progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / math / mpbarrett.h
1 /* -*-c-*-
2 *
3 * Barrett modular reduction
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Notes on Barrett reduction ----------------------------------------*
29 *
30 * Barrett reduction is a technique for computing modular residues. Unlike
31 * Montgomery reduction, it doesn't have restrictions on the modulus (except
32 * that it be positive) and doesn't confuse matters by putting an extra
33 * factor all the way through your computation.
34 *
35 * It's useful for slightly less heavy-duty work than Montgomery reduction
36 * because the precomputation phase is rather simpler, involving a single
37 * division operation.
38 *
39 * Sometimes it's useful to exponentiate modulo an even number, so there's a
40 * modexp routine provided which uses Barrett reduction rather than
41 * Montgomery reduction. This is handy when you're working on indices in an
42 * even-order cyclic group or something.
43 *
44 * In more detail: suppose that %$b^{k-1} \le m < b^k$%. Let %$\mu = {}$%
45 * %$\lfloor b^{2k}/m \rfloor$%; %$\mu$% is a scaled approximation to the
46 * reciprocal %$1/m$%. Now, suppose we're given some %$a$% with
47 * %$0 \le a < b^{2k}$%. The first step is to calculate an approximation
48 * %$q = \lfloor \mu \lfloor a/b^{k-1} \rfloor/b^{k+1} \rfloor$% to the
49 * quotient %$a/m$%. Then we have:
50 *
51 * %$\lfloor a/m - a/b^{2k} - b^{k-1}/m + 1/b^{k+1} \rfloor \le {}$%
52 * %$q \le \lfloor a/m \rfloor
53 *
54 * But by assumption %$a < b^{2k}$% and %$2^{k-1} \le m$% so
55 *
56 * %$\lfloor a/m \rfloor - 2 \le q \le \lfloor a/m \rfloor$%
57 *
58 * Now we approximate the remainder by calculating %$r = a - q m$%.
59 * Certainly %$r \equiv a \pmod{m}$%; and
60 *
61 * %$0 \le r \le (a - m \lfloor a/m \rfloor) + 2 m < 3 m$%.
62 *
63 * So the remainder can be fixed up with at most two conditional
64 * subtractions.
65 */
66
67 #ifndef CATACOMB_MPBARRETT_H
68 #define CATACOMB_MPBARRETT_H
69
70 #ifdef __cplusplus
71 extern "C" {
72 #endif
73
74 /*----- Header files ------------------------------------------------------*/
75
76 #ifndef CATACOMB_MP_H
77 # include "mp.h"
78 #endif
79
80 /*----- Data structures ---------------------------------------------------*/
81
82 typedef struct mpbarrett {
83 mp *m;
84 mp *mu;
85 size_t k;
86 } mpbarrett;
87
88 /*----- Functions provided ------------------------------------------------*/
89
90 /* --- @mpbarrett_create@ --- *
91 *
92 * Arguments: @mpbarrett *mb@ = pointer to Barrett reduction context
93 * @mp *m@ = modulus to work to
94 *
95 * Returns: Zero on success, nonzero on error.
96 *
97 * Use: Initializes a Barrett reduction context ready for use.
98 */
99
100 extern int mpbarrett_create(mpbarrett */*mb*/, mp */*m*/);
101
102 /* --- @mpbarrett_destroy@ --- *
103 *
104 * Arguments: @mpbarrett *mb@ = pointer to Barrett reduction context
105 *
106 * Returns: ---
107 *
108 * Use: Destroys a Barrett reduction context releasing any resources
109 * claimed.
110 */
111
112 extern void mpbarrett_destroy(mpbarrett */*mb*/);
113
114 /* --- @mpbarrett_reduce@ --- *
115 *
116 * Arguments: @const mpbarrett *mb@ = pointer to Barrett reduction context
117 * @mp *d@ = destination for result
118 * @mp *m@ = number to reduce
119 *
120 * Returns: The residue of @m@ modulo the number in the reduction
121 * context.
122 *
123 * Use: Performs an efficient modular reduction.
124 */
125
126 extern mp *mpbarrett_reduce(const mpbarrett */*mb*/, mp */*d*/, mp */*m*/);
127
128 /* --- @mpbarrett_exp@ --- *
129 *
130 * Arguments: @const mpbarrett *mb@ = pointer to Barrett reduction context
131 * @mp *d@ = fake destination
132 * @mp *a@ = base
133 * @mp *e@ = exponent
134 *
135 * Returns: Result, %$a^e \bmod m$%.
136 */
137
138 extern mp *mpbarrett_exp(const mpbarrett */*mb*/, mp */*d*/,
139 mp */*a*/, mp */*e*/);
140
141 /* --- @mpbarrett_mexp@ --- *
142 *
143 * Arguments: @const mpbarrett *mb@ = pointer to Barrett reduction context
144 * @mp *d@ = fake destination
145 * @const mp_expfactor *f@ = pointer to array of factors
146 * @size_t n@ = number of factors supplied
147 *
148 * Returns: If the bases are %$g_0, g_1, \ldots, g_{n-1}$% and the
149 * exponents are %$e_0, e_1, \ldots, e_{n-1}$% then the result
150 * is:
151 *
152 * %$g_0^{e_0} g_1^{e_1} \ldots g_{n-1}^{e_{n-1}} \bmod m$%
153 */
154
155 extern mp *mpbarrett_mexp(const mpbarrett */*mb*/, mp */*d*/,
156 const mp_expfactor */*f*/, size_t /*n*/);
157
158 /*----- That's all, folks -------------------------------------------------*/
159
160 #ifdef __cplusplus
161 }
162 #endif
163
164 #endif