118 MPX_SHRINK(dv, dvl);
1119 }
1120
1121 MPX_SHRINK(rv, rvl);
1122 d = dvl[-1];
1123 dd = dvl[-2];
1124
1125 /* --- Work out the relative scales --- */
1126
1127 {
1128 size_t rvn = rvl - rv;
1129 size_t dvn = dvl - dv;
1130
1131 /* --- If the divisor is clearly larger, notice this --- */
1132
1133 if (dvn > rvn) {
1134 mpx_lsr(rv, rvl, rv, rvl, norm);
1135 return;
1136 }
1137
1138 scale = rvn - dvn;
1139 }
1140
1141 /* --- Calculate the most significant quotient digit --- *
1142 *
1143 * Because the divisor has its top bit set, this can only happen once. The
1144 * pointer arithmetic is a little contorted, to make sure that the
1145 * behaviour is defined.
1146 */
1147
1148 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1149 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1150 if (qvl - qv > scale)
1151 qv[scale] = 1;
1152 }
1153
1154 /* --- Now for the main loop --- */
1155
1156 {
1157 mpw *rvv = rvl - 2;
1158
1159 while (scale) {
1160 mpw q;
1161 mpd rh;
1162
1163 /* --- Get an estimate for the next quotient digit --- */
1164
1165 mpw r = rvv[1];
1166 mpw rr = rvv[0];
1167 mpw rrr = *--rvv;
1168
1169 scale--;
1170 rh = ((mpd)r << MPW_BITS) | rr;
1171 if (r == d)
1172 q = MPW_MAX;
1173 else
1174 q = MPW(rh / d);
1175
1176 /* --- Refine the estimate --- */
1177
1178 {
1179 mpd yh = (mpd)d * q;
1180 mpd yy = (mpd)dd * q;
1181 mpw yl;
1182
1183 if (yy > MPW_MAX)
1184 yh += yy >> MPW_BITS;
1185 yl = MPW(yy);
1186
1187 while (yh > rh || (yh == rh && yl > rrr)) {
1188 q--;
1189 yh -= d;
1190 if (yl < dd)
1191 yh--;
1192 yl = MPW(yl - dd);
1193 }
1194 }
1195
1196 /* --- Remove a chunk from the dividend --- */
1197
1198 {
1199 mpw *svv;
1200 const mpw *dvv;
1201 mpw mc = 0, sc = 0;
1202
1203 /* --- Calculate the size of the chunk --- *
1204 *
1205 * This does the whole job of calculating @r >> scale - qd@.
1206 */
1207
1208 for (svv = rv + scale, dvv = dv;
1209 dvv < dvl && svv < rvl;
1210 svv++, dvv++) {
1211 mpd x = (mpd)*dvv * (mpd)q + mc;
1212 mc = x >> MPW_BITS;
1213 x = (mpd)*svv - MPW(x) - sc;
1214 *svv = MPW(x);
1215 if (x >> MPW_BITS)
1216 sc = 1;
1217 else
1218 sc = 0;
1219 }
1220
1221 if (svv < rvl) {
1222 mpd x = (mpd)*svv - mc - sc;
1223 *svv++ = MPW(x);
1224 if (x >> MPW_BITS)
1225 sc = MPW_MAX;
1226 else
1227 sc = 0;
1228 while (svv < rvl)
1229 *svv++ = sc;
1230 }
1231
1232 /* --- Fix if the quotient was too large --- *
1233 *
1234 * This doesn't seem to happen very often.
1235 */
1236
1237 if (rvl[-1] > MPW_MAX / 2) {
1238 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1239 q--;
1240 }
1241 }
1242
1243 /* --- Done for another iteration --- */
1244
1245 if (qvl - qv > scale)
1246 qv[scale] = q;
1247 r = rr;
1248 rr = rrr;
1249 }
1250 }
1251
1252 /* --- Now fiddle with unnormalizing and things --- */
1253
1254 mpx_lsr(rv, rvl, rv, rvl, norm);
1255 }
1256
1257 /* --- @mpx_udivn@ --- *
1258 *
1259 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1260 * dividend)
1261 * @const mpw *rv, *rvl@ = dividend
1262 * @mpw d@ = single-precision divisor
1263 *
1264 * Returns: Remainder after divison.
1265 *
1266 * Use: Performs a single-precision division operation.
1267 */
1268
1269 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1270 {
1271 size_t i;
1272 size_t ql = qvl - qv;
1273 mpd r = 0;
1274
1275 i = rvl - rv;
1276 while (i > 0) {
1277 i--;
1278 r = (r << MPW_BITS) | rv[i];
1279 if (i < ql)
1280 qv[i] = r / d;
1281 r %= d;
1282 }
1283 return (MPW(r));
1284 }
1285
1286 /*----- Test rig ----------------------------------------------------------*/
1287
1288 #ifdef TEST_RIG
1289
1290 #include <mLib/alloc.h>
1291 #include <mLib/dstr.h>
1292 #include <mLib/macros.h>
1293 #include <mLib/quis.h>
1294 #include <mLib/testrig.h>
1295
1296 #ifdef ENABLE_ASM_DEBUG
1297 # include "regdump.h"
1298 #endif
1299
1300 #include "mpscan.h"
1301
1302 #define ALLOC(v, vl, sz) do { \
1303 size_t _sz = (sz); \
1304 mpw *_vv = xmalloc(MPWS(_sz)); \
1305 mpw *_vvl = _vv + _sz; \
1306 memset(_vv, 0xa5, MPWS(_sz)); \
1307 (v) = _vv; \
1308 (vl) = _vvl; \
1309 } while (0)
1310
1311 #define LOAD(v, vl, d) do { \
1312 const dstr *_d = (d); \
1313 mpw *_v, *_vl; \
1314 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1315 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1316 (v) = _v; \
1317 (vl) = _vl; \
1318 } while (0)
1319
1320 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1321
1322 static void dumpbits(const char *msg, const void *pp, size_t sz)
1323 {
1324 const octet *p = pp;
1325 fputs(msg, stderr);
1326 for (; sz; sz--)
1327 fprintf(stderr, " %02x", *p++);
1328 fputc('\n', stderr);
1329 }
1330
1331 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1332 {
1333 fputs(msg, stderr);
1334 MPX_SHRINK(v, vl);
1335 while (v < vl)
1336 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1337 fputc('\n', stderr);
1338 }
1339
1340 static int chkscan(const mpw *v, const mpw *vl,
1341 const void *pp, size_t sz, int step)
1342 {
1343 mpscan mps;
1344 const octet *p = pp;
1345 unsigned bit = 0;
1346 int ok = 1;
1347
1348 mpscan_initx(&mps, v, vl);
1349 while (sz) {
1350 unsigned x = *p;
1351 int i;
1352 p += step;
1353 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1354 if (MPSCAN_BIT(&mps) != (x & 1)) {
1355 fprintf(stderr,
1356 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1357 step, bit, x & 1, MPSCAN_BIT(&mps));
1358 ok = 0;
1359 }
1360 x >>= 1;
1361 bit++;
1362 }
1363 sz--;
1364 }
1365
1366 return (ok);
1367 }
1368
1369 static int loadstore(dstr *v)
1370 {
1371 dstr d = DSTR_INIT;
1372 size_t sz = MPW_RQ(v->len) * 2, diff;
1373 mpw *m, *ml;
1374 int ok = 1;
1375
1376 dstr_ensure(&d, v->len);
1377 m = xmalloc(MPWS(sz));
1378
1379 for (diff = 0; diff < sz; diff += 5) {
1380 size_t oct;
1381
1382 ml = m + sz - diff;
1383
1384 mpx_loadl(m, ml, v->buf, v->len);
1385 if (!chkscan(m, ml, v->buf, v->len, +1))
1386 ok = 0;
1387 MPX_OCTETS(oct, m, ml);
1388 mpx_storel(m, ml, d.buf, d.sz);
1389 if (MEMCMP(d.buf, !=, v->buf, oct)) {
1390 dumpbits("\n*** storel failed", d.buf, d.sz);
1391 ok = 0;
1392 }
1393
1394 mpx_loadb(m, ml, v->buf, v->len);
1395 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1396 ok = 0;
1397 MPX_OCTETS(oct, m, ml);
1398 mpx_storeb(m, ml, d.buf, d.sz);
1399 if (MEMCMP(d.buf + d.sz - oct, !=, v->buf + v->len - oct, oct)) {
1400 dumpbits("\n*** storeb failed", d.buf, d.sz);
1401 ok = 0;
1402 }
1403 }
1404
1405 if (!ok)
1406 dumpbits("input data", v->buf, v->len);
1407
1408 xfree(m);
1409 dstr_destroy(&d);
1410 return (ok);
1411 }
1412
1413 static int twocl(dstr *v)
1414 {
1415 dstr d = DSTR_INIT;
1416 mpw *m, *ml0, *ml1;
1417 size_t sz0, sz1, szmax;
1418 int ok = 1;
1419 int i;
1420
1421 sz0 = MPW_RQ(v[0].len); sz1 = MPW_RQ(v[1].len);
1422 dstr_ensure(&d, v[0].len > v[1].len ? v[0].len : v[1].len);
1423
1424 szmax = sz0 > sz1 ? sz0 : sz1;
1425 m = xmalloc(MPWS(szmax));
1426 ml0 = m + sz0; ml1 = m + sz1;
1427
1428 for (i = 0; i < 2; i++) {
1429 if (i) ml0 = ml1 = m + szmax;
1430
1431 mpx_loadl(m, ml0, v[0].buf, v[0].len);
1432 mpx_storel2cn(m, ml0, d.buf, v[1].len);
1433 if (MEMCMP(d.buf, !=, v[1].buf, v[1].len)) {
1434 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1435 ok = 0;
1436 }
1437
1438 mpx_loadl2cn(m, ml1, v[1].buf, v[1].len);
1439 mpx_storel(m, ml1, d.buf, v[0].len);
1440 if (MEMCMP(d.buf, !=, v[0].buf, v[0].len)) {
1441 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1442 ok = 0;
1443 }
1444 }
1445
1446 if (!ok) {
1447 dumpbits("pos", v[0].buf, v[0].len);
1448 dumpbits("neg", v[1].buf, v[1].len);
1449 }
1450
1451 xfree(m);
1452 dstr_destroy(&d);
1453
1454 return (ok);
1455 }
1456
1457 static int twocb(dstr *v)
1458 {
1459 dstr d = DSTR_INIT;
1460 mpw *m, *ml0, *ml1;
1461 size_t sz0, sz1, szmax;
1462 int ok = 1;
1463 int i;
1464
1465 sz0 = MPW_RQ(v[0].len); sz1 = MPW_RQ(v[1].len);
1466 dstr_ensure(&d, v[0].len > v[1].len ? v[0].len : v[1].len);
1467
1468 szmax = sz0 > sz1 ? sz0 : sz1;
1469 m = xmalloc(MPWS(szmax));
1470 ml0 = m + sz0; ml1 = m + sz1;
1471
1472 for (i = 0; i < 2; i++) {
1473 if (i) ml0 = ml1 = m + szmax;
1474
1475 mpx_loadb(m, ml0, v[0].buf, v[0].len);
1476 mpx_storeb2cn(m, ml0, d.buf, v[1].len);
1477 if (MEMCMP(d.buf, !=, v[1].buf, v[1].len)) {
1478 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1479 ok = 0;
1480 }
1481
1482 mpx_loadb2cn(m, ml1, v[1].buf, v[1].len);
1483 mpx_storeb(m, ml1, d.buf, v[0].len);
1484 if (MEMCMP(d.buf, !=, v[0].buf, v[0].len)) {
1485 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1486 ok = 0;
1487 }
1488 }
1489
1490 if (!ok) {
1491 dumpbits("pos", v[0].buf, v[0].len);
1492 dumpbits("neg", v[1].buf, v[1].len);
1493 }
1494
1495 xfree(m);
1496 dstr_destroy(&d);
1497
1498 return (ok);
1499 }
1500
1501 static int lsl(dstr *v)
1502 {
1503 mpw *a, *al;
1504 int n = *(int *)v[1].buf;
1505 mpw *c, *cl;
1506 mpw *d, *dl;
1507 int ok = 1;
1508
1509 LOAD(a, al, &v[0]);
1510 LOAD(c, cl, &v[2]);
1511 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1512
1513 mpx_lsl(d, dl, a, al, n);
1514 if (!mpx_ueq(d, dl, c, cl)) {
1515 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1516 dumpmp(" a", a, al);
1517 dumpmp("expected", c, cl);
1518 dumpmp(" result", d, dl);
1519 ok = 0;
1520 }
1521
1522 xfree(a); xfree(c); xfree(d);
1523 return (ok);
1524 }
1525
1526 static int lslc(dstr *v)
1527 {
1528 mpw *a, *al;
1529 int n = *(int *)v[1].buf;
1530 mpw *c, *cl;
1531 mpw *d, *dl;
1532 int ok = 1;
1533
1534 LOAD(a, al, &v[0]);
1535 LOAD(c, cl, &v[2]);
1536 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1537
1538 mpx_lslc(d, dl, a, al, n);
1539 if (!mpx_ueq(d, dl, c, cl)) {
1540 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1541 dumpmp(" a", a, al);
1542 dumpmp("expected", c, cl);
1543 dumpmp(" result", d, dl);
1544 ok = 0;
1545 }
1546
1547 xfree(a); xfree(c); xfree(d);
1548 return (ok);
1549 }
1550
1551 static int lsr(dstr *v)
1552 {
1553 mpw *a, *al;
1554 int n = *(int *)v[1].buf;
1555 mpw *c, *cl;
1556 mpw *d, *dl;
1557 int ok = 1;
1558
1559 LOAD(a, al, &v[0]);
1560 LOAD(c, cl, &v[2]);
1561 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1562
1563 mpx_lsr(d, dl, a, al, n);
1564 if (!mpx_ueq(d, dl, c, cl)) {
1565 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1566 dumpmp(" a", a, al);
1567 dumpmp("expected", c, cl);
1568 dumpmp(" result", d, dl);
1569 ok = 0;
1570 }
1571
1572 xfree(a); xfree(c); xfree(d);
1573 return (ok);
1574 }
1575
1576 static int uadd(dstr *v)
1577 {
1578 mpw *a, *al;
1579 mpw *b, *bl;
1580 mpw *c, *cl;
1581 mpw *d, *dl;
1582 int ok = 1;
1583
1584 LOAD(a, al, &v[0]);
1585 LOAD(b, bl, &v[1]);
1586 LOAD(c, cl, &v[2]);
1587 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1588
1589 mpx_uadd(d, dl, a, al, b, bl);
1590 if (!mpx_ueq(d, dl, c, cl)) {
1591 fprintf(stderr, "\n*** uadd failed\n");
1592 dumpmp(" a", a, al);
1593 dumpmp(" b", b, bl);
1594 dumpmp("expected", c, cl);
1595 dumpmp(" result", d, dl);
1596 ok = 0;
1597 }
1598
1599 xfree(a); xfree(b); xfree(c); xfree(d);
1600 return (ok);
1601 }
1602
1603 static int usub(dstr *v)
1604 {
1605 mpw *a, *al;
1606 mpw *b, *bl;
1607 mpw *c, *cl;
1608 mpw *d, *dl;
1609 int ok = 1;
1610
1611 LOAD(a, al, &v[0]);
1612 LOAD(b, bl, &v[1]);
1613 LOAD(c, cl, &v[2]);
1614 ALLOC(d, dl, al - a);
1615
1616 mpx_usub(d, dl, a, al, b, bl);
1617 if (!mpx_ueq(d, dl, c, cl)) {
1618 fprintf(stderr, "\n*** usub failed\n");
1619 dumpmp(" a", a, al);
1620 dumpmp(" b", b, bl);
1621 dumpmp("expected", c, cl);
1622 dumpmp(" result", d, dl);
1623 ok = 0;
1624 }
1625
1626 xfree(a); xfree(b); xfree(c); xfree(d);
1627 return (ok);
1628 }
1629
1630 static int umul(dstr *v)
1631 {
1632 mpw *a, *al;
1633 mpw *b, *bl;
1634 mpw *c, *cl;
1635 mpw *d, *dl;
1636 int ok = 1;
1637
1638 LOAD(a, al, &v[0]);
1639 LOAD(b, bl, &v[1]);
1640 LOAD(c, cl, &v[2]);
1641 ALLOC(d, dl, (al - a) + (bl - b));
1642
1643 mpx_umul(d, dl, a, al, b, bl);
1644 if (!mpx_ueq(d, dl, c, cl)) {
1645 fprintf(stderr, "\n*** umul failed\n");
1646 dumpmp(" a", a, al);
1647 dumpmp(" b", b, bl);
1648 dumpmp("expected", c, cl);
1649 dumpmp(" result", d, dl);
1650 ok = 0;
1651 }
1652
1653 xfree(a); xfree(b); xfree(c); xfree(d);
1654 return (ok);
1655 }
1656
1657 static int usqr(dstr *v)
1658 {
1659 mpw *a, *al;
1660 mpw *c, *cl;
1661 mpw *d, *dl;
1662 int ok = 1;
1663
1664 LOAD(a, al, &v[0]);
1665 LOAD(c, cl, &v[1]);
1666 ALLOC(d, dl, 2 * (al - a));
1667
1668 mpx_usqr(d, dl, a, al);
1669 if (!mpx_ueq(d, dl, c, cl)) {
1670 fprintf(stderr, "\n*** usqr failed\n");
1671 dumpmp(" a", a, al);
1672 dumpmp("expected", c, cl);
1673 dumpmp(" result", d, dl);
1674 ok = 0;
1675 }
1676
1677 xfree(a); xfree(c); xfree(d);
1678 return (ok);
1679 }
1680
1681 static int udiv(dstr *v)
1682 {
1683 mpw *a, *al;
1684 mpw *b, *bl;
1685 mpw *q, *ql;
1686 mpw *r, *rl;
1687 mpw *qq, *qql;
1688 mpw *s, *sl;
1689 int ok = 1;
1690
1691 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1692 LOAD(b, bl, &v[1]);
1693 LOAD(q, ql, &v[2]);
1694 LOAD(r, rl, &v[3]);
1695 ALLOC(qq, qql, al - a);
1696 ALLOC(s, sl, (bl - b) + 1);
1697
1698 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1699 if (!mpx_ueq(qq, qql, q, ql) ||
1700 !mpx_ueq(a, al, r, rl)) {
1701 fprintf(stderr, "\n*** udiv failed\n");
1702 dumpmp(" divisor", b, bl);
1703 dumpmp("expect r", r, rl);
1704 dumpmp("result r", a, al);
1705 dumpmp("expect q", q, ql);
1706 dumpmp("result q", qq, qql);
1707 ok = 0;
1708 }
1709
1710 xfree(a); xfree(b); xfree(r); xfree(q); xfree(s); xfree(qq);
1711 return (ok);
1712 }
1713
1714 static test_chunk defs[] = {
1715 { "load-store", loadstore, { &type_hex, 0 } },
1716 { "2cl", twocl, { &type_hex, &type_hex, } },
1717 { "2cb", twocb, { &type_hex, &type_hex, } },
1718 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1719 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1720 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1721 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1722 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1723 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1724 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1725 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1726 { 0, 0, { 0 } }
1727 };
1728
1729 int main(int argc, char *argv[])
1730 {
1731 #ifdef ENABLE_ASM_DEBUG
1732 regdump_init();
1733 #endif
1734 test_run(argc, argv, defs, SRCDIR"/t/mpx");
1735 return (0);
1736 }
1737
1738 #endif
1739
1740 /*----- That's all, folks -------------------------------------------------*/