Merge branches 'mdw/latin-ietf' and 'mdw/curve25519'
[catacomb] / symm / chacha.c
1 /* -*-c-*-
2 *
3 * ChaCha stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "chacha.h"
38 #include "chacha-core.h"
39 #include "dispatch.h"
40 #include "gcipher.h"
41 #include "grand.h"
42 #include "keysz.h"
43 #include "paranoia.h"
44
45 /*----- Global variables --------------------------------------------------*/
46
47 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
48
49 /*----- The ChaCha core function and utilities ----------------------------*/
50
51 /* --- @core@ --- *
52 *
53 * Arguments: @unsigned r@ = number of rounds
54 * @const chacha_matrix src@ = input matrix
55 * @chacha_matrix dest@ = where to put the output
56 *
57 * Returns: ---
58 *
59 *
60 * Use: Apply the ChaCha/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
63 */
64
65 CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const chacha_matrix src, chacha_matrix dest),
67 (r, src, dest), pick_core, simple_core);
68
69 static void simple_core(unsigned r, const chacha_matrix src,
70 chacha_matrix dest)
71 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
72
73 #if CPUFAM_X86 || CPUFAM_AMD64
74 extern core__functype chacha_core_x86ish_sse2;
75 #endif
76
77 #if CPUFAM_ARMEL
78 extern core__functype chacha_core_arm_neon;
79 #endif
80
81 static core__functype *pick_core(void)
82 {
83 #if CPUFAM_X86 || CPUFAM_AMD64
84 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
85 cpu_feature_p(CPUFEAT_X86_SSE2));
86 #endif
87 #if CPUFAM_ARMEL
88 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
89 cpu_feature_p(CPUFEAT_ARM_NEON));
90 #endif
91 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
92 }
93
94 /* --- @populate@ --- *
95 *
96 * Arguments: @chacha_matrix a@ = a matrix to fill in
97 * @const void *key@ = pointer to key material
98 * @size_t ksz@ = size of key
99 *
100 * Returns: ---
101 *
102 * Use: Fills in a ChaCha matrix from the key, setting the
103 * appropriate constants according to the key length. The nonce
104 * and position words are left uninitialized.
105 */
106
107 static void populate(chacha_matrix a, const void *key, size_t ksz)
108 {
109 const octet *k = key;
110
111 KSZ_ASSERT(chacha, ksz);
112
113 a[ 4] = LOAD32_L(k + 0);
114 a[ 5] = LOAD32_L(k + 4);
115 if (ksz == 10) {
116 a[ 6] = LOAD16_L(k + 8);
117 a[ 7] = 0;
118 } else {
119 a[ 6] = LOAD32_L(k + 8);
120 a[ 7] = LOAD32_L(k + 12);
121 }
122 if (ksz <= 16) {
123 a[ 8] = a[ 4];
124 a[ 9] = a[ 5];
125 a[10] = a[ 6];
126 a[11] = a[ 7];
127 a[ 0] = CHACHA_A128;
128 a[ 1] = CHACHA_B128;
129 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
130 a[ 3] = CHACHA_D128;
131 } else {
132 a[ 8] = LOAD32_L(k + 16);
133 a[ 9] = LOAD32_L(k + 20);
134 a[10] = LOAD32_L(k + 24);
135 a[11] = LOAD32_L(k + 28);
136 a[ 0] = CHACHA_A256;
137 a[ 1] = CHACHA_B256;
138 a[ 2] = CHACHA_C256;
139 a[ 3] = CHACHA_D256;
140 }
141 }
142
143 /*----- ChaCha implementation ---------------------------------------------*/
144
145 /* --- @chacha_init@ --- *
146 *
147 * Arguments: @chacha_ctx *ctx@ = context to fill in
148 * @const void *key@ = pointer to key material
149 * @size_t ksz@ = size of key (either 32 or 16)
150 * @const void *nonce@ = initial nonce, or null
151 *
152 * Returns: ---
153 *
154 * Use: Initializes a ChaCha context ready for use.
155 */
156
157 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
158 const void *nonce)
159 {
160 static const octet zerononce[CHACHA_NONCESZ];
161
162 populate(ctx->a, key, ksz);
163 chacha_setnonce(ctx, nonce ? nonce : zerononce);
164 }
165
166 /* --- @chacha_setnonce{,_ietf}@ --- *
167 *
168 * Arguments: @chacha_ctx *ctx@ = pointer to context
169 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ or
170 * @CHACHA_IETF_NONCESZ@ bytes)
171 *
172 * Returns: ---
173 *
174 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
175 * different message. The stream position is reset to zero (see
176 * @chacha_seek@ etc.).
177 */
178
179 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
180 {
181 const octet *n = nonce;
182
183 ctx->a[14] = LOAD32_L(n + 0);
184 ctx->a[15] = LOAD32_L(n + 4);
185 chacha_seek(ctx, 0);
186 }
187
188 void chacha_setnonce_ietf(chacha_ctx *ctx, const void *nonce)
189 {
190 const octet *n = nonce;
191
192 ctx->a[13] = LOAD32_L(n + 0);
193 ctx->a[14] = LOAD32_L(n + 4);
194 ctx->a[15] = LOAD32_L(n + 8);
195 chacha_seek_ietf(ctx, 0);
196 }
197
198 /* --- @chacha_seek{,u64,_ietf}@ --- *
199 *
200 * Arguments: @chacha_ctx *ctx@ = pointer to context
201 * @unsigned long i@, @kludge64 i@, @uint32 i@ = new position
202 *
203 * Returns: ---
204 *
205 * Use: Sets a new stream position, in units of Chacha output
206 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
207 * granularity can be achieved by calling @chachaR_encrypt@
208 * appropriately.
209 */
210
211 void chacha_seek(chacha_ctx *ctx, unsigned long i)
212 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
213
214 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
215 {
216 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
217 ctx->bufi = CHACHA_OUTSZ;
218 }
219
220 void chacha_seek_ietf(chacha_ctx *ctx, uint32 i)
221 { ctx->a[12] = i; }
222
223 /* --- @chacha_tell{,u64,_ietf}@ --- *
224 *
225 * Arguments: @chacha_ctx *ctx@ = pointer to context
226 *
227 * Returns: The current position in the output stream, in blocks,
228 * rounding upwards.
229 */
230
231 unsigned long chacha_tell(chacha_ctx *ctx)
232 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
233
234 kludge64 chacha_tellu64(chacha_ctx *ctx)
235 { kludge64 i; SET64(i, ctx->a[13], ctx->a[12]); return (i); }
236
237 uint32 chacha_tell_ietf(chacha_ctx *ctx)
238 { return (ctx->a[12]); }
239
240 /* --- @chacha{20,12,8}_encrypt@ --- *
241 *
242 * Arguments: @chacha_ctx *ctx@ = pointer to context
243 * @const void *src@ = source buffer (or null)
244 * @void *dest@ = destination buffer (or null)
245 * @size_t sz@ = size of the buffers
246 *
247 * Returns: ---
248 *
249 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
250 * ChaCha works by XORing plaintext with a keystream, so
251 * encryption and decryption are the same operation. If @dest@
252 * is null then ignore @src@ and skip @sz@ bytes of the
253 * keystream. If @src@ is null, then just write the keystream
254 * to @dest@.
255 */
256
257 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
258 chacha##r##_encrypt(ctx, src, dest, sz)
259 #define DEFENCRYPT(r) \
260 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
261 void *dest, size_t sz) \
262 { \
263 chacha_matrix b; \
264 const octet *s = src; \
265 octet *d = dest; \
266 size_t n; \
267 kludge64 pos, delta; \
268 \
269 SALSA20_OUTBUF(ctx, d, s, sz); \
270 if (!sz) return; \
271 \
272 if (!dest) { \
273 n = sz/CHACHA_OUTSZ; \
274 pos = chacha_tellu64(ctx); \
275 ASSIGN64(delta, n); \
276 ADD64(pos, pos, delta); \
277 chacha_seeku64(ctx, pos); \
278 sz = sz%CHACHA_OUTSZ; \
279 } else if (!src) { \
280 while (sz >= CHACHA_OUTSZ) { \
281 core(r, ctx->a, b); \
282 CHACHA_STEP(ctx->a); \
283 SALSA20_GENFULL(b, d); \
284 sz -= CHACHA_OUTSZ; \
285 } \
286 } else { \
287 while (sz >= CHACHA_OUTSZ) { \
288 core(r, ctx->a, b); \
289 CHACHA_STEP(ctx->a); \
290 SALSA20_MIXFULL(b, d, s); \
291 sz -= CHACHA_OUTSZ; \
292 } \
293 } \
294 \
295 if (sz) { \
296 core(r, ctx->a, b); \
297 CHACHA_STEP(ctx->a); \
298 SALSA20_PREPBUF(ctx, b); \
299 SALSA20_OUTBUF(ctx, d, s, sz); \
300 assert(!sz); \
301 } \
302 }
303 CHACHA_VARS(DEFENCRYPT)
304
305 /*----- HChaCha implementation --------------------------------------------*/
306
307 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
308 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
309
310 /* --- @hchacha{20,12,8}_prf@ --- *
311 *
312 * Arguments: @chacha_ctx *ctx@ = pointer to context
313 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
314 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
315 *
316 * Returns: ---
317 *
318 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
319 * the result to @out@.
320 */
321
322 #define DEFHCHACHA(r) \
323 static void HCHACHA_RAW(r, chacha_matrix k, \
324 const uint32 *src, uint32 *dest) \
325 { \
326 chacha_matrix a; \
327 int i; \
328 \
329 /* --- HChaCha, computed from full ChaCha --- * \
330 * \
331 * The security proof makes use of the fact that HChaCha (i.e., \
332 * without the final feedforward step) can be computed from full \
333 * ChaCha using only knowledge of the non-secret input. I don't \
334 * want to compromise the performance of the main function by \
335 * making the feedforward step separate, but this operation is less \
336 * speed critical, so we do it the harder way. \
337 */ \
338 \
339 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
340 core(r, k, a); \
341 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
342 } \
343 \
344 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
345 { \
346 const octet *s = src; \
347 octet *d = dest; \
348 uint32 in[4], out[8]; \
349 int i; \
350 \
351 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
352 HCHACHA_RAW(r, ctx->a, in, out); \
353 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
354 }
355 CHACHA_VARS(DEFHCHACHA)
356
357 /*----- XChaCha implementation -------------------------------------------*/
358
359 /* --- Some convenient macros for naming functions --- *
360 *
361 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
362 * need to take an interest in the number of rounds in most of the various
363 * functions, and it will probably help if we distinguish the context
364 * structures for the various versions.
365 */
366
367 #define XCHACHA_CTX(r) xchacha##r##_ctx
368 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
369 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
370 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
371 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
372 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
373 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
374 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
375 xchacha##r##_encrypt(ctx, src, dest, sz)
376
377 /* --- @xchacha{20,12,8}_init@ --- *
378 *
379 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
380 * @const void *key@ = pointer to key material
381 * @size_t ksz@ = size of key (either 32 or 16)
382 * @const void *nonce@ = initial nonce, or null
383 *
384 * Returns: ---
385 *
386 * Use: Initializes an XChaCha/r context ready for use.
387 *
388 * There is a different function for each number of rounds,
389 * unlike for plain ChaCha.
390 */
391
392 #define DEFXINIT(r) \
393 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
394 const void *key, size_t ksz, const void *nonce) \
395 { \
396 static const octet zerononce[XCHACHA_NONCESZ]; \
397 \
398 populate(ctx->k, key, ksz); \
399 ctx->s.a[ 0] = CHACHA_A256; \
400 ctx->s.a[ 1] = CHACHA_B256; \
401 ctx->s.a[ 2] = CHACHA_C256; \
402 ctx->s.a[ 3] = CHACHA_D256; \
403 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
404 }
405 CHACHA_VARS(DEFXINIT)
406
407 /* --- @xchacha{20,12,8}_setnonce@ --- *
408 *
409 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
410 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
411 *
412 * Returns: ---
413 *
414 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
415 * different message. The stream position is reset to zero (see
416 * @chacha_seek@ etc.).
417 *
418 * There is a different function for each number of rounds,
419 * unlike for plain ChaCha.
420 */
421
422 #define DEFXNONCE(r) \
423 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
424 { \
425 const octet *n = nonce; \
426 uint32 in[4]; \
427 int i; \
428 \
429 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
430 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
431 chacha_setnonce(&ctx->s, n + 16); \
432 }
433 CHACHA_VARS(DEFXNONCE)
434
435 /* --- @xchacha{20,12,8}_seek{,u64}@ --- *
436 *
437 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
438 * @unsigned long i@, @kludge64 i@ = new position to set
439 *
440 * Returns: ---
441 *
442 * Use: Sets a new stream position, in units of ChaCha output
443 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
444 * granularity can be achieved by calling @xchachaR_encrypt@
445 * appropriately.
446 *
447 * There is a different function for each number of rounds,
448 * unlike for plain ChaCha, because the context structures are
449 * different.
450 */
451
452 /* --- @xchacha{20,12,8}_tell{,u64}@ --- *
453 *
454 * Arguments: @chacha_ctx *ctx@ = pointer to context
455 *
456 * Returns: The current position in the output stream, in blocks,
457 * rounding upwards.
458 *
459 * There is a different function for each number of rounds,
460 * unlike for plain ChaCha, because the context structures are
461 * different.
462 */
463
464 /* --- @xchacha{20,12,8}_encrypt@ --- *
465 *
466 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
467 * @const void *src@ = source buffer (or null)
468 * @void *dest@ = destination buffer (or null)
469 * @size_t sz@ = size of the buffers
470 *
471 * Returns: ---
472 *
473 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
474 * XChaCha works by XORing plaintext with a keystream, so
475 * encryption and decryption are the same operation. If @dest@
476 * is null then ignore @src@ and skip @sz@ bytes of the
477 * keystream. If @src@ is null, then just write the keystream
478 * to @dest@.
479 */
480
481 #define DEFXPASSTHRU(r) \
482 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
483 { chacha_seek(&ctx->s, i); } \
484 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
485 { chacha_seeku64(&ctx->s, i); } \
486 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
487 { return chacha_tell(&ctx->s); } \
488 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
489 { return chacha_tellu64(&ctx->s); } \
490 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
491 const void *src, void *dest, size_t sz) \
492 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
493 CHACHA_VARS(DEFXPASSTHRU)
494
495 /*----- Generic cipher interface ------------------------------------------*/
496
497 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
498
499 static void gsetiv(gcipher *c, const void *iv)
500 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
501
502 static void gsetiv_ietf(gcipher *c, const void *iv)
503 { gctx *g = (gctx *)c; chacha_setnonce_ietf(&g->ctx, iv); }
504
505 static void gdestroy(gcipher *c)
506 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
507
508 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
509 {
510 gctx *g = S_CREATE(gctx);
511 g->c.ops = ops;
512 chacha_init(&g->ctx, k, sz, 0);
513 return (&g->c);
514 }
515
516 #define DEFGCIPHER(r) \
517 \
518 static const gcipher_ops gops_##r, gops_##r##_ietf; \
519 \
520 static gcipher *ginit_##r(const void *k, size_t sz) \
521 { return (ginit(k, sz, &gops_##r)); } \
522 \
523 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
524 { return (ginit(k, sz, &gops_##r##_ietf)); } \
525 \
526 static void gencrypt_##r(gcipher *c, const void *s, \
527 void *t, size_t sz) \
528 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
529 \
530 static const gcipher_ops gops_##r = { \
531 &chacha##r, \
532 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
533 }; \
534 \
535 static const gcipher_ops gops_##r##_ietf = { \
536 &chacha##r##_ietf, \
537 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
538 }; \
539 \
540 const gccipher chacha##r = { \
541 "chacha" #r, chacha_keysz, \
542 CHACHA_NONCESZ, ginit_##r \
543 }; \
544 \
545 const gccipher chacha##r##_ietf = { \
546 "chacha" #r "-ietf", chacha_keysz, \
547 CHACHA_IETF_NONCESZ, ginit_##r##_ietf \
548 };
549
550 CHACHA_VARS(DEFGCIPHER)
551
552 #define DEFGXCIPHER(r) \
553 \
554 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
555 \
556 static void gxsetiv_##r(gcipher *c, const void *iv) \
557 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
558 \
559 static void gxdestroy_##r(gcipher *c) \
560 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
561 \
562 static const gcipher_ops gxops_##r; \
563 \
564 static gcipher *gxinit_##r(const void *k, size_t sz) \
565 { \
566 gxctx_##r *g = S_CREATE(gxctx_##r); \
567 g->c.ops = &gxops_##r; \
568 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
569 return (&g->c); \
570 } \
571 \
572 static void gxencrypt_##r(gcipher *c, const void *s, \
573 void *t, size_t sz) \
574 { \
575 gxctx_##r *g = (gxctx_##r *)c; \
576 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
577 } \
578 \
579 static const gcipher_ops gxops_##r = { \
580 &xchacha##r, \
581 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
582 }; \
583 \
584 const gccipher xchacha##r = { \
585 "xchacha" #r, chacha_keysz, \
586 CHACHA_NONCESZ, gxinit_##r \
587 };
588
589 CHACHA_VARS(DEFGXCIPHER)
590
591 /*----- Generic random number generator interface -------------------------*/
592
593 typedef struct grops {
594 size_t noncesz;
595 void (*seek)(void *, kludge64);
596 kludge64 (*tell)(void *);
597 void (*setnonce)(void *, const void *);
598 void (*generate)(void *, void *, size_t);
599 } grops;
600
601 typedef struct grbasectx {
602 grand r;
603 const grops *ops;
604 } grbasectx;
605
606 static int grmisc(grand *r, unsigned op, ...)
607 {
608 octet buf[XCHACHA_NONCESZ];
609 grbasectx *g = (grbasectx *)r;
610 grand *rr;
611 const octet *p;
612 size_t sz;
613 uint32 i;
614 unsigned long ul;
615 kludge64 pos;
616 va_list ap;
617 int rc = 0;
618
619 va_start(ap, op);
620
621 switch (op) {
622 case GRAND_CHECK:
623 switch (va_arg(ap, unsigned)) {
624 case GRAND_CHECK:
625 case GRAND_SEEDINT:
626 case GRAND_SEEDUINT32:
627 case GRAND_SEEDBLOCK:
628 case GRAND_SEEDRAND:
629 case CHACHA_SEEK:
630 case CHACHA_SEEKU64:
631 case CHACHA_TELL:
632 case CHACHA_TELLU64:
633 rc = 1;
634 break;
635 default:
636 rc = 0;
637 break;
638 }
639 break;
640
641 case GRAND_SEEDINT:
642 i = va_arg(ap, unsigned); STORE32_L(buf, i);
643 memset(buf + 4, 0, g->ops->noncesz - 4);
644 g->ops->setnonce(g, buf);
645 break;
646 case GRAND_SEEDUINT32:
647 i = va_arg(ap, uint32); STORE32_L(buf, i);
648 memset(buf + 4, 0, g->ops->noncesz - 4);
649 g->ops->setnonce(g, buf);
650 break;
651 case GRAND_SEEDBLOCK:
652 p = va_arg(ap, const void *);
653 sz = va_arg(ap, size_t);
654 if (sz < g->ops->noncesz) {
655 memcpy(buf, p, sz);
656 memset(buf + sz, 0, g->ops->noncesz - sz);
657 p = buf;
658 }
659 g->ops->setnonce(g, p);
660 break;
661 case GRAND_SEEDRAND:
662 rr = va_arg(ap, grand *);
663 rr->ops->fill(rr, buf, g->ops->noncesz);
664 g->ops->setnonce(g, buf);
665 break;
666 case CHACHA_SEEK:
667 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
668 g->ops->seek(g, pos);
669 break;
670 case CHACHA_SEEKU64:
671 pos = va_arg(ap, kludge64);
672 g->ops->seek(g, pos);
673 break;
674 case CHACHA_TELL:
675 pos = g->ops->tell(g);
676 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
677 break;
678 case CHACHA_TELLU64:
679 *va_arg(ap, kludge64 *) = g->ops->tell(g);
680 break;
681 default:
682 GRAND_BADOP;
683 break;
684 }
685
686 return (rc);
687 }
688
689 static octet grbyte(grand *r)
690 {
691 grbasectx *g = (grbasectx *)r;
692 octet o;
693 g->ops->generate(g, &o, 1);
694 return (o);
695 }
696
697 static uint32 grword(grand *r)
698 {
699 grbasectx *g = (grbasectx *)r;
700 octet b[4];
701 g->ops->generate(g, b, sizeof(b));
702 return (LOAD32_L(b));
703 }
704
705 static void grfill(grand *r, void *p, size_t sz)
706 {
707 grbasectx *g = (grbasectx *)r;
708 g->ops->generate(r, p, sz);
709 }
710
711 typedef struct grctx {
712 grbasectx r;
713 chacha_ctx ctx;
714 } grctx;
715
716 static void gr_seek(void *r, kludge64 pos)
717 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
718
719 static void gr_seek_ietf(void *r, kludge64 pos)
720 { grctx *g = r; chacha_seek_ietf(&g->ctx, LO64(pos)); }
721
722 static kludge64 gr_tell(void *r)
723 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
724
725 static kludge64 gr_tell_ietf(void *r)
726 {
727 grctx *g = r;
728 kludge64 pos;
729
730 SET64(pos, 0, chacha_tell_ietf(&g->ctx));
731 return (pos);
732 }
733
734 static void gr_setnonce(void *r, const void *n)
735 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
736
737 static void gr_setnonce_ietf(void *r, const void *n)
738 { grctx *g = r; chacha_setnonce_ietf(&g->ctx, n); }
739
740 static void grdestroy(grand *r)
741 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
742
743 static grand *grinit(const void *k, size_t ksz, const void *n,
744 const grand_ops *ops, const grops *myops)
745 {
746 grctx *g = S_CREATE(grctx);
747 g->r.r.ops = ops;
748 g->r.ops = myops;
749 chacha_init(&g->ctx, k, ksz, 0);
750 myops->setnonce(g, n);
751 return (&g->r.r);
752 }
753
754 #define DEFGRAND(rr) \
755 \
756 static void gr_generate_##rr(void *r, void *b, size_t sz) \
757 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
758 \
759 static const grops grops_##rr = \
760 { CHACHA_NONCESZ, gr_seek, gr_tell, \
761 gr_setnonce, gr_generate_##rr }; \
762 \
763 static const grops grops_##rr##_ietf = \
764 { CHACHA_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
765 gr_setnonce_ietf, gr_generate_##rr }; \
766 \
767 static const grand_ops grops_rand_##rr = { \
768 "chacha" #rr, GRAND_CRYPTO, 0, \
769 grmisc, grdestroy, grword, \
770 grbyte, grword, grand_defaultrange, grfill \
771 }; \
772 \
773 static const grand_ops grops_rand_##rr##_ietf = { \
774 "chacha" #rr "-ietf", GRAND_CRYPTO, 0, \
775 grmisc, grdestroy, grword, \
776 grbyte, grword, grand_defaultrange, grfill \
777 }; \
778 \
779 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
780 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
781 \
782 grand *chacha##rr##_ietf_rand(const void *k, size_t ksz, \
783 const void *n) \
784 { \
785 return (grinit(k, ksz, n, \
786 &grops_rand_##rr##_ietf, \
787 &grops_##rr##_ietf)); \
788 }
789
790 CHACHA_VARS(DEFGRAND)
791
792 #define DEFXGRAND(rr) \
793 \
794 typedef struct grxctx_##rr { \
795 grbasectx r; \
796 XCHACHA_CTX(rr) ctx; \
797 } grxctx_##rr; \
798 \
799 static void grx_seek_##rr(void *r, kludge64 pos) \
800 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
801 \
802 static kludge64 grx_tell_##rr(void *r) \
803 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
804 \
805 static void grx_setnonce_##rr(void *r, const void *n) \
806 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
807 \
808 static void grxdestroy_##rr(grand *r) \
809 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
810 \
811 static void grx_generate_##rr(void *r, void *b, size_t sz) \
812 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
813 \
814 static const grops grxops_##rr = \
815 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
816 grx_setnonce_##rr, grx_generate_##rr }; \
817 \
818 static const grand_ops grxops_rand_##rr = { \
819 "xchacha" #rr, GRAND_CRYPTO, 0, \
820 grmisc, grxdestroy_##rr, grword, \
821 grbyte, grword, grand_defaultrange, grfill \
822 }; \
823 \
824 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
825 { \
826 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
827 g->r.r.ops = &grxops_rand_##rr; \
828 g->r.ops = &grxops_##rr; \
829 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
830 return (&g->r.r); \
831 }
832 CHACHA_VARS(DEFXGRAND)
833
834 /*----- Test rig ----------------------------------------------------------*/
835
836 #ifdef TEST_RIG
837
838 #include <stdio.h>
839 #include <string.h>
840
841 #include <mLib/quis.h>
842 #include <mLib/testrig.h>
843
844 #define DEFVCORE(r) \
845 static int v_core_##r(dstr *v) \
846 { \
847 chacha_matrix a, b; \
848 dstr d = DSTR_INIT; \
849 int i, n; \
850 int ok = 1; \
851 \
852 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
853 n = *(int *)v[0].buf; \
854 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
855 a[i] = LOAD32_L(v[1].buf + 4*i); \
856 for (i = 0; i < n; i++) { \
857 core(r, a, b); \
858 memcpy(a, b, sizeof(a)); \
859 } \
860 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
861 \
862 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
863 ok = 0; \
864 printf("\nfail core:" \
865 "\n\titerations = %d" \
866 "\n\tin = ", n); \
867 type_hex.dump(&v[1], stdout); \
868 printf("\n\texpected = "); \
869 type_hex.dump(&v[2], stdout); \
870 printf("\n\tcalculated = "); \
871 type_hex.dump(&d, stdout); \
872 putchar('\n'); \
873 } \
874 \
875 dstr_destroy(&d); \
876 return (ok); \
877 }
878 CHACHA_VARS(DEFVCORE)
879
880 #define CHACHA_CTX(r) chacha_ctx
881
882 #define CHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
883 kludge64 pos64; \
884 chacha_init(ctx, k, ksz, 0); \
885 if (nsz == 8) chacha_setnonce(ctx, n); \
886 else if (nsz == 12) chacha_setnonce_ietf(ctx, n); \
887 if (psz == 8) { LOAD64_(pos64, p); chacha_seeku64(ctx, pos64); } \
888 else if (psz == 4) chacha_seek_ietf(ctx, LOAD32(p)); \
889 } while (0)
890
891 #define XCHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
892 kludge64 pos64; \
893 XCHACHA_INIT(r, ctx, k, ksz, 0); \
894 if (nsz == 24) XCHACHA_SETNONCE(r, ctx, n); \
895 if (psz == 8) { LOAD64_(pos64, p); xchacha##r##_seeku64(ctx, pos64); } \
896 } while (0)
897
898 #define DEFxVENC(base, BASE, r) \
899 static int v_encrypt_##base##_##r(dstr *v) \
900 { \
901 BASE##_CTX(r) ctx; \
902 dstr d = DSTR_INIT; \
903 const octet *p, *p0; \
904 octet *q; \
905 size_t sz, sz0, step; \
906 unsigned long skip; \
907 int ok = 1; \
908 \
909 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
910 else { p0 = 0; sz0 = v[5].len; } \
911 DENSURE(&d, sz0); d.len = sz0; \
912 skip = *(unsigned long *)v[3].buf; \
913 \
914 step = 0; \
915 while (step < sz0 + skip) { \
916 step = step ? 3*step + 4 : 1; \
917 if (step > sz0 + skip) step = sz0 + skip; \
918 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
919 v[1].buf, v[1].len, v[2].buf, v[2].len); \
920 \
921 for (sz = skip; sz >= step; sz -= step) \
922 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
923 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
924 for (p = p0, q = (octet *)d.buf, sz = sz0; \
925 sz >= step; \
926 sz -= step, q += step) { \
927 BASE##_ENCRYPT(r, &ctx, p, q, step); \
928 if (p) p += step; \
929 } \
930 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
931 \
932 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
933 ok = 0; \
934 printf("\nfail encrypt:" \
935 "\n\tstep = %lu" \
936 "\n\tkey = ", (unsigned long)step); \
937 type_hex.dump(&v[0], stdout); \
938 printf("\n\tnonce = "); \
939 type_hex.dump(&v[1], stdout); \
940 printf("\n\tposition = "); \
941 type_hex.dump(&v[2], stdout); \
942 printf("\n\tskip = %lu", skip); \
943 printf("\n\tmessage = "); \
944 type_hex.dump(&v[4], stdout); \
945 printf("\n\texpected = "); \
946 type_hex.dump(&v[5], stdout); \
947 printf("\n\tcalculated = "); \
948 type_hex.dump(&d, stdout); \
949 putchar('\n'); \
950 } \
951 } \
952 \
953 dstr_destroy(&d); \
954 return (ok); \
955 }
956 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
957 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
958 CHACHA_VARS(DEFVENC)
959 CHACHA_VARS(DEFXVENC)
960
961 static test_chunk defs[] = {
962 #define DEFxTAB(base, r) \
963 { #base #r, v_encrypt_##base##_##r, \
964 { &type_hex, &type_hex, &type_hex, &type_ulong, \
965 &type_hex, &type_hex, 0 } },
966 #define DEFTAB(r) \
967 { "chacha" #r "-core", v_core_##r, \
968 { &type_int, &type_hex, &type_hex, 0 } }, \
969 DEFxTAB(chacha, r)
970 #define DEFXTAB(r) DEFxTAB(xchacha, r)
971 CHACHA_VARS(DEFTAB)
972 CHACHA_VARS(DEFXTAB)
973 { 0, 0, { 0 } }
974 };
975
976 int main(int argc, char *argv[])
977 {
978 test_run(argc, argv, defs, SRCDIR"/t/chacha");
979 return (0);
980 }
981
982 #endif
983
984 /*----- That's all, folks -------------------------------------------------*/