Release 2.4.5.
[catacomb] / base / dispatch.c
1 /* -*-c-*-
2 *
3 * CPU-specific dispatch
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <ctype.h>
33 #include <stdarg.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41
42 /*----- Intel x86/AMD64 feature probing -----------------------------------*/
43
44 #if CPUFAM_X86 || CPUFAM_AMD64
45
46 # define EFLAGS_ID (1u << 21)
47 # define CPUID1D_SSE2 (1u << 26)
48 # define CPUID1D_FXSR (1u << 24)
49 # define CPUID1C_AESNI (1u << 25)
50 # define CPUID1C_RDRAND (1u << 30)
51
52 struct cpuid { unsigned a, b, c, d; };
53
54 /* --- @cpuid@ --- *
55 *
56 * Arguments: @struct cpuid *cc@ = where to write the result
57 * @unsigned a, c@ = EAX and ECX registers to set
58 *
59 * Returns: ---
60 *
61 * Use: Minimal C wrapper around the x86 `CPUID' instruction. Checks
62 * that the instruction is actually available before invoking
63 * it; fills the output structure with zero if it's not going to
64 * work.
65 */
66
67 #ifdef __GNUC__
68 # if CPUFAM_X86
69 static __inline__ unsigned getflags(void)
70 { unsigned f; __asm__ ("pushf; popl %0" : "=g" (f)); return (f); }
71 static __inline__ unsigned setflags(unsigned f)
72 {
73 unsigned ff;
74 __asm__ ("pushf; pushl %1; popf; pushf; popl %0; popf"
75 : "=r" (ff)
76 : "r" (f));
77 return (ff);
78 }
79 # else
80 static __inline__ unsigned long getflags(void)
81 { unsigned long f; __asm__ ("pushf; popq %0" : "=g" (f)); return (f); }
82 static __inline__ unsigned long long setflags(unsigned long f)
83 {
84 unsigned long ff;
85 __asm__ ("pushf; pushq %1; popf; pushf; popq %0; popf"
86 : "=r" (ff)
87 : "r" (f));
88 return (ff);
89 }
90 # endif
91 #endif
92
93 static void cpuid(struct cpuid *cc, unsigned a, unsigned c)
94 {
95 #ifdef __GNUC__
96 unsigned f;
97 #endif
98
99 cc->a = cc->b = cc->c = cc->d = 0;
100
101 #ifdef __GNUC__
102 /* Stupid dance to detect whether the CPUID instruction is available. */
103 f = getflags();
104 if (!(setflags(f | EFLAGS_ID) & EFLAGS_ID) ||
105 setflags(f & ~EFLAGS_ID) & EFLAGS_ID) {
106 dispatch_debug("CPUID instruction not available");
107 return;
108 }
109 setflags(f);
110
111 /* Alas, EBX is magical in PIC code, so abuse ESI instead. This isn't
112 * pretty, but it works.
113 */
114 # if CPUFAM_X86
115 __asm__ ("pushl %%ebx; cpuid; movl %%ebx, %%esi; popl %%ebx"
116 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
117 : "a" (a) , "c" (c));
118 # elif CPUFAM_AMD64
119 __asm__ ("pushq %%rbx; cpuid; movl %%ebx, %%esi; popq %%rbx"
120 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
121 : "a" (a) , "c" (c));
122 # else
123 # error "I'm confused."
124 # endif
125 dispatch_debug("CPUID(%08x, %08x) -> %08x, %08x, %08x, %08x",
126 a, c, cc->a, cc->b, cc->c, cc->d);
127 #else
128 dispatch_debug("GNU inline assembler not available; can't CPUID");
129 #endif
130 }
131
132 static unsigned cpuid_maxleaf(void)
133 { struct cpuid c; cpuid(&c, 0, 0); return (c.a); }
134
135 /* --- @cpuid_features_p@ --- *
136 *
137 * Arguments: @unsigned dbits@ = bits to check in EDX
138 * @unsigned cbits@ = bits to check in ECX
139 *
140 * Returns: Nonzero if all the requested bits are set in the CPUID result
141 * on leaf 1.
142 */
143
144 static int cpuid_features_p(unsigned dbits, unsigned cbits)
145 {
146 struct cpuid c;
147 if (cpuid_maxleaf() < 1) return (0);
148 cpuid(&c, 1, 0);
149 return ((c.d & dbits) == dbits && (c.c & cbits) == cbits);
150 }
151
152 /* --- @xmm_registers_available_p@ --- *
153 *
154 * Arguments: ---
155 *
156 * Returns: Nonzero if the operating system has made the XMM registers
157 * available for use.
158 */
159
160 static int xmm_registers_available_p(void)
161 {
162 #ifdef __GNUC__
163 unsigned f;
164 /* This hack is by Agner Fog. Use FXSAVE/FXRSTOR to figure out whether the
165 * XMM registers are actually alive.
166 */
167 if (!cpuid_features_p(CPUID1D_FXSR, 0)) return (0);
168 # if CPUFAM_X86
169 __asm__ ("movl %%esp, %%edx; subl $512, %%esp; andl $~15, %%esp\n"
170 "fxsave (%%esp)\n"
171 "movl 160(%%esp), %%eax; xorl $0xaaaa5555, 160(%%esp)\n"
172 "fxrstor (%%esp); fxsave (%%esp)\n"
173 "movl 160(%%esp), %%ecx; movl %%eax, 160(%%esp)\n"
174 "fxrstor (%%esp); movl %%edx, %%esp\n"
175 "xorl %%ecx, %%eax"
176 : "=a" (f)
177 : /* no inputs */
178 : "%ecx", "%edx");
179 # elif CPUFAM_AMD64
180 __asm__ ("movq %%rsp, %%rdx; subq $512, %%rsp; andq $~15, %%rsp\n"
181 "fxsave (%%rsp)\n"
182 "movl 160(%%rsp), %%eax; xorl $0xaaaa5555, 160(%%rsp)\n"
183 "fxrstor (%%rsp); fxsave (%%rsp)\n"
184 "movl 160(%%rsp), %%ecx; movl %%eax, 160(%%rsp)\n"
185 "fxrstor (%%rsp); movq %%rdx, %%rsp\n"
186 "xorl %%ecx, %%eax"
187 : "=a" (f)
188 : /* no inputs */
189 : "%ecx", "%rdx");
190 # else
191 # error "I'm confused."
192 # endif
193 dispatch_debug("XMM registers %savailable", f ? "" : "not ");
194 return (f);
195 #else
196 dispatch_debug("GNU inline assembler not available; can't check for XMM");
197 return (0);
198 #endif
199 }
200
201 /* --- @rdrand_works_p@ --- *
202 *
203 *
204 * Arguments: ---
205 *
206 * Returns: Nonzero if the `rdrand' instruction actually works. Assumes
207 * that it's already been verified to be safe to issue.
208 */
209
210 #ifdef __GNUC__
211 static int rdrand(unsigned *x)
212 {
213 int i, rc;
214 unsigned _t;
215
216 i = 16;
217 __asm__ ("" : "=g" (_t));
218 __asm__ ("0: rdrand %2; jc 1f; decl %1; jnz 0b\n"
219 "mov $-1, %0; jmp 9f\n"
220 "1: movl %2, (%3); xorl %0, %0\n"
221 "9:"
222 : "=r" (rc), "+r" (i), "+r" (_t)
223 : "r" (x)
224 : "cc");
225 return (rc);
226 }
227 #endif
228
229 static int rdrand_works_p(void)
230 {
231 unsigned ref, x, i;
232
233 /* Check that it doesn't always give the same answer. Try four times: this
234 * will fail with probability %$2^{-128}$% with a truly random generator,
235 * which seems fair enough.
236 */
237 if (rdrand(&ref)) goto fail;
238 for (i = 0; i < 4; i++) {
239 if (rdrand(&x)) goto fail;
240 if (x != ref) goto not_stuck;
241 }
242 dispatch_debug("RDRAND always returns 0x%08x!", ref);
243 return (0);
244
245 not_stuck:
246 dispatch_debug("RDRAND instruction looks plausible");
247 return (1);
248
249 fail:
250 dispatch_debug("RDRAND instruction fails too often");
251 return (0);
252 }
253
254 #endif
255
256 /*----- General feature probing using auxiliary vectors -------------------*/
257
258 /* Try to find the system's definitions for auxiliary vector entries. */
259 #ifdef HAVE_SYS_AUXV_H
260 # include <sys/auxv.h>
261 #endif
262 #ifdef HAVE_LINUX_AUXVEC_H
263 # include <linux/auxvec.h>
264 #endif
265 #ifdef HAVE_ASM_HWCAP_H
266 # include <asm/hwcap.h>
267 #endif
268
269 /* The type of entries in the auxiliary vector. I'm assuming that `unsigned
270 * long' matches each platform's word length; if this is false then we'll
271 * need some host-specific tweaking here.
272 */
273 union auxval { long i; unsigned long u; const void *p; };
274 struct auxentry { unsigned long type; union auxval value; };
275
276 /* Register each CPU family's interest in the auxiliary vector. Make sure
277 * that the necessary entry types are defined. This is primarily ordered by
278 * entry type to minimize duplication.
279 */
280 #if defined(AT_HWCAP) && CPUFAM_ARMEL
281 # define WANT_ANY 1
282 # define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
283 #endif
284
285 #if defined(AT_HWCAP) && CPUFAM_ARM64
286 # define WANT_ANY 1
287 # define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
288 #endif
289
290 #if defined(AT_HWCAP2) && CPUFAM_ARMEL
291 # define WANT_ANY 1
292 # define WANT_AT_HWCAP2(_) _(AT_HWCAP2, u, hwcap2)
293 #endif
294
295 /* If we couldn't find any interesting entries then we can switch all of this
296 * machinery off. Also do that if we have no means for atomic updates.
297 */
298 #if WANT_ANY && CPU_DISPATCH_P
299
300 /* The main output of this section is a bitmask of detected features. The
301 * least significant bit will be set if we've tried to probe. Always access
302 * this using `DISPATCH_LOAD' and `DISPATCH_STORE'.
303 */
304 static unsigned hwcaps = 0;
305
306 /* For each potentially interesting type which turned out not to exist or be
307 * wanted, define a dummy macro for the sake of the next step.
308 */
309 #ifndef WANT_AT_HWCAP
310 # define WANT_AT_HWCAP(_)
311 #endif
312 #ifndef WANT_AT_HWCAP2
313 # define WANT_AT_HWCAP2(_)
314 #endif
315
316 /* For each CPU family, define two lists.
317 *
318 * * `WANTAUX' is a list of the `WANT_AT_MUMBLE' macros which the CPU
319 * family tried to register interest in above. Each entry contains the
320 * interesting auxiliary vector entry type, the name of the union branch
321 * for its value, and the name of the slot in `struct auxprobe' in which
322 * to store the value.
323 *
324 * * `CAPMAP' is a list describing the output features which the CPU family
325 * intends to satisfy from the auxiliary vector. Each entry contains a
326 * feature name suffix, and the token name (for `check_env').
327 */
328 #if CPUFAM_ARMEL
329 # define WANTAUX(_) \
330 WANT_AT_HWCAP(_) \
331 WANT_AT_HWCAP2(_)
332 # define CAPMAP(_) \
333 _(ARM_VFP, "arm:vfp") \
334 _(ARM_NEON, "arm:neon") \
335 _(ARM_V4, "arm:v4") \
336 _(ARM_D32, "arm:d32") \
337 _(ARM_AES, "arm:aes")
338 #endif
339 #if CPUFAM_ARM64
340 # define WANTAUX(_) \
341 WANT_AT_HWCAP(_)
342 # define CAPMAP(_) \
343 _(ARM_NEON, "arm:neon") \
344 _(ARM_AES, "arm:aes")
345 #endif
346
347 /* Build the bitmask for `hwcaps' from the `CAPMAP' list. */
348 enum {
349 HFI_PROBED = 0,
350 #define HFI__ENUM(feat, tok) HFI_##feat,
351 CAPMAP(HFI__ENUM)
352 #undef HFI__ENUM
353 HFI__END
354 };
355 enum {
356 HF_PROBED = 1,
357 #define HF__FLAG(feat, tok) HF_##feat = 1 << HFI_##feat,
358 CAPMAP(HF__FLAG)
359 #undef HF__FLAG
360 HF__END
361 };
362
363 /* Build a structure in which we can capture the interesting data from the
364 * auxiliary vector.
365 */
366 #define AUXUTYPE_i long
367 #define AUXUTYPE_u unsigned long
368 #define AUXUTYPE_p const void *
369 struct auxprobe {
370 #define AUXPROBE__SLOT(type, ubranch, slot) AUXUTYPE_##ubranch slot;
371 WANTAUX(AUXPROBE__SLOT)
372 #undef AUXPROBE_SLOT
373 };
374
375 /* --- @probe_hwcaps@ --- *
376 *
377 * Arguments: ---
378 *
379 * Returns: ---
380 *
381 * Use: Attempt to find the auxiliary vector (which is well hidden)
382 * and discover interesting features from it.
383 */
384
385 static void probe_hwcaps(void)
386 {
387 unsigned hw = HF_PROBED;
388 struct auxprobe probed = { 0 };
389
390 /* Populate `probed' with the information we manage to retrieve from the
391 * auxiliary vector. Slots we couldn't find are left zero-valued.
392 */
393 #if defined(HAVE_GETAUXVAL)
394 /* Shiny new libc lets us request individual entry types. This is almost
395 * too easy.
396 */
397 # define CAP__GET(type, ubranch, slot) \
398 probed.slot = (AUXUTYPE_##ubranch)getauxval(type);
399 WANTAUX(CAP__GET)
400 #else
401 /* Otherwise we're a bit stuck, really. Modern Linux kernels make a copy
402 * of the vector available in `/procc' so we could try that.
403 *
404 * The usual place is stuck on the end of the environment vector, but that
405 * may well have moved, and we have no way of telling whether it has or
406 * whether there was ever an auxiliary vector there at all; so don't do
407 * that.
408 */
409 {
410 FILE *fp = 0;
411 unsigned char *p = 0, *q = 0;
412 const struct auxentry *a;
413 size_t sz, off, n;
414
415 /* Open the file and read it into a memory chunk. */
416 if ((fp = fopen("/proc/self/auxv", "rb")) == 0) goto clean;
417 sz = 4096; off = 0;
418 if ((p = malloc(sz)) == 0) goto clean;
419 for (;;) {
420 n = fread(p + off, 1, sz - off, fp);
421 off += n;
422 if (off < sz) break;
423 sz *= 2; if ((q = realloc(p, sz)) == 0) break;
424 p = q;
425 }
426
427 /* Work through the vector (or as much of it as we found) and extract the
428 * types we're interested in.
429 */
430 for (a = (const struct auxentry *)p,
431 n = sz/sizeof(struct auxentry);
432 n--; a++) {
433 switch (a->type) {
434 #define CAP__SWITCH(type, ubranch, slot) \
435 case type: probed.slot = a->value.ubranch; break;
436 WANTAUX(CAP__SWITCH)
437 case AT_NULL: goto clean;
438 }
439 }
440
441 clean:
442 if (p) free(p);
443 if (fp) fclose(fp);
444 }
445 #endif
446
447 /* Each CPU family now has to pick through what was found and stashed in
448 * `probed', and set the appropriate flag bits in `hw'.
449 */
450 #if CPUFAM_ARMEL
451 if (probed.hwcap & HWCAP_VFPv3) hw |= HF_ARM_VFP;
452 if (probed.hwcap & HWCAP_NEON) hw |= HF_ARM_NEON;
453 if (probed.hwcap & HWCAP_VFPD32) hw |= HF_ARM_D32;
454 if (probed.hwcap & HWCAP_VFPv4) hw |= HF_ARM_V4;
455 # ifdef HWCAP2_AES
456 if (probed.hwcap2 & HWCAP2_AES) hw |= HF_ARM_AES;
457 # endif
458 #endif
459 #if CPUFAM_ARM64
460 if (probed.hwcap & HWCAP_ASIMD) hw |= HF_ARM_NEON;
461 if (probed.hwcap & HWCAP_AES) hw |= HF_ARM_AES;
462 #endif
463
464 /* Store the bitmask of features we probed for everyone to see. */
465 DISPATCH_STORE(hwcaps, hw);
466
467 /* Finally, make a report about the things we found. (Doing this earlier
468 * will pointlessly widen the window in which multiple threads will do the
469 * above auxiliary-vector probing.)
470 */
471 #define CAP__DEBUG(feat, tok) \
472 dispatch_debug("check auxv for feature `%s': %s", tok, \
473 hw & HF_##feat ? "available" : "absent");
474 CAPMAP(CAP__DEBUG)
475 #undef CAP__DEBUG
476 }
477
478 /* --- @get_hwcaps@ --- *
479 *
480 * Arguments: ---
481 *
482 * Returns: A mask of hardware capabilities and other features, as probed
483 * from the auxiliary vector.
484 */
485
486 static unsigned get_hwcaps(void)
487 {
488 unsigned hw;
489
490 DISPATCH_LOAD(hwcaps, hw);
491 if (!(hwcaps & HF_PROBED)) { probe_hwcaps(); DISPATCH_LOAD(hwcaps, hw); }
492 return (hw);
493 }
494
495 #endif
496
497 /*----- External interface ------------------------------------------------*/
498
499 /* --- @dispatch_debug@ --- *
500 *
501 * Arguments: @const char *fmt@ = a format string
502 * @...@ = additional arguments
503 *
504 * Returns: ---
505 *
506 * Use: Writes a formatted message to standard output if dispatch
507 * debugging is enabled.
508 */
509
510 void dispatch_debug(const char *fmt, ...)
511 {
512 va_list ap;
513 const char *e = getenv("CATACOMB_CPUDISPATCH_DEBUG");
514
515 if (e && *e != 'n' && *e != '0') {
516 va_start(ap, fmt);
517 fputs("Catacomb CPUDISPATCH: ", stderr);
518 vfprintf(stderr, fmt, ap);
519 fputc('\n', stderr);
520 va_end(ap);
521 }
522 }
523
524 /* --- @check_env@ --- *
525 *
526 * Arguments: @const char *ftok@ = feature token
527 *
528 * Returns: Zero if the feature is forced off; positive if it's forced
529 * on; negative if the user hasn't decided.
530 *
531 * Use: Checks the environment variable `CATACOMB_CPUFEAT' for the
532 * feature token @ftok@. The variable, if it exists, should be
533 * a space-separated sequence of `+tok' and `-tok' items. These
534 * tokens may end in `*', which matches any suffix.
535 */
536
537 static int IGNORABLE check_env(const char *ftok)
538 {
539 const char *p, *q, *pp;
540 int d;
541
542 p = getenv("CATACOMB_CPUFEAT");
543 if (!p) return (-1);
544
545 for (;;) {
546 while (isspace((unsigned char)*p)) p++;
547 if (!*p) return (-1);
548 switch (*p) {
549 case '+': d = +1; p++; break;
550 case '-': d = 0; p++; break;
551 default: d = -1; break;
552 }
553 for (q = p; *q && !isspace((unsigned char)*q); q++);
554 if (d >= 0) {
555 for (pp = ftok; p < q && *pp && *p == *pp; p++, pp++);
556 if ((p == q && !*pp) || (*p == '*' && p + 1 == q)) return (d);
557 }
558 p = q;
559 }
560 return (-1);
561 }
562
563 /* --- @cpu_feature_p@ --- *
564 *
565 * Arguments: @unsigned feat@ = a @CPUFEAT_...@ code
566 *
567 * Returns: Nonzero if the feature is available.
568 */
569
570 #include <stdio.h>
571
572 static int IGNORABLE
573 feat_debug(const char *ftok, const char *check, int verdict)
574 {
575 if (verdict >= 0) {
576 dispatch_debug("feature `%s': %s -> %s", ftok, check,
577 verdict ? "available" : "absent");
578 }
579 return (verdict);
580 }
581
582 int cpu_feature_p(int feat)
583 {
584 int IGNORABLE f;
585 IGNORE(f);
586 #define CASE_CPUFEAT(feat, ftok, cond) case CPUFEAT_##feat: \
587 if ((f = feat_debug(ftok, "environment override", \
588 check_env(ftok))) >= 0) \
589 return (f); \
590 else \
591 return (feat_debug(ftok, "runtime probe", cond));
592
593 switch (feat) {
594 #if CPUFAM_X86 || CPUFAM_AMD64
595 CASE_CPUFEAT(X86_SSE2, "x86:sse2",
596 cpuid_features_p(CPUID1D_SSE2, 0) &&
597 xmm_registers_available_p());
598 CASE_CPUFEAT(X86_AESNI, "x86:aesni",
599 cpuid_features_p(CPUID1D_SSE2, CPUID1C_AESNI) &&
600 xmm_registers_available_p());
601 CASE_CPUFEAT(X86_RDRAND, "x86:rdrand",
602 cpuid_features_p(0, CPUID1C_RDRAND) && rdrand_works_p());
603 #endif
604 #ifdef CAPMAP
605 # define FEATP__CASE(feat, tok) \
606 CASE_CPUFEAT(feat, tok, get_hwcaps() & HF_##feat)
607 CAPMAP(FEATP__CASE)
608 #undef FEATP__CASE
609 #endif
610 default:
611 dispatch_debug("denying unknown feature %d", feat);
612 return (0);
613 }
614 #undef CASE_CPUFEAT
615 }
616
617 /*----- That's all, folks -------------------------------------------------*/