base/dispatch.c: Add (unused) machinery for probing ELF auxilary vector.
[catacomb] / base / dispatch.c
1 /* -*-c-*-
2 *
3 * CPU-specific dispatch
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <ctype.h>
33 #include <stdarg.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41
42 /*----- Intel x86/AMD64 feature probing -----------------------------------*/
43
44 #if CPUFAM_X86 || CPUFAM_AMD64
45
46 # define EFLAGS_ID (1u << 21)
47 # define CPUID1D_SSE2 (1u << 26)
48 # define CPUID1D_FXSR (1u << 24)
49 # define CPUID1C_AESNI (1u << 25)
50
51 struct cpuid { unsigned a, b, c, d; };
52
53 /* --- @cpuid@ --- *
54 *
55 * Arguments: @struct cpuid *cc@ = where to write the result
56 * @unsigned a, c@ = EAX and ECX registers to set
57 *
58 * Returns: ---
59 *
60 * Use: Minimal C wrapper around the x86 `CPUID' instruction. Checks
61 * that the instruction is actually available before invoking
62 * it; fills the output structure with zero if it's not going to
63 * work.
64 */
65
66 #ifdef __GNUC__
67 # if CPUFAM_X86
68 static __inline__ unsigned getflags(void)
69 { unsigned f; __asm__ ("pushf; popl %0" : "=g" (f)); return (f); }
70 static __inline__ unsigned setflags(unsigned f)
71 {
72 unsigned ff;
73 __asm__ ("pushf; pushl %1; popf; pushf; popl %0; popf"
74 : "=g" (ff)
75 : "g" (f));
76 return (ff);
77 }
78 # else
79 static __inline__ unsigned long getflags(void)
80 { unsigned long f; __asm__ ("pushf; popq %0" : "=g" (f)); return (f); }
81 static __inline__ unsigned long long setflags(unsigned long f)
82 {
83 unsigned long ff;
84 __asm__ ("pushf; pushq %1; popf; pushf; popq %0; popf"
85 : "=g" (ff)
86 : "g" (f));
87 return (ff);
88 }
89 # endif
90 #endif
91
92 static void cpuid(struct cpuid *cc, unsigned a, unsigned c)
93 {
94 #ifdef __GNUC__
95 unsigned f;
96 #endif
97
98 cc->a = cc->b = cc->c = cc->d = 0;
99
100 #ifdef __GNUC__
101 /* Stupid dance to detect whether the CPUID instruction is available. */
102 f = getflags();
103 if (!(setflags(f | EFLAGS_ID) & EFLAGS_ID) ||
104 setflags(f & ~EFLAGS_ID) & EFLAGS_ID) {
105 dispatch_debug("CPUID instruction not available");
106 return;
107 }
108 setflags(f);
109
110 /* Alas, EBX is magical in PIC code, so abuse ESI instead. This isn't
111 * pretty, but it works.
112 */
113 # if CPUFAM_X86
114 __asm__ ("pushl %%ebx; cpuid; movl %%ebx, %%esi; popl %%ebx"
115 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
116 : "a" (a) , "c" (c));
117 # elif CPUFAM_AMD64
118 __asm__ ("pushq %%rbx; cpuid; movl %%ebx, %%esi; popq %%rbx"
119 : "=a" (cc->a), "=S" (cc->b), "=c" (cc->c), "=d" (cc->d)
120 : "a" (a) , "c" (c));
121 # else
122 # error "I'm confused."
123 # endif
124 dispatch_debug("CPUID(%08x, %08x) -> %08x, %08x, %08x, %08x",
125 a, c, cc->a, cc->b, cc->c, cc->d);
126 #else
127 dispatch_debug("GNU inline assembler not available; can't CPUID");
128 #endif
129 }
130
131 static unsigned cpuid_maxleaf(void)
132 { struct cpuid c; cpuid(&c, 0, 0); return (c.a); }
133
134 /* --- @cpuid_features_p@ --- *
135 *
136 * Arguments: @unsigned dbits@ = bits to check in EDX
137 * @unsigned cbits@ = bits to check in ECX
138 *
139 * Returns: Nonzero if all the requested bits are set in the CPUID result
140 * on leaf 1.
141 */
142
143 static int cpuid_features_p(unsigned dbits, unsigned cbits)
144 {
145 struct cpuid c;
146 if (cpuid_maxleaf() < 1) return (0);
147 cpuid(&c, 1, 0);
148 return ((c.d & dbits) == dbits && (c.c & cbits) == cbits);
149 }
150
151 /* --- @xmm_registers_available_p@ --- *
152 *
153 * Arguments: ---
154 *
155 * Returns: Nonzero if the operating system has made the XMM registers
156 * available for use.
157 */
158
159 static int xmm_registers_available_p(void)
160 {
161 #ifdef __GNUC__
162 unsigned f;
163 /* This hack is by Agner Fog. Use FXSAVE/FXRSTOR to figure out whether the
164 * XMM registers are actually alive.
165 */
166 if (!cpuid_features_p(CPUID1D_FXSR, 0)) return (0);
167 # if CPUFAM_X86
168 __asm__ ("movl %%esp, %%edx; subl $512, %%esp; andl $~15, %%esp\n"
169 "fxsave (%%esp)\n"
170 "movl 160(%%esp), %%eax; xorl $0xaaaa5555, 160(%%esp)\n"
171 "fxrstor (%%esp); fxsave (%%esp)\n"
172 "movl 160(%%esp), %%ecx; movl %%eax, 160(%%esp)\n"
173 "fxrstor (%%esp); movl %%edx, %%esp\n"
174 "xorl %%ecx, %%eax"
175 : "=a" (f)
176 : /* no inputs */
177 : "%ecx", "%edx");
178 # elif CPUFAM_AMD64
179 __asm__ ("movq %%rsp, %%rdx; subq $512, %%rsp; andq $~15, %%rsp\n"
180 "fxsave (%%rsp)\n"
181 "movl 160(%%rsp), %%eax; xorl $0xaaaa5555, 160(%%rsp)\n"
182 "fxrstor (%%rsp); fxsave (%%rsp)\n"
183 "movl 160(%%rsp), %%ecx; movl %%eax, 160(%%rsp)\n"
184 "fxrstor (%%rsp); movq %%rdx, %%rsp\n"
185 "xorl %%ecx, %%eax"
186 : "=a" (f)
187 : /* no inputs */
188 : "%ecx", "%rdx");
189 # else
190 # error "I'm confused."
191 # endif
192 dispatch_debug("XMM registers %savailable", f ? "" : "not ");
193 return (f);
194 #else
195 dispatch_debug("GNU inline assembler not available; can't check for XMM");
196 return (0);
197 #endif
198 }
199
200 #endif
201
202 /*----- General feature probing using auxiliary vectors -------------------*/
203
204 /* Try to find the system's definitions for auxiliary vector entries. */
205 #ifdef HAVE_SYS_AUXV_H
206 # include <sys/auxv.h>
207 #else
208 # ifdef HAVE_LINUX_AUXVEC_H
209 # include <linux/auxvec.h>
210 # endif
211 # ifdef HAVE_ASM_HWCAP_H
212 # include <asm/hwcap.h>
213 # endif
214 #endif
215
216 /* The type of entries in the auxiliary vector. I'm assuming that `unsigned
217 * long' matches each platform's word length; if this is false then we'll
218 * need some host-specific tweaking here.
219 */
220 union auxval { long i; unsigned long u; const void *p; };
221 struct auxentry { unsigned long type; union auxval value; };
222
223 /* Register each CPU family's interest in the auxiliary vector. Make sure
224 * that the necessary entry types are defined. This is primarily ordered by
225 * entry type to minimize duplication.
226 */
227
228 /* If we couldn't find any interesting entries then we can switch all of this
229 * machinery off. Also do that if we have no means for atomic updates.
230 */
231 #if WANT_ANY && CPU_DISPATCH_P
232
233 /* The main output of this section is a bitmask of detected features. The
234 * least significant bit will be set if we've tried to probe. Always access
235 * this using `DISPATCH_LOAD' and `DISPATCH_STORE'.
236 */
237 static unsigned hwcaps = 0;
238
239 /* For each potentially interesting type which turned out not to exist or be
240 * wanted, define a dummy macro for the sake of the next step.
241 */
242 #ifndef WANT_AT_HWCAP
243 # define WANT_AT_HWCAP(_)
244 #endif
245
246 /* For each CPU family, define two lists.
247 *
248 * * `WANTAUX' is a list of the `WANT_AT_MUMBLE' macros which the CPU
249 * family tried to register interest in above. Each entry contains the
250 * interesting auxiliary vector entry type, the name of the union branch
251 * for its value, and the name of the slot in `struct auxprobe' in which
252 * to store the value.
253 *
254 * * `CAPMAP' is a list describing the output features which the CPU family
255 * intends to satisfy from the auxiliary vector. Each entry contains a
256 * feature name suffix, and the token name (for `check_env').
257 */
258
259 /* Build the bitmask for `hwcaps' from the `CAPMAP' list. */
260 enum {
261 HFI_PROBED = 0,
262 #define HFI__ENUM(feat, tok) HFI_##feat,
263 CAPMAP(HFI__ENUM)
264 #undef HFI__ENUM
265 HFI__END
266 };
267 enum {
268 HF_PROBED = 1,
269 #define HF__FLAG(feat, tok) HF_##feat = 1 << HFI_##feat,
270 CAPMAP(HF__FLAG)
271 #undef HF__FLAG
272 HF__END
273 };
274
275 /* Build a structure in which we can capture the interesting data from the
276 * auxiliary vector.
277 */
278 #define AUXUTYPE_i long
279 #define AUXUTYPE_u unsigned long
280 #define AUXUTYPE_p const void *
281 struct auxprobe {
282 #define AUXPROBE__SLOT(type, ubranch, slot) AUXUTYPE_##ubranch slot;
283 WANTAUX(AUXPROBE__SLOT)
284 #undef AUXPROBE_SLOT
285 };
286
287 /* --- @probe_hwcaps@ --- *
288 *
289 * Arguments: ---
290 *
291 * Returns: ---
292 *
293 * Use: Attempt to find the auxiliary vector (which is well hidden)
294 * and discover interesting features from it.
295 */
296
297 static void probe_hwcaps(void)
298 {
299 unsigned hw = HF_PROBED;
300 struct auxprobe probed = { 0 };
301
302 /* Populate `probed' with the information we manage to retrieve from the
303 * auxiliary vector. Slots we couldn't find are left zero-valued.
304 */
305 #if defined(HAVE_GETAUXVAL)
306 /* Shiny new libc lets us request individual entry types. This is almost
307 * too easy.
308 */
309 # define CAP__GET(type, slot, ubranch) \
310 probed.slot.ubranch = (AUXUTYPE_##ubranch)getauxval(type);
311 WANTAUX(CAP__GET)
312 #else
313 /* Otherwise we're a bit stuck, really. Modern Linux kernels make a copy
314 * of the vector available in `/procc' so we could try that.
315 *
316 * The usual place is stuck on the end of the environment vector, but that
317 * may well have moved, and we have no way of telling whether it has or
318 * whether there was ever an auxiliary vector there at all; so don't do
319 * that.
320 */
321 {
322 FILE *fp = 0;
323 unsigned char *p = 0, *q = 0;
324 const struct auxentry *a;
325 size_t sz, off, n;
326
327 /* Open the file and read it into a memory chunk. */
328 if ((fp = fopen("/proc/self/auxv", "rb")) == 0) goto clean;
329 sz = 4096; off = 0;
330 if ((p = malloc(sz)) == 0) goto clean;
331 for (;;) {
332 n = fread(p + off, 1, sz - off, fp);
333 off += n;
334 if (off < sz) break;
335 sz *= 2; if ((q = realloc(p, sz)) == 0) break;
336 p = q;
337 }
338
339 /* Work through the vector (or as much of it as we found) and extract the
340 * types we're interested in.
341 */
342 for (a = (const struct auxentry *)p,
343 n = sz/sizeof(struct auxentry);
344 n--; a++) {
345 switch (a->type) {
346 #define CAP__SWITCH(type, ubranch, slot) \
347 case type: probed.slot = a->value.ubranch; break;
348 WANTAUX(CAP__SWITCH)
349 }
350 }
351
352 clean:
353 if (p) free(p);
354 if (fp) fclose(fp);
355 }
356 #endif
357
358 /* Each CPU family now has to pick through what was found and stashed in
359 * `probed', and set the appropriate flag bits in `hw'.
360 */
361
362 /* Store the bitmask of features we probed for everyone to see. */
363 DISPATCH_STORE(hwcaps, hw);
364
365 /* Finally, make a report about the things we found. (Doing this earlier
366 * will pointlessly widen the window in which multiple threads will do the
367 * above auxiliary-vector probing.)
368 */
369 #define CAP__DEBUG(feat, tok) \
370 dispatch_debug("check auxv for feature `%s': %s", tok, \
371 hw & HF_##feat ? "available" : "absent");
372 CAPMAP(CAP__DEBUG)
373 #undef CAP__DEBUG
374 }
375
376 /* --- @get_hwcaps@ --- *
377 *
378 * Arguments: ---
379 *
380 * Returns: A mask of hardware capabilities and other features, as probed
381 * from the auxiliary vector.
382 */
383
384 static unsigned get_hwcaps(void)
385 {
386 unsigned hw;
387
388 DISPATCH_LOAD(hwcaps, hw);
389 if (!(hwcaps & HF_PROBED)) { probe_hwcaps(); DISPATCH_LOAD(hwcaps, hw); }
390 return (hw);
391 }
392
393 #endif
394
395 /*----- External interface ------------------------------------------------*/
396
397 /* --- @dispatch_debug@ --- *
398 *
399 * Arguments: @const char *fmt@ = a format string
400 * @...@ = additional arguments
401 *
402 * Returns: ---
403 *
404 * Use: Writes a formatted message to standard output if dispatch
405 * debugging is enabled.
406 */
407
408 void dispatch_debug(const char *fmt, ...)
409 {
410 va_list ap;
411 const char *e = getenv("CATACOMB_CPUDISPATCH_DEBUG");
412
413 if (e && *e != 'n' && *e != '0') {
414 va_start(ap, fmt);
415 fputs("Catacomb CPUDISPATCH: ", stderr);
416 vfprintf(stderr, fmt, ap);
417 fputc('\n', stderr);
418 va_end(ap);
419 }
420 }
421
422 /* --- @check_env@ --- *
423 *
424 * Arguments: @const char *ftok@ = feature token
425 *
426 * Returns: Zero if the feature is forced off; positive if it's forced
427 * on; negative if the user hasn't decided.
428 *
429 * Use: Checks the environment variable `CATACOMB_CPUFEAT' for the
430 * feature token @ftok@. The variable, if it exists, should be
431 * a space-separated sequence of `+tok' and `-tok' items. These
432 * tokens may end in `*', which matches any suffix.
433 */
434
435 static int IGNORABLE check_env(const char *ftok)
436 {
437 const char *p, *q, *pp;
438 int d;
439
440 p = getenv("CATACOMB_CPUFEAT");
441 if (!p) return (-1);
442
443 for (;;) {
444 while (isspace((unsigned char)*p)) p++;
445 if (!*p) return (-1);
446 switch (*p) {
447 case '+': d = +1; p++; break;
448 case '-': d = 0; p++; break;
449 default: d = -1; break;
450 }
451 for (q = p; *q && !isspace((unsigned char)*q); q++);
452 if (d >= 0) {
453 for (pp = ftok; p < q && *pp && *p == *pp; p++, pp++);
454 if ((p == q && !*pp) || (*p == '*' && p + 1 == q)) return (d);
455 }
456 p = q;
457 }
458 return (-1);
459 }
460
461 /* --- @cpu_feature_p@ --- *
462 *
463 * Arguments: @unsigned feat@ = a @CPUFEAT_...@ code
464 *
465 * Returns: Nonzero if the feature is available.
466 */
467
468 #include <stdio.h>
469
470 static int IGNORABLE
471 feat_debug(const char *ftok, const char *check, int verdict)
472 {
473 if (verdict >= 0) {
474 dispatch_debug("feature `%s': %s -> %s", ftok, check,
475 verdict ? "available" : "absent");
476 }
477 return (verdict);
478 }
479
480 int cpu_feature_p(int feat)
481 {
482 int IGNORABLE f;
483 IGNORE(f);
484 #define CASE_CPUFEAT(feat, ftok, cond) case CPUFEAT_##feat: \
485 if ((f = feat_debug(ftok, "environment override", \
486 check_env(ftok))) >= 0) \
487 return (f); \
488 else \
489 return (feat_debug(ftok, "runtime probe", cond));
490
491 switch (feat) {
492 #if CPUFAM_X86 || CPUFAM_AMD64
493 CASE_CPUFEAT(X86_SSE2, "x86:sse2",
494 xmm_registers_available_p() &&
495 cpuid_features_p(CPUID1D_SSE2, 0));
496 CASE_CPUFEAT(X86_AESNI, "x86:aesni",
497 xmm_registers_available_p() &&
498 cpuid_features_p(CPUID1D_SSE2, CPUID1C_AESNI));
499 #endif
500 #ifdef CAPMAP
501 # define FEATP__CASE(feat, tok) \
502 CASE_CPUFEAT(feat, tok, get_hwcaps & HF_##feat)
503 CAPMAP(FEATP__CASE)
504 #undef FEATP__CASE
505 #endif
506 default:
507 dispatch_debug("denying unknown feature %d", feat);
508 return (0);
509 }
510 #undef CASE_CPUFEAT
511 }
512
513 /*----- That's all, folks -------------------------------------------------*/