base/dispatch.c: Just include all the auxvec-related headers we can.
[catacomb] / base / dispatch.c
1 /* -*-c-*-
2 *
3 * CPU-specific dispatch
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <ctype.h>
33 #include <stdarg.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41
42 /*----- Intel x86/AMD64 feature probing -----------------------------------*/
43
44 #if CPUFAM_X86 || CPUFAM_AMD64
45
46 # define EFLAGS_ID (1u << 21)
47 # define CPUID1D_SSE2 (1u << 26)
48 # define CPUID1D_FXSR (1u << 24)
49 # define CPUID1C_AESNI (1u << 25)
50 # define CPUID1C_RDRAND (1u << 30)
51
52 struct cpuid { unsigned a, b, c, d; };
53
54 /* --- @cpuid@ --- *
55 *
56 * Arguments: @struct cpuid *cc@ = where to write the result
57 * @unsigned a, c@ = EAX and ECX registers to set
58 *
59 * Returns: ---
60 *
61 * Use: Minimal C wrapper around the x86 `CPUID' instruction. Checks
62 * that the instruction is actually available before invoking
63 * it; fills the output structure with zero if it's not going to
64 * work.
65 */
66
67 #ifdef __GNUC__
68 # if CPUFAM_X86
69 static __inline__ unsigned getflags(void)
70 { unsigned f; __asm__ ("pushf; popl %0" : "=g" (f)); return (f); }
71 static __inline__ unsigned setflags(unsigned f)
72 {
73 unsigned ff;
74 __asm__ ("pushf; pushl %1; popf; pushf; popl %0; popf"
75 : "=g" (ff)
76 : "g" (f));
77 return (ff);
78 }
79 # else
80 static __inline__ unsigned long getflags(void)
81 { unsigned long f; __asm__ ("pushf; popq %0" : "=g" (f)); return (f); }
82 static __inline__ unsigned long long setflags(unsigned long f)
83 {
84 unsigned long ff;
85 __asm__ ("pushf; pushq %1; popf; pushf; popq %0; popf"
86 : "=g" (ff)
87 : "g" (f));
88 return (ff);
89 }
90 # endif
91 #endif
92
93 static void cpuid(struct cpuid *cc, unsigned a, unsigned c)
94 {
95 #ifdef __GNUC__
96 unsigned f;
97 #endif
98
99 cc->a = cc->b = cc->c = cc->d = 0;
100
101 #ifdef __GNUC__
102 /* Stupid dance to detect whether the CPUID instruction is available. */
103 f = getflags();
104 if (!(setflags(f | EFLAGS_ID) & EFLAGS_ID) ||
105 setflags(f & ~EFLAGS_ID) & EFLAGS_ID) {
106 dispatch_debug("CPUID instruction not available");
107 return;
108 }
109 setflags(f);
110
111 /* Alas, EBX is magical in PIC code, so abuse ESI instead. This isn't
112 * pretty, but it works.
113 */
114 # if CPUFAM_X86
115 __asm__ ("pushl %%ebx; cpuid; movl %%ebx, %%esi; popl %%ebx"
116 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
117 : "a" (a) , "c" (c));
118 # elif CPUFAM_AMD64
119 __asm__ ("pushq %%rbx; cpuid; movl %%ebx, %%esi; popq %%rbx"
120 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
121 : "a" (a) , "c" (c));
122 # else
123 # error "I'm confused."
124 # endif
125 dispatch_debug("CPUID(%08x, %08x) -> %08x, %08x, %08x, %08x",
126 a, c, cc->a, cc->b, cc->c, cc->d);
127 #else
128 dispatch_debug("GNU inline assembler not available; can't CPUID");
129 #endif
130 }
131
132 static unsigned cpuid_maxleaf(void)
133 { struct cpuid c; cpuid(&c, 0, 0); return (c.a); }
134
135 /* --- @cpuid_features_p@ --- *
136 *
137 * Arguments: @unsigned dbits@ = bits to check in EDX
138 * @unsigned cbits@ = bits to check in ECX
139 *
140 * Returns: Nonzero if all the requested bits are set in the CPUID result
141 * on leaf 1.
142 */
143
144 static int cpuid_features_p(unsigned dbits, unsigned cbits)
145 {
146 struct cpuid c;
147 if (cpuid_maxleaf() < 1) return (0);
148 cpuid(&c, 1, 0);
149 return ((c.d & dbits) == dbits && (c.c & cbits) == cbits);
150 }
151
152 /* --- @xmm_registers_available_p@ --- *
153 *
154 * Arguments: ---
155 *
156 * Returns: Nonzero if the operating system has made the XMM registers
157 * available for use.
158 */
159
160 static int xmm_registers_available_p(void)
161 {
162 #ifdef __GNUC__
163 unsigned f;
164 /* This hack is by Agner Fog. Use FXSAVE/FXRSTOR to figure out whether the
165 * XMM registers are actually alive.
166 */
167 if (!cpuid_features_p(CPUID1D_FXSR, 0)) return (0);
168 # if CPUFAM_X86
169 __asm__ ("movl %%esp, %%edx; subl $512, %%esp; andl $~15, %%esp\n"
170 "fxsave (%%esp)\n"
171 "movl 160(%%esp), %%eax; xorl $0xaaaa5555, 160(%%esp)\n"
172 "fxrstor (%%esp); fxsave (%%esp)\n"
173 "movl 160(%%esp), %%ecx; movl %%eax, 160(%%esp)\n"
174 "fxrstor (%%esp); movl %%edx, %%esp\n"
175 "xorl %%ecx, %%eax"
176 : "=a" (f)
177 : /* no inputs */
178 : "%ecx", "%edx");
179 # elif CPUFAM_AMD64
180 __asm__ ("movq %%rsp, %%rdx; subq $512, %%rsp; andq $~15, %%rsp\n"
181 "fxsave (%%rsp)\n"
182 "movl 160(%%rsp), %%eax; xorl $0xaaaa5555, 160(%%rsp)\n"
183 "fxrstor (%%rsp); fxsave (%%rsp)\n"
184 "movl 160(%%rsp), %%ecx; movl %%eax, 160(%%rsp)\n"
185 "fxrstor (%%rsp); movq %%rdx, %%rsp\n"
186 "xorl %%ecx, %%eax"
187 : "=a" (f)
188 : /* no inputs */
189 : "%ecx", "%rdx");
190 # else
191 # error "I'm confused."
192 # endif
193 dispatch_debug("XMM registers %savailable", f ? "" : "not ");
194 return (f);
195 #else
196 dispatch_debug("GNU inline assembler not available; can't check for XMM");
197 return (0);
198 #endif
199 }
200
201 #endif
202
203 /*----- General feature probing using auxiliary vectors -------------------*/
204
205 /* Try to find the system's definitions for auxiliary vector entries. */
206 #ifdef HAVE_SYS_AUXV_H
207 # include <sys/auxv.h>
208 #endif
209 #ifdef HAVE_LINUX_AUXVEC_H
210 # include <linux/auxvec.h>
211 #endif
212 #ifdef HAVE_ASM_HWCAP_H
213 # include <asm/hwcap.h>
214 #endif
215
216 /* The type of entries in the auxiliary vector. I'm assuming that `unsigned
217 * long' matches each platform's word length; if this is false then we'll
218 * need some host-specific tweaking here.
219 */
220 union auxval { long i; unsigned long u; const void *p; };
221 struct auxentry { unsigned long type; union auxval value; };
222
223 /* Register each CPU family's interest in the auxiliary vector. Make sure
224 * that the necessary entry types are defined. This is primarily ordered by
225 * entry type to minimize duplication.
226 */
227 #if defined(AT_HWCAP) && CPUFAM_ARMEL
228 # define WANT_ANY 1
229 # define WANT_AT_HWCAP(_) _(AT_HWCAP, u, hwcap)
230 #endif
231
232 /* If we couldn't find any interesting entries then we can switch all of this
233 * machinery off. Also do that if we have no means for atomic updates.
234 */
235 #if WANT_ANY && CPU_DISPATCH_P
236
237 /* The main output of this section is a bitmask of detected features. The
238 * least significant bit will be set if we've tried to probe. Always access
239 * this using `DISPATCH_LOAD' and `DISPATCH_STORE'.
240 */
241 static unsigned hwcaps = 0;
242
243 /* For each potentially interesting type which turned out not to exist or be
244 * wanted, define a dummy macro for the sake of the next step.
245 */
246 #ifndef WANT_AT_HWCAP
247 # define WANT_AT_HWCAP(_)
248 #endif
249
250 /* For each CPU family, define two lists.
251 *
252 * * `WANTAUX' is a list of the `WANT_AT_MUMBLE' macros which the CPU
253 * family tried to register interest in above. Each entry contains the
254 * interesting auxiliary vector entry type, the name of the union branch
255 * for its value, and the name of the slot in `struct auxprobe' in which
256 * to store the value.
257 *
258 * * `CAPMAP' is a list describing the output features which the CPU family
259 * intends to satisfy from the auxiliary vector. Each entry contains a
260 * feature name suffix, and the token name (for `check_env').
261 */
262 #if CPUFAM_ARMEL
263 # define WANTAUX(_) \
264 WANT_AT_HWCAP(_)
265 # define CAPMAP(_) \
266 _(ARM_VFP, "arm:vfp") \
267 _(ARM_NEON, "arm:neon") \
268 _(ARM_V4, "arm:v4") \
269 _(ARM_D32, "arm:d32")
270 #endif
271
272 /* Build the bitmask for `hwcaps' from the `CAPMAP' list. */
273 enum {
274 HFI_PROBED = 0,
275 #define HFI__ENUM(feat, tok) HFI_##feat,
276 CAPMAP(HFI__ENUM)
277 #undef HFI__ENUM
278 HFI__END
279 };
280 enum {
281 HF_PROBED = 1,
282 #define HF__FLAG(feat, tok) HF_##feat = 1 << HFI_##feat,
283 CAPMAP(HF__FLAG)
284 #undef HF__FLAG
285 HF__END
286 };
287
288 /* Build a structure in which we can capture the interesting data from the
289 * auxiliary vector.
290 */
291 #define AUXUTYPE_i long
292 #define AUXUTYPE_u unsigned long
293 #define AUXUTYPE_p const void *
294 struct auxprobe {
295 #define AUXPROBE__SLOT(type, ubranch, slot) AUXUTYPE_##ubranch slot;
296 WANTAUX(AUXPROBE__SLOT)
297 #undef AUXPROBE_SLOT
298 };
299
300 /* --- @probe_hwcaps@ --- *
301 *
302 * Arguments: ---
303 *
304 * Returns: ---
305 *
306 * Use: Attempt to find the auxiliary vector (which is well hidden)
307 * and discover interesting features from it.
308 */
309
310 static void probe_hwcaps(void)
311 {
312 unsigned hw = HF_PROBED;
313 struct auxprobe probed = { 0 };
314
315 /* Populate `probed' with the information we manage to retrieve from the
316 * auxiliary vector. Slots we couldn't find are left zero-valued.
317 */
318 #if defined(HAVE_GETAUXVAL)
319 /* Shiny new libc lets us request individual entry types. This is almost
320 * too easy.
321 */
322 # define CAP__GET(type, slot, ubranch) \
323 probed.slot.ubranch = (AUXUTYPE_##ubranch)getauxval(type);
324 WANTAUX(CAP__GET)
325 #else
326 /* Otherwise we're a bit stuck, really. Modern Linux kernels make a copy
327 * of the vector available in `/procc' so we could try that.
328 *
329 * The usual place is stuck on the end of the environment vector, but that
330 * may well have moved, and we have no way of telling whether it has or
331 * whether there was ever an auxiliary vector there at all; so don't do
332 * that.
333 */
334 {
335 FILE *fp = 0;
336 unsigned char *p = 0, *q = 0;
337 const struct auxentry *a;
338 size_t sz, off, n;
339
340 /* Open the file and read it into a memory chunk. */
341 if ((fp = fopen("/proc/self/auxv", "rb")) == 0) goto clean;
342 sz = 4096; off = 0;
343 if ((p = malloc(sz)) == 0) goto clean;
344 for (;;) {
345 n = fread(p + off, 1, sz - off, fp);
346 off += n;
347 if (off < sz) break;
348 sz *= 2; if ((q = realloc(p, sz)) == 0) break;
349 p = q;
350 }
351
352 /* Work through the vector (or as much of it as we found) and extract the
353 * types we're interested in.
354 */
355 for (a = (const struct auxentry *)p,
356 n = sz/sizeof(struct auxentry);
357 n--; a++) {
358 switch (a->type) {
359 #define CAP__SWITCH(type, ubranch, slot) \
360 case type: probed.slot = a->value.ubranch; break;
361 WANTAUX(CAP__SWITCH)
362 case AT_NULL: goto clean;
363 }
364 }
365
366 clean:
367 if (p) free(p);
368 if (fp) fclose(fp);
369 }
370 #endif
371
372 /* Each CPU family now has to pick through what was found and stashed in
373 * `probed', and set the appropriate flag bits in `hw'.
374 */
375 #if CPUFAM_ARMEL
376 if (probed.hwcap & HWCAP_VFPv3) hw |= HF_ARM_VFP;
377 if (probed.hwcap & HWCAP_NEON) hw |= HF_ARM_NEON;
378 if (probed.hwcap & HWCAP_VFPD32) hw |= HF_ARM_D32;
379 if (probed.hwcap & HWCAP_VFPv4) hw |= HF_ARM_V4;
380 #endif
381
382 /* Store the bitmask of features we probed for everyone to see. */
383 DISPATCH_STORE(hwcaps, hw);
384
385 /* Finally, make a report about the things we found. (Doing this earlier
386 * will pointlessly widen the window in which multiple threads will do the
387 * above auxiliary-vector probing.)
388 */
389 #define CAP__DEBUG(feat, tok) \
390 dispatch_debug("check auxv for feature `%s': %s", tok, \
391 hw & HF_##feat ? "available" : "absent");
392 CAPMAP(CAP__DEBUG)
393 #undef CAP__DEBUG
394 }
395
396 /* --- @get_hwcaps@ --- *
397 *
398 * Arguments: ---
399 *
400 * Returns: A mask of hardware capabilities and other features, as probed
401 * from the auxiliary vector.
402 */
403
404 static unsigned get_hwcaps(void)
405 {
406 unsigned hw;
407
408 DISPATCH_LOAD(hwcaps, hw);
409 if (!(hwcaps & HF_PROBED)) { probe_hwcaps(); DISPATCH_LOAD(hwcaps, hw); }
410 return (hw);
411 }
412
413 #endif
414
415 /*----- External interface ------------------------------------------------*/
416
417 /* --- @dispatch_debug@ --- *
418 *
419 * Arguments: @const char *fmt@ = a format string
420 * @...@ = additional arguments
421 *
422 * Returns: ---
423 *
424 * Use: Writes a formatted message to standard output if dispatch
425 * debugging is enabled.
426 */
427
428 void dispatch_debug(const char *fmt, ...)
429 {
430 va_list ap;
431 const char *e = getenv("CATACOMB_CPUDISPATCH_DEBUG");
432
433 if (e && *e != 'n' && *e != '0') {
434 va_start(ap, fmt);
435 fputs("Catacomb CPUDISPATCH: ", stderr);
436 vfprintf(stderr, fmt, ap);
437 fputc('\n', stderr);
438 va_end(ap);
439 }
440 }
441
442 /* --- @check_env@ --- *
443 *
444 * Arguments: @const char *ftok@ = feature token
445 *
446 * Returns: Zero if the feature is forced off; positive if it's forced
447 * on; negative if the user hasn't decided.
448 *
449 * Use: Checks the environment variable `CATACOMB_CPUFEAT' for the
450 * feature token @ftok@. The variable, if it exists, should be
451 * a space-separated sequence of `+tok' and `-tok' items. These
452 * tokens may end in `*', which matches any suffix.
453 */
454
455 static int IGNORABLE check_env(const char *ftok)
456 {
457 const char *p, *q, *pp;
458 int d;
459
460 p = getenv("CATACOMB_CPUFEAT");
461 if (!p) return (-1);
462
463 for (;;) {
464 while (isspace((unsigned char)*p)) p++;
465 if (!*p) return (-1);
466 switch (*p) {
467 case '+': d = +1; p++; break;
468 case '-': d = 0; p++; break;
469 default: d = -1; break;
470 }
471 for (q = p; *q && !isspace((unsigned char)*q); q++);
472 if (d >= 0) {
473 for (pp = ftok; p < q && *pp && *p == *pp; p++, pp++);
474 if ((p == q && !*pp) || (*p == '*' && p + 1 == q)) return (d);
475 }
476 p = q;
477 }
478 return (-1);
479 }
480
481 /* --- @cpu_feature_p@ --- *
482 *
483 * Arguments: @unsigned feat@ = a @CPUFEAT_...@ code
484 *
485 * Returns: Nonzero if the feature is available.
486 */
487
488 #include <stdio.h>
489
490 static int IGNORABLE
491 feat_debug(const char *ftok, const char *check, int verdict)
492 {
493 if (verdict >= 0) {
494 dispatch_debug("feature `%s': %s -> %s", ftok, check,
495 verdict ? "available" : "absent");
496 }
497 return (verdict);
498 }
499
500 int cpu_feature_p(int feat)
501 {
502 int IGNORABLE f;
503 IGNORE(f);
504 #define CASE_CPUFEAT(feat, ftok, cond) case CPUFEAT_##feat: \
505 if ((f = feat_debug(ftok, "environment override", \
506 check_env(ftok))) >= 0) \
507 return (f); \
508 else \
509 return (feat_debug(ftok, "runtime probe", cond));
510
511 switch (feat) {
512 #if CPUFAM_X86 || CPUFAM_AMD64
513 CASE_CPUFEAT(X86_SSE2, "x86:sse2",
514 xmm_registers_available_p() &&
515 cpuid_features_p(CPUID1D_SSE2, 0));
516 CASE_CPUFEAT(X86_AESNI, "x86:aesni",
517 xmm_registers_available_p() &&
518 cpuid_features_p(CPUID1D_SSE2, CPUID1C_AESNI));
519 CASE_CPUFEAT(X86_RDRAND, "x86:rdrand",
520 cpuid_features_p(0, CPUID1C_RDRAND));
521 #endif
522 #ifdef CAPMAP
523 # define FEATP__CASE(feat, tok) \
524 CASE_CPUFEAT(feat, tok, get_hwcaps() & HF_##feat)
525 CAPMAP(FEATP__CASE)
526 #undef FEATP__CASE
527 #endif
528 default:
529 dispatch_debug("denying unknown feature %d", feat);
530 return (0);
531 }
532 #undef CASE_CPUFEAT
533 }
534
535 /*----- That's all, folks -------------------------------------------------*/