progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / math / mpmont.h
1 /* -*-c-*-
2 *
3 * Montgomery reduction
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 #ifndef CATACOMB_MPMONT_H
29 #define CATACOMB_MPMONT_H
30
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34
35 /*----- Header files ------------------------------------------------------*/
36
37 #ifndef CATACOMB_MP_H
38 # include "mp.h"
39 #endif
40
41 /*----- Notes on Montgomery reduction -------------------------------------*
42 *
43 * Given a little bit of precomputation, Montgomery reduction enables modular
44 * reductions of products to be calculated rather rapidly, without recourse
45 * to annoying things like division.
46 *
47 * Before starting, you need to do a little work. In particular, the
48 * following things need to be worked out:
49 *
50 * * %$m$%, which is the modulus you'll be working with. This must be odd,
51 * otherwise the whole thing doesn't work. You're better off using
52 * Barrett reduction if your modulus might be even.
53 *
54 * * %$b$%, the radix of the number system you're in (here, it's
55 * @MPW_MAX + 1@).
56 *
57 * * %$m' = -m^{-1} \bmod b$%, a useful number for the reduction step.
58 * (This means that the modulus mustn't be even. This shouldn't be a
59 * problem.)
60 *
61 * * %$R = b^n > m > b^{n - 1}$%, or at least %$\log_2 R$%.
62 *
63 * * %$R \bmod m$% and %$R^2 \bmod m$%, which are useful when doing
64 * calculations such as exponentiation.
65 *
66 * Suppose that %$0 \le a_i \le (b^n + b^i - 1) m$% with %$a_i \equiv {}$%
67 * %$0 \pmod{b^i}$%. Let %$w_i = m' a_i/b^i \bmod b$%, and set %$a_{i+1} =
68 * a_i + b^i w_i m$%. Then obviously %$a_{i+1} \equiv {} $% %$a_i
69 * \pmod{m}$%, and less obviously %$a_{i+1}/b^i \equiv a_i/b^i + {}$% %$m m'
70 * a_i/b^i \equiv 0 \pmod{b}$% so %$a_{i+1} \equiv 0 \pmod{b^{i+1}}$%.
71 * Finally, we can bound %$a_{i+1} \le {}$% %$a_i + b^i (b - 1) m = {}$%
72 * %$a_i + (b^{i+1} - b^i) m \le (b^n + b^{i+1} - 1) m$%. As a result, if
73 * we're given some %a_0%, we can calculate %$a_n \equiv 0 \pmod{R}$%, with
74 * $%a_n \equiv a_0 \pmod{n}$%, i.e., %$a_n/R \equiv a_0 R^{-1} \pmod{m}$%;
75 * furthermore, if %$0 \le a_0 < m + b^n%$ then %$0 \le a_n/R < 2 m$%, so a
76 * fully reduced result can be obtained with a single conditional
77 * subtraction.
78 *
79 * The result of reduing %$a$% is then %$a R^{-1}$% \bmod m$%. This is
80 * actually rather useful for reducing products, if we run an extra factor of
81 * %$R$% through the calculation: the result of reducing the product of
82 * %$(x R)(y R) = x y R^2$% is then %$x y R \bmod m$%, preserving the running
83 * factor. Thanks to distributivity, additions and subtractions can be
84 * performed on numbers in this form -- the extra factor of %$R$% just runs
85 * through all the calculations until it's finally stripped out by a final
86 * reduction operation.
87 */
88
89 /*----- Data structures ---------------------------------------------------*/
90
91 /* --- A Montgomery reduction context --- */
92
93 typedef struct mpmont {
94 mp *m; /* Modulus */
95 mp *mi; /* %$-m^{-1} \bmod R$% */
96 size_t n; /* %$\log_b R$% */
97 mp *r, *r2; /* %$R \bmod m$%, %$R^2 \bmod m$% */
98 } mpmont;
99
100 /*----- Functions provided ------------------------------------------------*/
101
102 /* --- @mpmont_create@ --- *
103 *
104 * Arguments: @mpmont *mm@ = pointer to Montgomery reduction context
105 * @mp *m@ = modulus to use
106 *
107 * Returns: Zero on success, nonzero on error.
108 *
109 * Use: Initializes a Montgomery reduction context ready for use.
110 * The argument @m@ must be a positive odd integer.
111 */
112
113 extern int mpmont_create(mpmont */*mm*/, mp */*m*/);
114
115 /* --- @mpmont_destroy@ --- *
116 *
117 * Arguments: @mpmont *mm@ = pointer to a Montgomery reduction context
118 *
119 * Returns: ---
120 *
121 * Use: Disposes of a context when it's no longer of any use to
122 * anyone.
123 */
124
125 extern void mpmont_destroy(mpmont */*mm*/);
126
127 /* --- @mpmont_reduce@ --- *
128 *
129 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
130 * @mp *d@ = destination
131 * @mp *a@ = source, assumed positive
132 *
133 * Returns: Result, %$a R^{-1} \bmod m$%.
134 */
135
136 extern mp *mpmont_reduce(const mpmont */*mm*/, mp */*d*/, mp */*a*/);
137
138 /* --- @mpmont_mul@ --- *
139 *
140 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
141 * @mp *d@ = destination
142 * @mp *a, *b@ = sources, assumed positive
143 *
144 * Returns: Result, %$a b R^{-1} \bmod m$%.
145 */
146
147 extern mp *mpmont_mul(const mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*b*/);
148
149 /* --- @mpmont_expr@ --- *
150 *
151 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
152 * @mp *d@ = fake destination
153 * @mp *a@ = base
154 * @mp *e@ = exponent
155 *
156 * Returns: Result, %$(a R^{-1})^e R \bmod m$%. This is useful if
157 * further modular arithmetic is to be performed on the result.
158 */
159
160 extern mp *mpmont_expr(const mpmont */*mm*/, mp */*d*/,
161 mp */*a*/, mp */*e*/);
162
163 /* --- @mpmont_exp@ --- *
164 *
165 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
166 * @mp *d@ = fake destination
167 * @mp *a@ = base
168 * @mp *e@ = exponent
169 *
170 * Returns: Result, %$a^e \bmod m$%.
171 */
172
173 extern mp *mpmont_exp(const mpmont */*mm*/, mp */*d*/, mp */*a*/, mp */*e*/);
174
175 /* --- @mpmont_mexpr@ --- *
176 *
177 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
178 * @mp *d@ = fake destination
179 * @const mp_expfactor *f@ = pointer to array of factors
180 * @size_t n@ = number of factors supplied
181 *
182 * Returns: If the bases are %$g_0, g_1, \ldots, g_{n-1}$% and the
183 * exponents are %$e_0, e_1, \ldots, e_{n-1}$% then the result
184 * is:
185 *
186 * %$g_0^{e_0} g_1^{e_1} \ldots g_{n-1}^{e_{n-1}} \bmod m$%
187 *
188 *
189 * except that the %$g_i$% and result are in Montgomery form.
190 */
191
192 extern mp *mpmont_mexpr(const mpmont */*mm*/, mp */*d*/,
193 const mp_expfactor */*f*/, size_t /*n*/);
194
195 /* --- @mpmont_mexp@ --- *
196 *
197 * Arguments: @const mpmont *mm@ = pointer to Montgomery reduction context
198 * @mp *d@ = fake destination
199 * @const mp_expfactor *f@ = pointer to array of factors
200 * @size_t n@ = number of factors supplied
201 *
202 * Returns: Product of bases raised to exponents, all mod @m@.
203 *
204 * Use: Convenient interface over @mpmont_mexpr@.
205 */
206
207 extern mp *mpmont_mexp(const mpmont */*mm*/, mp */*d*/,
208 const mp_expfactor */*f*/, size_t /*n*/);
209
210 /*----- That's all, folks -------------------------------------------------*/
211
212 #ifdef __cplusplus
213 }
214 #endif
215
216 #endif