math/strongprime.c: Replace inexplicable exponentiation with extended-gcd.
[catacomb] / math / strongprime.c
1 /* -*-c-*-
2 *
3 * Generate `strong' prime numbers
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <mLib/dstr.h>
31
32 #include "grand.h"
33 #include "mp.h"
34 #include "mpmont.h"
35 #include "mprand.h"
36 #include "pgen.h"
37 #include "pfilt.h"
38 #include "rabin.h"
39
40 /*----- Main code ---------------------------------------------------------*/
41
42 /* --- @strongprime_setup@ --- *
43 *
44 * Arguments: @const char *name@ = pointer to name root
45 * @mp *d@ = destination for search start point
46 * @pfilt *f@ = where to store filter jump context
47 * @unsigned nbits@ = number of bits wanted
48 * @grand *r@ = random number source
49 * @unsigned n@ = number of attempts to make
50 * @pgen_proc *event@ = event handler function
51 * @void *ectx@ = argument for the event handler
52 *
53 * Returns: A starting point for a `strong' prime search, or zero.
54 *
55 * Use: Sets up for a strong prime search, so that primes with
56 * particular properties can be found. It's probably important
57 * to note that the number left in the filter context @f@ is
58 * congruent to 2 (mod 4); that the jump value is twice the
59 * product of two large primes; and that the starting point is
60 * at least %$3 \cdot 2^{N-2}$%. (Hence, if you multiply two
61 * such numbers, the product is at least
62 *
63 * %$9 \cdot 2^{2N-4} > 2^{2N-1}$%
64 *
65 * i.e., it will be (at least) a %$2 N$%-bit value.
66 */
67
68 mp *strongprime_setup(const char *name, mp *d, pfilt *f, unsigned nbits,
69 grand *r, unsigned n, pgen_proc *event, void *ectx)
70 {
71 mp *s, *t, *q;
72 dstr dn = DSTR_INIT;
73 unsigned slop, nb, u, i;
74
75 mp *rr = d;
76 pgen_filterctx c;
77 pgen_jumpctx j;
78 rabin rb;
79
80 /* --- Figure out how large the smaller primes should be --- *
81 *
82 * We want them to be `as large as possible', subject to the constraint
83 * that we produce a number of the requested size at the end. This is
84 * tricky, because the final prime search is going to involve quite large
85 * jumps from its starting point; the size of the jumps are basically
86 * determined by our choice here, and if they're too big then we won't find
87 * a prime in time.
88 *
89 * Let's suppose we're trying to make an %$N$%-bit prime. The expected
90 * number of steps tends to increase linearly with size, i.e., we need to
91 * take about %2^k N$% steps for some %$k$%. If we're jumping by a
92 * %$J$%-bit quantity each time, from an %$N$%-bit starting point, then we
93 * will only be able to find a match if %$2^k N 2^{J-1} \le 2^{N-1}$%,
94 * i.e., if %$J \le N - (k + \log_2 N)$%.
95 *
96 * Experimentation shows that taking %$k + \log_2 N = 12$% works well for
97 * %$N = 1024$%, so %$k = 2$%. Add a few extra bits for luck.
98 */
99
100 for (i = 1; i && nbits >> i; i <<= 1); assert(i);
101 for (slop = 6, nb = nbits; nb > 1; i >>= 1) {
102 u = nb >> i;
103 if (u) { slop += i; nb = u; }
104 }
105 if (nbits/2 <= slop) return (0);
106
107 /* --- Choose two primes %$s$% and %$t$% of half the required size --- */
108
109 nb = nbits/2 - slop;
110 c.step = 1;
111
112 rr = mprand(rr, nb, r, 1);
113 DRESET(&dn); dstr_putf(&dn, "%s [s]", name);
114 if ((s = pgen(dn.buf, MP_NEWSEC, rr, event, ectx, n, pgen_filter, &c,
115 rabin_iters(nb), pgen_test, &rb)) == 0)
116 goto fail_s;
117
118 rr = mprand(rr, nb, r, 1);
119 DRESET(&dn); dstr_putf(&dn, "%s [t]", name);
120 if ((t = pgen(dn.buf, MP_NEWSEC, rr, event, ectx, n, pgen_filter, &c,
121 rabin_iters(nb), pgen_test, &rb)) == 0)
122 goto fail_t;
123
124 /* --- Choose a suitable value for %$r = 2it + 1$% for some %$i$% --- */
125
126 rr = mp_lsl(rr, t, 1);
127 pfilt_create(&c.f, rr);
128 rr = mp_lsl(rr, rr, slop - 1);
129 rr = mp_add(rr, rr, MP_ONE);
130 DRESET(&dn); dstr_putf(&dn, "%s [r]", name);
131 j.j = &c.f;
132 q = pgen(dn.buf, MP_NEW, rr, event, ectx, n, pgen_jump, &j,
133 rabin_iters(nb + slop), pgen_test, &rb);
134 pfilt_destroy(&c.f);
135 if (!q)
136 goto fail_r;
137
138 /* --- Select a suitable congruence class for %$p$% --- *
139 *
140 * This computes %$p_0 = 2 s (s^{r - 2} \bmod r) - 1$%.
141 */
142
143 rr = mp_modinv(rr, s, q);
144 rr = mp_mul(rr, rr, s);
145 rr = mp_lsl(rr, rr, 1);
146 rr = mp_sub(rr, rr, MP_ONE);
147
148 /* --- Pick a starting point for the search --- *
149 *
150 * Select %$3 \cdot 2^{N-2} < p_1 < 2^N$% at random, only with
151 * %$p_1 \equiv p_0 \pmod{2 r s}$.
152 */
153
154 {
155 mp *x, *y;
156 x = mp_mul(MP_NEW, q, s);
157 x = mp_lsl(x, x, 1);
158 pfilt_create(f, x); /* %$2 r s$% */
159 y = mprand(MP_NEW, nbits, r, 0);
160 y = mp_setbit(y, y, nbits - 2);
161 rr = mp_leastcongruent(rr, y, rr, x);
162 mp_drop(x); mp_drop(y);
163 }
164
165 /* --- Return the result --- */
166
167 mp_drop(q);
168 mp_drop(t);
169 mp_drop(s);
170 dstr_destroy(&dn);
171 return (rr);
172
173 /* --- Tidy up if something failed --- */
174
175 fail_r:
176 mp_drop(t);
177 fail_t:
178 mp_drop(s);
179 fail_s:
180 mp_drop(rr);
181 dstr_destroy(&dn);
182 return (0);
183 }
184
185 /* --- @strongprime@ --- *
186 *
187 * Arguments: @const char *name@ = pointer to name root
188 * @mp *d@ = destination integer
189 * @unsigned nbits@ = number of bits wanted
190 * @grand *r@ = random number source
191 * @unsigned n@ = number of attempts to make
192 * @pgen_proc *event@ = event handler function
193 * @void *ectx@ = argument for the event handler
194 *
195 * Returns: A `strong' prime, or zero.
196 *
197 * Use: Finds `strong' primes. A strong prime %$p$% is such that
198 *
199 * * %$p - 1$% has a large prime factor %$r$%,
200 * * %$p + 1$% has a large prime factor %$s$%, and
201 * * %$r - 1$% has a large prime factor %$t$%.
202 */
203
204 mp *strongprime(const char *name, mp *d, unsigned nbits, grand *r,
205 unsigned n, pgen_proc *event, void *ectx)
206 {
207 mp *p;
208 pfilt f;
209 pgen_jumpctx j;
210 rabin rb;
211
212 if (d) mp_copy(d);
213 p = strongprime_setup(name, d, &f, nbits, r, n, event, ectx);
214 if (!p) { mp_drop(d); return (0); }
215 j.j = &f;
216 p = pgen(name, p, p, event, ectx, n, pgen_jump, &j,
217 rabin_iters(nbits), pgen_test, &rb);
218 if (mp_bits(p) != nbits) { mp_drop(p); return (0); }
219 pfilt_destroy(&f);
220 mp_drop(d);
221 return (p);
222 }
223
224 /*----- That's all, folks -------------------------------------------------*/