progs/perftest.c: Use from Glibc syscall numbers.
[catacomb] / math / gfreduce.c
1 /* -*-c-*-
2 *
3 * Efficient reduction modulo sparse binary polynomials
4 *
5 * (c) 2004 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <mLib/alloc.h>
31 #include <mLib/darray.h>
32 #include <mLib/macros.h>
33
34 #include "gf.h"
35 #include "gfreduce.h"
36 #include "gfreduce-exp.h"
37 #include "fibrand.h"
38 #include "mprand.h"
39
40 /*----- Data structures ---------------------------------------------------*/
41
42 DA_DECL(instr_v, gfreduce_instr);
43
44 /*----- Main code ---------------------------------------------------------*/
45
46 /* --- What's going on here? --- *
47 *
48 * Let's face it, @gfx_div@ sucks. It works (I hope), but it's not in any
49 * sense fast. Here, we do efficient reduction modulo sparse polynomials.
50 * (It works for arbitrary polynomials, but isn't efficient for dense ones.)
51 *
52 * Suppose that %$p = x^n + p'$% where %$p' = \sum_{0\le i<n} p_i x^i$%,
53 * hopefully with only a few %$p_i \ne 0$%. We're going to compile %$p$%
54 * into a sequence of instructions which can be used to perform reduction
55 * modulo %$p$%. The important observation is that
56 * %$x^n \equiv p' \pmod p$%.
57 *
58 * Suppose we're working with %$w$%-bit words; let %$n = N w + n'$% with
59 * %$0 \le n' < w$%. Let %$u(x)$% be some arbitrary polynomial. Write
60 * %$u = z x^k + u'$% with %$\deg u' < k \ge n$%. Then a reduction step uses
61 * that %$u \equiv u' + z p' x^{k-n} \pmod p$%: the right hand side has
62 * degree %$\max \{ \deg u', k + \deg p' - n + \deg z \} < \deg u$%, so this
63 * makes progress towards a complete reduction.
64 *
65 * The compiled instruction sequence computes
66 * %$u' + z p' x^{k-n} = u' + \sum_{0\le i<n} z x^{k-n+i}$%.
67 */
68
69 /* --- @gfreduce_create@ --- *
70 *
71 * Arguments: @gfreduce *r@ = structure to fill in
72 * @mp *x@ = a (hopefully sparse) polynomial
73 *
74 * Returns: ---
75 *
76 * Use: Initializes a context structure for reduction.
77 */
78
79 struct gen {
80 unsigned f; /* Flags */
81 #define f_lsr 1u /* Overflow from previous word */
82 #define f_load 2u /* Outstanding @LOAD@ */
83 #define f_fip 4u /* Final-pass offset is set */
84 instr_v iv; /* Instruction vector */
85 size_t fip; /* Offset for final-pass reduction */
86 size_t w; /* Currently loaded target word */
87 size_t wi; /* Left-shifts for current word */
88 gfreduce *r; /* Reduction context pointer */
89 };
90
91 #define INSTR(g_, op_, arg_) do { \
92 struct gen *_g = (g_); \
93 instr_v *_iv = &_g->iv; \
94 size_t _i = DA_LEN(_iv); \
95 \
96 DA_ENSURE(_iv, 1); \
97 DA(_iv)[_i].op = (op_); \
98 DA(_iv)[_i].arg = (arg_); \
99 DA_EXTEND(_iv, 1); \
100 } while (0)
101
102 static void emit_load(struct gen *g, size_t w)
103 {
104 /* --- If this is not the low-order word then note final-pass start --- *
105 *
106 * Once we've eliminated the whole high-degree words, there will possibly
107 * remain a few high-degree bits. We can further reduce the subject
108 * polynomial by subtracting an appropriate multiple of %$p'$%, but if we
109 * do this naively we'll end up addressing `low-order' words beyond the
110 * bottom of our input. We solve this problem by storing an alternative
111 * start position for this final pass (which works because we scan bits
112 * right-to-left).
113 */
114
115 if (!(g->f & f_fip) && w < g->r->lim) {
116 g->fip = DA_LEN(&g->iv);
117 g->f |= f_fip;
118 }
119
120 /* --- Actually emit the instruction --- */
121
122 INSTR(g, GFRI_LOAD, w);
123 g->f |= f_load;
124 g->w = w;
125 }
126
127 static void emit_right_shifts(struct gen *g)
128 {
129 gfreduce_instr *ip;
130 size_t i, wl;
131
132 /* --- Close off the current word --- *
133 *
134 * If we shifted into this current word with a nonzero bit offset, then
135 * we'll also need to arrange to perform a sequence of right shifts into
136 * the following word, which we might as well do by scanning the
137 * instruction sequence (which starts at @wi@).
138 *
139 * Either way, we leave a @LOAD@ unmatched if there was one before, in the
140 * hope that callers have an easier time; @g->w@ is updated to reflect the
141 * currently open word.
142 */
143
144 if (!(g->f & f_lsr))
145 return;
146
147 wl = DA_LEN(&g->iv);
148 INSTR(g, GFRI_STORE, g->w);
149 emit_load(g, g->w - 1);
150 for (i = g->wi; i < wl; i++) {
151 ip = &DA(&g->iv)[i];
152 assert(ip->op == GFRI_LSL);
153 if (ip->arg)
154 INSTR(g, GFRI_LSR, MPW_BITS - ip->arg);
155 }
156 g->f &= ~f_lsr;
157 }
158
159 static void ensure_loaded(struct gen *g, size_t w)
160 {
161 if (!(g->f & f_load)) {
162 emit_load(g, w);
163 g->wi = DA_LEN(&g->iv);
164 } else if (w != g->w) {
165 emit_right_shifts(g);
166 if (w != g->w) {
167 INSTR(g, GFRI_STORE, g->w);
168 emit_load(g, w);
169 }
170 g->wi = DA_LEN(&g->iv);
171 }
172 }
173
174 void gfreduce_create(gfreduce *r, mp *p)
175 {
176 struct gen g = { 0, DA_INIT };
177 unsigned long d;
178 unsigned dw;
179 mpscan sc;
180 unsigned long i;
181 size_t w, bb;
182
183 /* --- Sort out the easy stuff --- */
184
185 g.r = r;
186 d = mp_bits(p); assert(d); d--;
187 r->lim = d/MPW_BITS;
188 dw = d%MPW_BITS;
189 if (!dw)
190 r->mask = 0;
191 else {
192 r->mask = MPW(((mpw)-1) << dw);
193 r->lim++;
194 }
195 r->p = mp_copy(p);
196
197 /* --- How this works --- *
198 *
199 * The instruction sequence is run with two ambient parameters: a pointer
200 * (usually) just past the most significant word of the polynomial to be
201 * reduced; and a word %$z$% which is the multiple of %$p'$% we are meant
202 * to add.
203 *
204 * The sequence visits each word of the polynomial at most once. Suppose
205 * %$u = z x^{w N} + u'$%; our pointer points just past the end of %$u'$%.
206 * Word %$I$% of %$u'$% will be affected by modulus bits %$p_i$% where
207 * %$(N - I - 1) w + 1 \le i \le (N - I + 1) w - 1$%, so %$p_i$% affects
208 * word %$I = \lceil (n - i + 1)/w \rceil$% and (if %$i$% is not a multiple
209 * of %$w$%) also word %$I - 1$%.
210 *
211 * We have four instructions: @LOAD@ reads a specified word of %$u$% into an
212 * accumulator, and @STORE@ stores it back (we'll always store back to the
213 * same word we most recently read, but this isn't a requirement); and
214 * @LSL@ and @LSR@, which XOR in appropriately shifted copies of %$z$% into
215 * the accumulator. So a typical program will contain sequences of @LSR@
216 * and @LSL@ instructions sandwiched between @LOAD@/@STORE@ pairs.
217 *
218 * We do a single right-to-left pass across %$p$%.
219 */
220
221 bb = MPW_BITS - dw;
222
223 for (i = 0, mp_scan(&sc, p); mp_step(&sc) && i < d; i++) {
224 if (!mp_bit(&sc))
225 continue;
226
227 /* --- We've found a set bit, so work out which word it affects --- *
228 *
229 * In general, a bit affects two words: it needs to be shifted left into
230 * one, and shifted right into the next. We find the former here.
231 */
232
233 w = (d - i + MPW_BITS - 1)/MPW_BITS;
234
235 /* --- Concentrate on the appropriate word --- */
236
237 ensure_loaded(&g, w);
238
239 /* --- Accumulate a new @LSL@ instruction --- *
240 *
241 * If this was a nonzero shift, then we'll need to arrange to do right
242 * shifts into the following word.
243 */
244
245 INSTR(&g, GFRI_LSL, (bb + i)%MPW_BITS);
246 if ((bb + i)%MPW_BITS)
247 g.f |= f_lsr;
248 }
249
250 /* --- Wrapping up --- *
251 *
252 * We probably need a final @STORE@, and maybe a sequence of right shifts.
253 */
254
255 if (g.f & f_load) {
256 emit_right_shifts(&g);
257 INSTR(&g, GFRI_STORE, g.w);
258 }
259
260 /* --- Copy the instruction vector.
261 *
262 * If we've not set a final-pass offset yet then now would be an excellent
263 * time. Obviously it should be right at the end, because there's nothing
264 * for a final pass to do.
265 */
266
267 r->in = DA_LEN(&g.iv);
268 r->iv = xmalloc(r->in * sizeof(gfreduce_instr));
269 memcpy(r->iv, DA(&g.iv), r->in * sizeof(gfreduce_instr));
270
271 if (!(g.f & f_fip)) g.fip = DA_LEN(&g.iv);
272 r->fiv = r->iv + g.fip;
273
274 DA_DESTROY(&g.iv);
275 }
276
277 #undef INSTR
278
279 #undef f_lsr
280 #undef f_load
281 #undef f_fip
282
283 /* --- @gfreduce_destroy@ --- *
284 *
285 * Arguments: @gfreduce *r@ = structure to free
286 *
287 * Returns: ---
288 *
289 * Use: Reclaims the resources from a reduction context.
290 */
291
292 void gfreduce_destroy(gfreduce *r)
293 {
294 mp_drop(r->p);
295 xfree(r->iv);
296 }
297
298 /* --- @gfreduce_dump@ --- *
299 *
300 * Arguments: @const gfreduce *r@ = structure to dump
301 * @FILE *fp@ = file to dump on
302 *
303 * Returns: ---
304 *
305 * Use: Dumps a reduction context.
306 */
307
308 void gfreduce_dump(const gfreduce *r, FILE *fp)
309 {
310 size_t i;
311
312 fprintf(fp, "poly = "); mp_writefile(r->p, fp, 16);
313 fprintf(fp, "\n lim = %lu; mask = %lx\n",
314 (unsigned long)r->lim, (unsigned long)r->mask);
315 for (i = 0; i < r->in; i++) {
316 static const char *opname[] = { "load", "lsl", "lsr", "store" };
317 if (&r->iv[i] == r->fiv)
318 fputs("final:\n", fp);
319 assert(r->iv[i].op < N(opname));
320 fprintf(fp, " %s %lu\n",
321 opname[r->iv[i].op],
322 (unsigned long)r->iv[i].arg);
323 }
324 if (&r->iv[i] == r->fiv)
325 fputs("final:\n", fp);
326 }
327
328 /* --- @gfreduce_do@ --- *
329 *
330 * Arguments: @const gfreduce *r@ = reduction context
331 * @mp *d@ = destination
332 * @mp *x@ = source
333 *
334 * Returns: Destination, @x@ reduced modulo the reduction poly.
335 */
336
337 static void run(const gfreduce_instr *i, const gfreduce_instr *il,
338 mpw *v, mpw z)
339 {
340 mpw w = 0;
341
342 for (; i < il; i++) {
343 switch (i->op) {
344 case GFRI_LOAD: w = *(v - i->arg); break;
345 case GFRI_LSL: w ^= z << i->arg; break;
346 case GFRI_LSR: w ^= z >> i->arg; break;
347 case GFRI_STORE: *(v - i->arg) = MPW(w); break;
348 default: abort();
349 }
350 }
351 }
352
353 mp *gfreduce_do(const gfreduce *r, mp *d, mp *x)
354 {
355 mpw *v, *vl;
356 const gfreduce_instr *il;
357 mpw z;
358
359 /* --- Try to reuse the source's space --- */
360
361 MP_COPY(x);
362 if (d) MP_DROP(d);
363 MP_DEST(x, MP_LEN(x), x->f);
364
365 /* --- Do the reduction --- */
366
367 il = r->iv + r->in;
368 if (MP_LEN(x) >= r->lim) {
369 v = x->v + r->lim;
370 vl = x->vl;
371 while (vl-- > v) {
372 while (*vl) {
373 z = *vl;
374 *vl = 0;
375 run(r->iv, il, vl, z);
376 }
377 }
378 if (r->mask) {
379 while (*vl & r->mask) {
380 z = *vl & r->mask;
381 *vl &= ~r->mask;
382 run(r->fiv, il, vl, z);
383 }
384 }
385 }
386
387 /* --- Done --- */
388
389 MP_SHRINK(x);
390 return (x);
391 }
392
393 /* --- @gfreduce_sqrt@ --- *
394 *
395 * Arguments: @const gfreduce *r@ = pointer to reduction context
396 * @mp *d@ = destination
397 * @mp *x@ = some polynomial
398 *
399 * Returns: The square root of @x@ modulo @r->p@, or null.
400 */
401
402 mp *gfreduce_sqrt(const gfreduce *r, mp *d, mp *x)
403 {
404 mp *y = MP_COPY(x);
405 mp *z, *spare = MP_NEW;
406 unsigned long m = mp_bits(r->p) - 1;
407 unsigned long i;
408
409 /* --- This is pretty easy --- *
410 *
411 * Note that %$x = x^{2^m}$%; therefore %$(x^{2^{m-1}})^2 = x^{2^m} = x$%,
412 * so %$x^{2^{m-1}}$% is the square root we seek.
413 */
414
415 for (i = 0; i < m - 1; i++) {
416 mp *t = gf_sqr(spare, y);
417 spare = y;
418 y = gfreduce_do(r, t, t);
419 }
420 z = gf_sqr(spare, y);
421 z = gfreduce_do(r, z, z);
422 if (!MP_EQ(x, z)) {
423 mp_drop(y);
424 y = 0;
425 }
426 mp_drop(z);
427 mp_drop(d);
428 return (y);
429 }
430
431 /* --- @gfreduce_trace@ --- *
432 *
433 * Arguments: @const gfreduce *r@ = pointer to reduction context
434 * @mp *x@ = some polynomial
435 *
436 * Returns: The trace of @x@. (%$\Tr(x)=x + x^2 + \cdots + x^{2^{m-1}}$%
437 * if %$x \in \gf{2^m}$%). Since the trace is invariant under
438 * the Frobenius automorphism (i.e., %$\Tr(x)^2 = \Tr(x)$%), it
439 * must be an element of the base field, i.e., %$\gf{2}$%, and
440 * we only need a single bit to represent it.
441 */
442
443 int gfreduce_trace(const gfreduce *r, mp *x)
444 {
445 mp *y = MP_COPY(x);
446 mp *spare = MP_NEW;
447 unsigned long m = mp_bits(r->p) - 1;
448 unsigned long i;
449 int rc;
450
451 for (i = 0; i < m - 1; i++) {
452 mp *t = gf_sqr(spare, y);
453 spare = y;
454 y = gfreduce_do(r, t, t);
455 y = gf_add(y, y, x);
456 }
457 rc = !MP_ZEROP(y);
458 mp_drop(spare);
459 mp_drop(y);
460 return (rc);
461 }
462
463 /* --- @gfreduce_halftrace@ --- *
464 *
465 * Arguments: @const gfreduce *r@ = pointer to reduction context
466 * @mp *d@ = destination
467 * @mp *x@ = some polynomial
468 *
469 * Returns: The half-trace of @x@.
470 * (%$\HfTr(x)= x + x^{2^2} + \cdots + x^{2^{m-1}}$%
471 * if %$x \in \gf{2^m}$% with %$m$% odd).
472 */
473
474 mp *gfreduce_halftrace(const gfreduce *r, mp *d, mp *x)
475 {
476 mp *y = MP_COPY(x);
477 mp *spare = MP_NEW;
478 unsigned long m = mp_bits(r->p) - 1;
479 unsigned long i;
480
481 mp_drop(d);
482 for (i = 0; i < m - 1; i += 2) {
483 mp *t = gf_sqr(spare, y);
484 spare = y;
485 y = gfreduce_do(r, t, t);
486 t = gf_sqr(spare, y);
487 spare = y;
488 y = gfreduce_do(r, t, t);
489 y = gf_add(y, y, x);
490 }
491 mp_drop(spare);
492 return (y);
493 }
494
495 /* --- @gfreduce_quadsolve@ --- *
496 *
497 * Arguments: @const gfreduce *r@ = pointer to reduction context
498 * @mp *d@ = destination
499 * @mp *x@ = some polynomial
500 *
501 * Returns: A polynomial @z@ such that %$z^2 + z = x$%, or null.
502 *
503 * Use: Solves quadratic equations in a field with characteristic 2.
504 * Suppose we have an equation %$y^2 + A y + B = 0$% where
505 * %$A \ne 0$%. (If %$A = 0$% then %$y = \sqrt{B}$% and you
506 * want @gfreduce_sqrt@ instead.) Use this function to solve
507 * %$z^2 + z = B/A^2$%; then set %$y = A z$%, since
508 * %$y^2 + y = A^2 z^2 + A^2 z = A^2 (z^2 + z) = B$% as
509 * required.
510 *
511 * The two roots are %$z$% and %$z + 1$%; this function always
512 * returns the one with zero scalar coefficient.
513 */
514
515 mp *gfreduce_quadsolve(const gfreduce *r, mp *d, mp *x)
516 {
517 unsigned long m = mp_bits(r->p) - 1;
518 mp *t;
519
520 /* --- About the solutions --- *
521 *
522 * Factor %$z^2 + z = z (z + 1)$%. Therefore, if %$z^2 + z = x$% and
523 * %$z' = z + 1$% then %$z'^2 + z' = z^2 + 1 + z + 1 = z^2 + z$%, so
524 * %$z + 1$% is the other solution.
525 *
526 * A solution exists if and only if %$\Tr(x) = 0$%. To see the `only if'
527 * implication, recall that the trace function is linear, and hence
528 * $%\Tr(z^2 + z) = \Tr(z)^2 + \Tr(z) = \Tr(z) + \Tr(z) = 0$%. The `if'
529 * direction will be proven using explicit constructions captured in the
530 * code below.
531 */
532
533 MP_COPY(x);
534 if (m & 1) {
535
536 /* --- A short-cut for fields with odd degree ---
537 *
538 * The method below works in all binary fields, but there's a quicker way
539 * which works whenever the degree is odd. The half-trace is
540 * %$z = \sum_{0\le i\le (m-1)/2} x^{2^{2i}}$%. Then %$z^2 + z = {}$%
541 * %$\sum_{0\le i\le (m-1)/2} (x^{2^{2i}} + x^{2^{2i+1}}) = {}$%
542 * %$\Tr(x) + x^{2^m} = \Tr(x) + x$%. This therefore gives us the
543 * solution we want whenever %$\Tr(x) = 0$%.
544 */
545
546 d = gfreduce_halftrace(r, d, x);
547 } else {
548 mp *z, *w, *rho = MP_NEW;
549 mp *spare = MP_NEW;
550 grand *fr = fibrand_create(0);
551 unsigned long i;
552
553 /* --- Unpicking the magic --- *
554 *
555 * Choose %$\rho \inr \gf{2^m}$% with %$\Tr(\rho) = 1$%. Let
556 * %$z = \sum_{0\le i<m} \rho^{2^i} \sum_{0\le j<i} x^{2^j} = {}$%
557 * %$\sum_{1\le i<m} \rho^{2^i} (x + \sum_{1\le j<i} x^{2^j} = {}$%
558 * %$\rho^2 x + \rho^4 (x + x^2) + \rho^8 (x + x^2 + x^4) + \cdots + {}$%
559 * %$\rho^{2^{m-1}} (x + x^2 + x^{2^{m-2}})$%. Then %$z^2 = {}$%
560 * %$\sum_{0\le i<m} \rho^{2^{i+1}} \sum_{0\le j<i} x^{2^{j+1}} = {}$%
561 * %$\sum_{1\le i\le m} \rho^{2^i} \sum_{1\le j<i} x^{2^j} = {}$%
562 * %$\sum_{1\le i<m} \rho^{2^i} \sum_{1\le j<i} x^{2^j} + {}$%
563 * %$\rho^{2^m} \sum_{1\le j<m} x^{2^j}$%; and, somewhat miraculously,
564 * %$z^2 + z = \sum_{1\le i<m} \rho^{2^i} x + {}$%
565 * %$\rho \sum_{1\le i<m} x^{2^i} = x (\Tr(\rho) + \rho) + {}$%
566 * %$\rho (\Tr(x) + x) = x \Tr(\rho) + \rho \Tr(x)$%. Again,
567 * this gives us the root we want whenever %$\Tr(x) = 0$%.
568 *
569 * The loop below calculates %$w = \Tr(\rho)$% and %$z$% simultaneously,
570 * since the same powers of %$\rho$% are wanted in both calculations.
571 */
572
573 for (;;) {
574 rho = mprand(rho, m, fr, 0);
575 z = MP_ZERO;
576 w = MP_COPY(rho);
577 for (i = 0; i < m - 1; i++) {
578 t = gf_sqr(spare, z); spare = z; z = gfreduce_do(r, t, t);
579 t = gf_sqr(spare, w); spare = w; w = gfreduce_do(r, t, t);
580 t = gf_mul(spare, w, x); t = gfreduce_do(r, t, t); spare = t;
581 z = gf_add(z, z, t);
582 w = gf_add(w, w, rho);
583 }
584 if (!MP_ZEROP(w))
585 break;
586 MP_DROP(z);
587 MP_DROP(w);
588 }
589 if (d) MP_DROP(d);
590 MP_DROP(w);
591 MP_DROP(spare);
592 MP_DROP(rho);
593 fr->ops->destroy(fr);
594 d = z;
595 }
596
597 /* --- Check that we calculated the right answer --- *
598 *
599 * It should be correct; if it's not then maybe the ring we're working in
600 * isn't really a field.
601 */
602
603 t = gf_sqr(MP_NEW, d); t = gfreduce_do(r, t, t); t = gf_add(t, t, d);
604 if (!MP_EQ(t, x)) {
605 MP_DROP(d);
606 d = 0;
607 }
608 MP_DROP(t);
609 MP_DROP(x);
610
611 /* --- Pick a canonical root --- *
612 *
613 * The two roots are %$z$% and %$z + 1$%; pick the one with a zero
614 * scalar coefficient just for consistency's sake.
615 */
616
617 if (d) d->v[0] &= ~(mpw)1;
618 return (d);
619 }
620
621 /* --- @gfreduce_exp@ --- *
622 *
623 * Arguments: @const gfreduce *gr@ = pointer to reduction context
624 * @mp *d@ = fake destination
625 * @mp *a@ = base
626 * @mp *e@ = exponent
627 *
628 * Returns: Result, %$a^e \bmod m$%.
629 */
630
631 mp *gfreduce_exp(const gfreduce *gr, mp *d, mp *a, mp *e)
632 {
633 mp *x = MP_ONE;
634 mp *spare = (e->f & MP_BURN) ? MP_NEWSEC : MP_NEW;
635
636 MP_SHRINK(e);
637 MP_COPY(a);
638 if (MP_ZEROP(e))
639 ;
640 else {
641 if (MP_NEGP(e))
642 a = gf_modinv(a, a, gr->p);
643 if (MP_LEN(e) < EXP_THRESH)
644 EXP_SIMPLE(x, a, e);
645 else
646 EXP_WINDOW(x, a, e);
647 }
648 mp_drop(d);
649 mp_drop(a);
650 mp_drop(spare);
651 return (x);
652 }
653
654 /*----- Test rig ----------------------------------------------------------*/
655
656 #ifdef TEST_RIG
657
658 static int vreduce(dstr *v)
659 {
660 mp *d = *(mp **)v[0].buf;
661 mp *n = *(mp **)v[1].buf;
662 mp *r = *(mp **)v[2].buf;
663 mp *c;
664 int ok = 1;
665 gfreduce rr;
666
667 gfreduce_create(&rr, d);
668 c = gfreduce_do(&rr, MP_NEW, n);
669 if (!MP_EQ(c, r)) {
670 fprintf(stderr, "\n*** reduction failed\n*** ");
671 gfreduce_dump(&rr, stderr);
672 fprintf(stderr, "\n*** n = "); mp_writefile(n, stderr, 16);
673 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
674 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
675 fprintf(stderr, "\n");
676 ok = 0;
677 }
678 gfreduce_destroy(&rr);
679 mp_drop(n); mp_drop(d); mp_drop(r); mp_drop(c);
680 assert(mparena_count(MPARENA_GLOBAL) == 0);
681 return (ok);
682 }
683
684 static int vmodexp(dstr *v)
685 {
686 mp *p = *(mp **)v[0].buf;
687 mp *g = *(mp **)v[1].buf;
688 mp *x = *(mp **)v[2].buf;
689 mp *r = *(mp **)v[3].buf;
690 mp *c;
691 int ok = 1;
692 gfreduce rr;
693
694 gfreduce_create(&rr, p);
695 c = gfreduce_exp(&rr, MP_NEW, g, x);
696 if (!MP_EQ(c, r)) {
697 fprintf(stderr, "\n*** modexp failed\n*** ");
698 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
699 fprintf(stderr, "\n*** g = "); mp_writefile(g, stderr, 16);
700 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
701 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
702 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
703 fprintf(stderr, "\n");
704 ok = 0;
705 }
706 gfreduce_destroy(&rr);
707 mp_drop(p); mp_drop(g); mp_drop(r); mp_drop(x); mp_drop(c);
708 assert(mparena_count(MPARENA_GLOBAL) == 0);
709 return (ok);
710 }
711
712 static int vsqrt(dstr *v)
713 {
714 mp *p = *(mp **)v[0].buf;
715 mp *x = *(mp **)v[1].buf;
716 mp *r = *(mp **)v[2].buf;
717 mp *c;
718 int ok = 1;
719 gfreduce rr;
720
721 gfreduce_create(&rr, p);
722 c = gfreduce_sqrt(&rr, MP_NEW, x);
723 if (!MP_EQ(c, r)) {
724 fprintf(stderr, "\n*** sqrt failed\n*** ");
725 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
726 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
727 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
728 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
729 fprintf(stderr, "\n");
730 ok = 0;
731 }
732 gfreduce_destroy(&rr);
733 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
734 assert(mparena_count(MPARENA_GLOBAL) == 0);
735 return (ok);
736 }
737
738 static int vtr(dstr *v)
739 {
740 mp *p = *(mp **)v[0].buf;
741 mp *x = *(mp **)v[1].buf;
742 int r = *(int *)v[2].buf, c;
743 int ok = 1;
744 gfreduce rr;
745
746 gfreduce_create(&rr, p);
747 c = gfreduce_trace(&rr, x);
748 if (c != r) {
749 fprintf(stderr, "\n*** trace failed\n*** ");
750 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
751 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
752 fprintf(stderr, "\n*** c = %d", c);
753 fprintf(stderr, "\n*** r = %d", r);
754 fprintf(stderr, "\n");
755 ok = 0;
756 }
757 gfreduce_destroy(&rr);
758 mp_drop(p); mp_drop(x);
759 assert(mparena_count(MPARENA_GLOBAL) == 0);
760 return (ok);
761 }
762
763 static int vhftr(dstr *v)
764 {
765 mp *p = *(mp **)v[0].buf;
766 mp *x = *(mp **)v[1].buf;
767 mp *r = *(mp **)v[2].buf;
768 mp *c;
769 int ok = 1;
770 gfreduce rr;
771
772 gfreduce_create(&rr, p);
773 c = gfreduce_halftrace(&rr, MP_NEW, x);
774 if (!MP_EQ(c, r)) {
775 fprintf(stderr, "\n*** halftrace failed\n*** ");
776 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
777 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
778 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
779 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
780 fprintf(stderr, "\n");
781 ok = 0;
782 }
783 gfreduce_destroy(&rr);
784 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
785 assert(mparena_count(MPARENA_GLOBAL) == 0);
786 return (ok);
787 }
788
789 static int vquad(dstr *v)
790 {
791 mp *p = *(mp **)v[0].buf;
792 mp *x = *(mp **)v[1].buf;
793 mp *r = *(mp **)v[2].buf;
794 mp *c;
795 int ok = 1;
796 gfreduce rr;
797
798 gfreduce_create(&rr, p);
799 c = gfreduce_quadsolve(&rr, MP_NEW, x);
800 if (!MP_EQ(c, r)) {
801 fprintf(stderr, "\n*** quadsolve failed\n*** ");
802 fprintf(stderr, "\n*** p = "); mp_writefile(p, stderr, 16);
803 fprintf(stderr, "\n*** x = "); mp_writefile(x, stderr, 16);
804 fprintf(stderr, "\n*** c = "); mp_writefile(c, stderr, 16);
805 fprintf(stderr, "\n*** r = "); mp_writefile(r, stderr, 16);
806 fprintf(stderr, "\n");
807 ok = 0;
808 }
809 gfreduce_destroy(&rr);
810 mp_drop(p); mp_drop(r); mp_drop(x); mp_drop(c);
811 assert(mparena_count(MPARENA_GLOBAL) == 0);
812 return (ok);
813 }
814
815 static test_chunk defs[] = {
816 { "reduce", vreduce, { &type_mp, &type_mp, &type_mp, 0 } },
817 { "modexp", vmodexp, { &type_mp, &type_mp, &type_mp, &type_mp, 0 } },
818 { "sqrt", vsqrt, { &type_mp, &type_mp, &type_mp, 0 } },
819 { "trace", vtr, { &type_mp, &type_mp, &type_int, 0 } },
820 { "halftrace", vhftr, { &type_mp, &type_mp, &type_mp, 0 } },
821 { "quadsolve", vquad, { &type_mp, &type_mp, &type_mp, 0 } },
822 { 0, 0, { 0 } }
823 };
824
825 int main(int argc, char *argv[])
826 {
827 test_run(argc, argv, defs, SRCDIR"/t/gfreduce");
828 return (0);
829 }
830
831 #endif
832
833 /*----- That's all, folks -------------------------------------------------*/