Merge branch '2.4.x' into 2.5.x
[catacomb] / symm / chacha.c
1 /* -*-c-*-
2 *
3 * ChaCha stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "chacha.h"
38 #include "chacha-core.h"
39 #include "dispatch.h"
40 #include "gcipher.h"
41 #include "grand.h"
42 #include "keysz.h"
43 #include "paranoia.h"
44 #include "rsvr.h"
45
46 /*----- Global variables --------------------------------------------------*/
47
48 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
49
50 /*----- The ChaCha core function and utilities ----------------------------*/
51
52 /* --- @core@ --- *
53 *
54 * Arguments: @unsigned r@ = number of rounds
55 * @const chacha_matrix src@ = input matrix
56 * @chacha_matrix dest@ = where to put the output
57 *
58 * Returns: ---
59 *
60 *
61 * Use: Apply the ChaCha/r core function to @src@, writing the
62 * result to @dest@. This consists of @r@ rounds followed by
63 * the feedforward step.
64 */
65
66 CPU_DISPATCH(static, (void), void, core,
67 (unsigned r, const chacha_matrix src, chacha_matrix dest),
68 (r, src, dest), pick_core, simple_core);
69
70 static void simple_core(unsigned r, const chacha_matrix src,
71 chacha_matrix dest)
72 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
73
74 #if CPUFAM_X86 || CPUFAM_AMD64
75 extern core__functype chacha_core_x86ish_sse2;
76 extern core__functype chacha_core_x86ish_avx;
77 #endif
78
79 #if CPUFAM_ARMEL
80 extern core__functype chacha_core_arm_neon;
81 #endif
82
83 #if CPUFAM_ARM64
84 extern core__functype chacha_core_arm64;
85 #endif
86
87 static core__functype *pick_core(void)
88 {
89 #if CPUFAM_X86 || CPUFAM_AMD64
90 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_avx,
91 cpu_feature_p(CPUFEAT_X86_AVX));
92 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
93 cpu_feature_p(CPUFEAT_X86_SSE2));
94 #endif
95 #if CPUFAM_ARMEL
96 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
97 cpu_feature_p(CPUFEAT_ARM_NEON));
98 #endif
99 #if CPUFAM_ARM64
100 DISPATCH_PICK_COND(chacha_core, chacha_core_arm64,
101 cpu_feature_p(CPUFEAT_ARM_NEON));
102 #endif
103 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
104 }
105
106 /* --- @populate@ --- *
107 *
108 * Arguments: @chacha_matrix a@ = a matrix to fill in
109 * @const void *key@ = pointer to key material
110 * @size_t ksz@ = size of key
111 *
112 * Returns: ---
113 *
114 * Use: Fills in a ChaCha matrix from the key, setting the
115 * appropriate constants according to the key length. The nonce
116 * and position words are left uninitialized.
117 */
118
119 static void populate(chacha_matrix a, const void *key, size_t ksz)
120 {
121 const octet *k = key;
122
123 KSZ_ASSERT(chacha, ksz);
124
125 a[ 4] = LOAD32_L(k + 0);
126 a[ 5] = LOAD32_L(k + 4);
127 if (ksz == 10) {
128 a[ 6] = LOAD16_L(k + 8);
129 a[ 7] = 0;
130 } else {
131 a[ 6] = LOAD32_L(k + 8);
132 a[ 7] = LOAD32_L(k + 12);
133 }
134 if (ksz <= 16) {
135 a[ 8] = a[ 4];
136 a[ 9] = a[ 5];
137 a[10] = a[ 6];
138 a[11] = a[ 7];
139 a[ 0] = CHACHA_A128;
140 a[ 1] = CHACHA_B128;
141 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
142 a[ 3] = CHACHA_D128;
143 } else {
144 a[ 8] = LOAD32_L(k + 16);
145 a[ 9] = LOAD32_L(k + 20);
146 a[10] = LOAD32_L(k + 24);
147 a[11] = LOAD32_L(k + 28);
148 a[ 0] = CHACHA_A256;
149 a[ 1] = CHACHA_B256;
150 a[ 2] = CHACHA_C256;
151 a[ 3] = CHACHA_D256;
152 }
153 }
154
155 /*----- ChaCha implementation ---------------------------------------------*/
156
157 static const octet zerononce[XCHACHA_NONCESZ];
158
159 /* --- @chacha_init@ --- *
160 *
161 * Arguments: @chacha_ctx *ctx@ = context to fill in
162 * @const void *key@ = pointer to key material
163 * @size_t ksz@ = size of key (either 32 or 16)
164 * @const void *nonce@ = initial nonce, or null
165 *
166 * Returns: ---
167 *
168 * Use: Initializes a ChaCha context ready for use.
169 */
170
171 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
172 const void *nonce)
173 {
174 populate(ctx->a, key, ksz);
175 chacha_setnonce(ctx, nonce ? nonce : zerononce);
176 }
177
178 /* --- @chacha_setnonce{,_ietf}@ --- *
179 *
180 * Arguments: @chacha_ctx *ctx@ = pointer to context
181 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ or
182 * @CHACHA_IETF_NONCESZ@ bytes)
183 *
184 * Returns: ---
185 *
186 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
187 * different message. The stream position is reset to zero (see
188 * @chacha_seek@ etc.).
189 */
190
191 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
192 {
193 const octet *n = nonce;
194
195 ctx->a[14] = LOAD32_L(n + 0);
196 ctx->a[15] = LOAD32_L(n + 4);
197 chacha_seek(ctx, 0);
198 }
199
200 void chacha_setnonce_ietf(chacha_ctx *ctx, const void *nonce)
201 {
202 const octet *n = nonce;
203
204 ctx->a[13] = LOAD32_L(n + 0);
205 ctx->a[14] = LOAD32_L(n + 4);
206 ctx->a[15] = LOAD32_L(n + 8);
207 chacha_seek_ietf(ctx, 0);
208 }
209
210 /* --- @chacha_seek{,u64,_ietf}@ --- *
211 *
212 * Arguments: @chacha_ctx *ctx@ = pointer to context
213 * @unsigned long i@, @kludge64 i@, @uint32 i@ = new position
214 *
215 * Returns: ---
216 *
217 * Use: Sets a new stream position, in units of Chacha output
218 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
219 * granularity can be achieved by calling @chachaR_encrypt@
220 * appropriately.
221 */
222
223 void chacha_seek(chacha_ctx *ctx, unsigned long i)
224 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
225
226 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
227 {
228 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
229 ctx->off = CHACHA_OUTSZ;
230 }
231
232 void chacha_seek_ietf(chacha_ctx *ctx, uint32 i)
233 { ctx->a[12] = i; }
234
235 /* --- @chacha_tell{,u64,_ietf}@ --- *
236 *
237 * Arguments: @chacha_ctx *ctx@ = pointer to context
238 *
239 * Returns: The current position in the output stream, in blocks,
240 * rounding upwards.
241 */
242
243 unsigned long chacha_tell(chacha_ctx *ctx)
244 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
245
246 kludge64 chacha_tellu64(chacha_ctx *ctx)
247 { kludge64 i; SET64(i, ctx->a[13], ctx->a[12]); return (i); }
248
249 uint32 chacha_tell_ietf(chacha_ctx *ctx)
250 { return (ctx->a[12]); }
251
252 /* --- @chacha{20,12,8}_encrypt@ --- *
253 *
254 * Arguments: @chacha_ctx *ctx@ = pointer to context
255 * @const void *src@ = source buffer (or null)
256 * @void *dest@ = destination buffer (or null)
257 * @size_t sz@ = size of the buffers
258 *
259 * Returns: ---
260 *
261 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
262 * ChaCha works by XORing plaintext with a keystream, so
263 * encryption and decryption are the same operation. If @dest@
264 * is null then ignore @src@ and skip @sz@ bytes of the
265 * keystream. If @src@ is null, then just write the keystream
266 * to @dest@.
267 */
268
269 static const rsvr_policy policy = { 0, CHACHA_OUTSZ, CHACHA_OUTSZ };
270
271 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
272 chacha##r##_encrypt(ctx, src, dest, sz)
273 #define DEFENCRYPT(r) \
274 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
275 void *dest, size_t sz) \
276 { \
277 chacha_matrix b; \
278 const octet *s = src; \
279 octet *d = dest; \
280 rsvr_plan plan; \
281 kludge64 pos, delta; \
282 \
283 rsvr_mkplan(&plan, &policy, ctx->off, sz); \
284 \
285 if (plan.head) { \
286 if (!ctx->off) { \
287 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
288 SALSA20_PREPBUF(ctx, b); \
289 } \
290 SALSA20_OUTBUF(ctx, d, s, plan.head); \
291 } \
292 \
293 ctx->off -= plan.from_rsvr; \
294 \
295 if (!d) { \
296 if (plan.from_input) { \
297 pos = chacha_tellu64(ctx); \
298 ASSIGN64(delta, plan.from_input/SALSA20_OUTSZ); \
299 ADD64(pos, pos, delta); \
300 chacha_seeku64(ctx, pos); \
301 } \
302 } else if (!s) while (plan.from_input) { \
303 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
304 SALSA20_GENFULL(b, d); plan.from_input -= CHACHA_OUTSZ; \
305 } else while (plan.from_input) { \
306 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
307 SALSA20_MIXFULL(b, d, s); plan.from_input -= CHACHA_OUTSZ; \
308 } \
309 \
310 if (plan.tail) { \
311 core(r, ctx->a, b); CHACHA_STEP(ctx->a); \
312 SALSA20_PREPBUF(ctx, b); \
313 SALSA20_OUTBUF(ctx, d, s, plan.tail); \
314 } \
315 }
316 CHACHA_VARS(DEFENCRYPT)
317
318 /*----- HChaCha implementation --------------------------------------------*/
319
320 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
321 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
322
323 /* --- @hchacha{20,12,8}_prf@ --- *
324 *
325 * Arguments: @chacha_ctx *ctx@ = pointer to context
326 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
327 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
328 *
329 * Returns: ---
330 *
331 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
332 * the result to @out@.
333 */
334
335 #define DEFHCHACHA(r) \
336 static void HCHACHA_RAW(r, chacha_matrix k, \
337 const uint32 *src, uint32 *dest) \
338 { \
339 chacha_matrix a; \
340 int i; \
341 \
342 /* --- HChaCha, computed from full ChaCha --- * \
343 * \
344 * The security proof makes use of the fact that HChaCha (i.e., \
345 * without the final feedforward step) can be computed from full \
346 * ChaCha using only knowledge of the non-secret input. I don't \
347 * want to compromise the performance of the main function by \
348 * making the feedforward step separate, but this operation is less \
349 * speed critical, so we do it the harder way. \
350 */ \
351 \
352 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
353 core(r, k, a); \
354 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
355 } \
356 \
357 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
358 { \
359 const octet *s = src; \
360 octet *d = dest; \
361 uint32 in[4], out[8]; \
362 int i; \
363 \
364 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
365 HCHACHA_RAW(r, ctx->a, in, out); \
366 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
367 }
368 CHACHA_VARS(DEFHCHACHA)
369
370 /*----- XChaCha implementation -------------------------------------------*/
371
372 /* --- Some convenient macros for naming functions --- *
373 *
374 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
375 * need to take an interest in the number of rounds in most of the various
376 * functions, and it will probably help if we distinguish the context
377 * structures for the various versions.
378 */
379
380 #define XCHACHA_CTX(r) xchacha##r##_ctx
381 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
382 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
383 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
384 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
385 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
386 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
387 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
388 xchacha##r##_encrypt(ctx, src, dest, sz)
389
390 /* --- @xchacha{20,12,8}_init@ --- *
391 *
392 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
393 * @const void *key@ = pointer to key material
394 * @size_t ksz@ = size of key (either 32 or 16)
395 * @const void *nonce@ = initial nonce, or null
396 *
397 * Returns: ---
398 *
399 * Use: Initializes an XChaCha/r context ready for use.
400 *
401 * There is a different function for each number of rounds,
402 * unlike for plain ChaCha.
403 */
404
405 #define DEFXINIT(r) \
406 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
407 const void *key, size_t ksz, const void *nonce) \
408 { \
409 populate(ctx->k, key, ksz); \
410 ctx->s.a[ 0] = CHACHA_A256; \
411 ctx->s.a[ 1] = CHACHA_B256; \
412 ctx->s.a[ 2] = CHACHA_C256; \
413 ctx->s.a[ 3] = CHACHA_D256; \
414 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
415 }
416 CHACHA_VARS(DEFXINIT)
417
418 /* --- @xchacha{20,12,8}_setnonce@ --- *
419 *
420 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
421 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
422 *
423 * Returns: ---
424 *
425 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
426 * different message. The stream position is reset to zero (see
427 * @chacha_seek@ etc.).
428 *
429 * There is a different function for each number of rounds,
430 * unlike for plain ChaCha.
431 */
432
433 #define DEFXNONCE(r) \
434 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
435 { \
436 const octet *n = nonce; \
437 uint32 in[4]; \
438 int i; \
439 \
440 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
441 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
442 chacha_setnonce(&ctx->s, n + 16); \
443 }
444 CHACHA_VARS(DEFXNONCE)
445
446 /* --- @xchacha{20,12,8}_seek{,u64}@ --- *
447 *
448 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
449 * @unsigned long i@, @kludge64 i@ = new position to set
450 *
451 * Returns: ---
452 *
453 * Use: Sets a new stream position, in units of ChaCha output
454 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
455 * granularity can be achieved by calling @xchachaR_encrypt@
456 * appropriately.
457 *
458 * There is a different function for each number of rounds,
459 * unlike for plain ChaCha, because the context structures are
460 * different.
461 */
462
463 /* --- @xchacha{20,12,8}_tell{,u64}@ --- *
464 *
465 * Arguments: @chacha_ctx *ctx@ = pointer to context
466 *
467 * Returns: The current position in the output stream, in blocks,
468 * rounding upwards.
469 *
470 * There is a different function for each number of rounds,
471 * unlike for plain ChaCha, because the context structures are
472 * different.
473 */
474
475 /* --- @xchacha{20,12,8}_encrypt@ --- *
476 *
477 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
478 * @const void *src@ = source buffer (or null)
479 * @void *dest@ = destination buffer (or null)
480 * @size_t sz@ = size of the buffers
481 *
482 * Returns: ---
483 *
484 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
485 * XChaCha works by XORing plaintext with a keystream, so
486 * encryption and decryption are the same operation. If @dest@
487 * is null then ignore @src@ and skip @sz@ bytes of the
488 * keystream. If @src@ is null, then just write the keystream
489 * to @dest@.
490 */
491
492 #define DEFXPASSTHRU(r) \
493 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
494 { chacha_seek(&ctx->s, i); } \
495 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
496 { chacha_seeku64(&ctx->s, i); } \
497 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
498 { return chacha_tell(&ctx->s); } \
499 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
500 { return chacha_tellu64(&ctx->s); } \
501 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
502 const void *src, void *dest, size_t sz) \
503 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
504 CHACHA_VARS(DEFXPASSTHRU)
505
506 /*----- Generic cipher interface ------------------------------------------*/
507
508 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
509
510 static void gsetiv(gcipher *c, const void *iv)
511 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
512
513 static void gsetiv_ietf(gcipher *c, const void *iv)
514 { gctx *g = (gctx *)c; chacha_setnonce_ietf(&g->ctx, iv); }
515
516 static void gdestroy(gcipher *c)
517 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
518
519 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
520 {
521 gctx *g = S_CREATE(gctx);
522 g->c.ops = ops;
523 chacha_init(&g->ctx, k, sz, 0);
524 return (&g->c);
525 }
526
527 #define DEFGCIPHER(r) \
528 \
529 static const gcipher_ops gops_##r, gops_##r##_ietf; \
530 \
531 static gcipher *ginit_##r(const void *k, size_t sz) \
532 { return (ginit(k, sz, &gops_##r)); } \
533 \
534 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
535 { return (ginit(k, sz, &gops_##r##_ietf)); } \
536 \
537 static void gencrypt_##r(gcipher *c, const void *s, \
538 void *t, size_t sz) \
539 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
540 \
541 static const gcipher_ops gops_##r = { \
542 &chacha##r, \
543 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
544 }; \
545 \
546 static const gcipher_ops gops_##r##_ietf = { \
547 &chacha##r##_ietf, \
548 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
549 }; \
550 \
551 const gccipher chacha##r = { \
552 "chacha" #r, chacha_keysz, \
553 CHACHA_NONCESZ, ginit_##r \
554 }; \
555 \
556 const gccipher chacha##r##_ietf = { \
557 "chacha" #r "-ietf", chacha_keysz, \
558 CHACHA_IETF_NONCESZ, ginit_##r##_ietf \
559 };
560
561 CHACHA_VARS(DEFGCIPHER)
562
563 #define DEFGXCIPHER(r) \
564 \
565 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
566 \
567 static void gxsetiv_##r(gcipher *c, const void *iv) \
568 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
569 \
570 static void gxdestroy_##r(gcipher *c) \
571 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
572 \
573 static const gcipher_ops gxops_##r; \
574 \
575 static gcipher *gxinit_##r(const void *k, size_t sz) \
576 { \
577 gxctx_##r *g = S_CREATE(gxctx_##r); \
578 g->c.ops = &gxops_##r; \
579 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
580 return (&g->c); \
581 } \
582 \
583 static void gxencrypt_##r(gcipher *c, const void *s, \
584 void *t, size_t sz) \
585 { \
586 gxctx_##r *g = (gxctx_##r *)c; \
587 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
588 } \
589 \
590 static const gcipher_ops gxops_##r = { \
591 &xchacha##r, \
592 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
593 }; \
594 \
595 const gccipher xchacha##r = { \
596 "xchacha" #r, chacha_keysz, \
597 XCHACHA_NONCESZ, gxinit_##r \
598 };
599
600 CHACHA_VARS(DEFGXCIPHER)
601
602 /*----- Generic random number generator interface -------------------------*/
603
604 typedef struct grops {
605 size_t noncesz;
606 void (*seek)(void *, kludge64);
607 kludge64 (*tell)(void *);
608 void (*setnonce)(void *, const void *);
609 void (*generate)(void *, void *, size_t);
610 } grops;
611
612 typedef struct grbasectx {
613 grand r;
614 const grops *ops;
615 } grbasectx;
616
617 static int grmisc(grand *r, unsigned op, ...)
618 {
619 octet buf[XCHACHA_NONCESZ];
620 grbasectx *g = (grbasectx *)r;
621 grand *rr;
622 const octet *p;
623 size_t sz;
624 uint32 i;
625 unsigned long ul;
626 kludge64 pos;
627 va_list ap;
628 int rc = 0;
629
630 va_start(ap, op);
631
632 switch (op) {
633 case GRAND_CHECK:
634 switch (va_arg(ap, unsigned)) {
635 case GRAND_CHECK:
636 case GRAND_SEEDINT:
637 case GRAND_SEEDUINT32:
638 case GRAND_SEEDBLOCK:
639 case GRAND_SEEDRAND:
640 case CHACHA_SEEK:
641 case CHACHA_SEEKU64:
642 case CHACHA_TELL:
643 case CHACHA_TELLU64:
644 rc = 1;
645 break;
646 default:
647 rc = 0;
648 break;
649 }
650 break;
651
652 case GRAND_SEEDINT:
653 i = va_arg(ap, unsigned); STORE32_L(buf, i);
654 memset(buf + 4, 0, g->ops->noncesz - 4);
655 g->ops->setnonce(g, buf);
656 break;
657 case GRAND_SEEDUINT32:
658 i = va_arg(ap, uint32); STORE32_L(buf, i);
659 memset(buf + 4, 0, g->ops->noncesz - 4);
660 g->ops->setnonce(g, buf);
661 break;
662 case GRAND_SEEDBLOCK:
663 p = va_arg(ap, const void *);
664 sz = va_arg(ap, size_t);
665 if (sz < g->ops->noncesz) {
666 memcpy(buf, p, sz);
667 memset(buf + sz, 0, g->ops->noncesz - sz);
668 p = buf;
669 }
670 g->ops->setnonce(g, p);
671 break;
672 case GRAND_SEEDRAND:
673 rr = va_arg(ap, grand *);
674 rr->ops->fill(rr, buf, g->ops->noncesz);
675 g->ops->setnonce(g, buf);
676 break;
677 case CHACHA_SEEK:
678 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
679 g->ops->seek(g, pos);
680 break;
681 case CHACHA_SEEKU64:
682 pos = va_arg(ap, kludge64);
683 g->ops->seek(g, pos);
684 break;
685 case CHACHA_TELL:
686 pos = g->ops->tell(g);
687 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
688 break;
689 case CHACHA_TELLU64:
690 *va_arg(ap, kludge64 *) = g->ops->tell(g);
691 break;
692 default:
693 GRAND_BADOP;
694 break;
695 }
696
697 return (rc);
698 }
699
700 static octet grbyte(grand *r)
701 {
702 grbasectx *g = (grbasectx *)r;
703 octet o;
704 g->ops->generate(g, &o, 1);
705 return (o);
706 }
707
708 static uint32 grword(grand *r)
709 {
710 grbasectx *g = (grbasectx *)r;
711 octet b[4];
712 g->ops->generate(g, b, sizeof(b));
713 return (LOAD32_L(b));
714 }
715
716 static void grfill(grand *r, void *p, size_t sz)
717 {
718 grbasectx *g = (grbasectx *)r;
719 g->ops->generate(r, p, sz);
720 }
721
722 typedef struct grctx {
723 grbasectx r;
724 chacha_ctx ctx;
725 } grctx;
726
727 static void gr_seek(void *r, kludge64 pos)
728 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
729
730 static void gr_seek_ietf(void *r, kludge64 pos)
731 { grctx *g = r; chacha_seek_ietf(&g->ctx, LO64(pos)); }
732
733 static kludge64 gr_tell(void *r)
734 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
735
736 static kludge64 gr_tell_ietf(void *r)
737 {
738 grctx *g = r;
739 kludge64 pos;
740
741 SET64(pos, 0, chacha_tell_ietf(&g->ctx));
742 return (pos);
743 }
744
745 static void gr_setnonce(void *r, const void *n)
746 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
747
748 static void gr_setnonce_ietf(void *r, const void *n)
749 { grctx *g = r; chacha_setnonce_ietf(&g->ctx, n); }
750
751 static void grdestroy(grand *r)
752 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
753
754 static grand *grinit(const void *k, size_t ksz, const void *n,
755 const grand_ops *ops, const grops *myops)
756 {
757 grctx *g = S_CREATE(grctx);
758 g->r.r.ops = ops;
759 g->r.ops = myops;
760 chacha_init(&g->ctx, k, ksz, 0);
761 if (n) myops->setnonce(g, n);
762 return (&g->r.r);
763 }
764
765 #define DEFGRAND(rr) \
766 \
767 static void gr_generate_##rr(void *r, void *b, size_t sz) \
768 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
769 \
770 static const grops grops_##rr = \
771 { CHACHA_NONCESZ, gr_seek, gr_tell, \
772 gr_setnonce, gr_generate_##rr }; \
773 \
774 static const grops grops_##rr##_ietf = \
775 { CHACHA_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
776 gr_setnonce_ietf, gr_generate_##rr }; \
777 \
778 static const grand_ops grops_rand_##rr = { \
779 "chacha" #rr, GRAND_CRYPTO, 0, \
780 grmisc, grdestroy, grword, \
781 grbyte, grword, grand_defaultrange, grfill \
782 }; \
783 \
784 static const grand_ops grops_rand_##rr##_ietf = { \
785 "chacha" #rr "-ietf", GRAND_CRYPTO, 0, \
786 grmisc, grdestroy, grword, \
787 grbyte, grword, grand_defaultrange, grfill \
788 }; \
789 \
790 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
791 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
792 \
793 grand *chacha##rr##_ietf_rand(const void *k, size_t ksz, \
794 const void *n) \
795 { \
796 return (grinit(k, ksz, n, \
797 &grops_rand_##rr##_ietf, \
798 &grops_##rr##_ietf)); \
799 }
800
801 CHACHA_VARS(DEFGRAND)
802
803 #define DEFXGRAND(rr) \
804 \
805 typedef struct grxctx_##rr { \
806 grbasectx r; \
807 XCHACHA_CTX(rr) ctx; \
808 } grxctx_##rr; \
809 \
810 static void grx_seek_##rr(void *r, kludge64 pos) \
811 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
812 \
813 static kludge64 grx_tell_##rr(void *r) \
814 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
815 \
816 static void grx_setnonce_##rr(void *r, const void *n) \
817 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
818 \
819 static void grxdestroy_##rr(grand *r) \
820 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
821 \
822 static void grx_generate_##rr(void *r, void *b, size_t sz) \
823 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
824 \
825 static const grops grxops_##rr = \
826 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
827 grx_setnonce_##rr, grx_generate_##rr }; \
828 \
829 static const grand_ops grxops_rand_##rr = { \
830 "xchacha" #rr, GRAND_CRYPTO, 0, \
831 grmisc, grxdestroy_##rr, grword, \
832 grbyte, grword, grand_defaultrange, grfill \
833 }; \
834 \
835 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
836 { \
837 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
838 g->r.r.ops = &grxops_rand_##rr; \
839 g->r.ops = &grxops_##rr; \
840 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
841 return (&g->r.r); \
842 }
843 CHACHA_VARS(DEFXGRAND)
844
845 /*----- Test rig ----------------------------------------------------------*/
846
847 #ifdef TEST_RIG
848
849 #include <stdio.h>
850 #include <string.h>
851
852 #include <mLib/quis.h>
853 #include <mLib/testrig.h>
854
855 #define DEFVCORE(r) \
856 static int v_core_##r(dstr *v) \
857 { \
858 chacha_matrix a, b; \
859 dstr d = DSTR_INIT; \
860 int i, n; \
861 int ok = 1; \
862 \
863 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
864 n = *(int *)v[0].buf; \
865 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
866 a[i] = LOAD32_L(v[1].buf + 4*i); \
867 for (i = 0; i < n; i++) { \
868 core(r, a, b); \
869 memcpy(a, b, sizeof(a)); \
870 } \
871 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
872 \
873 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
874 ok = 0; \
875 printf("\nfail core:" \
876 "\n\titerations = %d" \
877 "\n\tin = ", n); \
878 type_hex.dump(&v[1], stdout); \
879 printf("\n\texpected = "); \
880 type_hex.dump(&v[2], stdout); \
881 printf("\n\tcalculated = "); \
882 type_hex.dump(&d, stdout); \
883 putchar('\n'); \
884 } \
885 \
886 dstr_destroy(&d); \
887 return (ok); \
888 }
889 CHACHA_VARS(DEFVCORE)
890
891 #define CHACHA_CTX(r) chacha_ctx
892
893 #define CHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
894 kludge64 pos64; \
895 chacha_init(ctx, k, ksz, 0); \
896 if (nsz == 8) chacha_setnonce(ctx, n); \
897 else if (nsz == 12) chacha_setnonce_ietf(ctx, n); \
898 if (psz == 8) { LOAD64_(pos64, p); chacha_seeku64(ctx, pos64); } \
899 else if (psz == 4) chacha_seek_ietf(ctx, LOAD32(p)); \
900 } while (0)
901
902 #define XCHACHA_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
903 kludge64 pos64; \
904 XCHACHA_INIT(r, ctx, k, ksz, 0); \
905 if (nsz == 24) XCHACHA_SETNONCE(r, ctx, n); \
906 if (psz == 8) { LOAD64_(pos64, p); xchacha##r##_seeku64(ctx, pos64); } \
907 } while (0)
908
909 #define DEFxVENC(base, BASE, r) \
910 static int v_encrypt_##base##_##r(dstr *v) \
911 { \
912 BASE##_CTX(r) ctx; \
913 dstr d = DSTR_INIT; \
914 const octet *p, *p0; \
915 octet *q; \
916 size_t sz, sz0, step; \
917 unsigned long skip; \
918 int ok = 1; \
919 \
920 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
921 else { p0 = 0; sz0 = v[5].len; } \
922 DENSURE(&d, sz0); d.len = sz0; \
923 skip = *(unsigned long *)v[3].buf; \
924 \
925 step = 0; \
926 while (step < sz0 + skip) { \
927 step = step ? 3*step + 4 : 1; \
928 if (step > sz0 + skip) step = sz0 + skip; \
929 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
930 v[1].buf, v[1].len, v[2].buf, v[2].len); \
931 \
932 for (sz = skip; sz >= step; sz -= step) \
933 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
934 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
935 for (p = p0, q = (octet *)d.buf, sz = sz0; \
936 sz >= step; \
937 sz -= step, q += step) { \
938 BASE##_ENCRYPT(r, &ctx, p, q, step); \
939 if (p) p += step; \
940 } \
941 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
942 \
943 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
944 ok = 0; \
945 printf("\nfail encrypt:" \
946 "\n\tstep = %lu" \
947 "\n\tkey = ", (unsigned long)step); \
948 type_hex.dump(&v[0], stdout); \
949 printf("\n\tnonce = "); \
950 type_hex.dump(&v[1], stdout); \
951 printf("\n\tposition = "); \
952 type_hex.dump(&v[2], stdout); \
953 printf("\n\tskip = %lu", skip); \
954 printf("\n\tmessage = "); \
955 type_hex.dump(&v[4], stdout); \
956 printf("\n\texpected = "); \
957 type_hex.dump(&v[5], stdout); \
958 printf("\n\tcalculated = "); \
959 type_hex.dump(&d, stdout); \
960 putchar('\n'); \
961 } \
962 } \
963 \
964 dstr_destroy(&d); \
965 return (ok); \
966 }
967 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
968 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
969 CHACHA_VARS(DEFVENC)
970 CHACHA_VARS(DEFXVENC)
971
972 static test_chunk defs[] = {
973 #define DEFxTAB(base, r) \
974 { #base #r, v_encrypt_##base##_##r, \
975 { &type_hex, &type_hex, &type_hex, &type_ulong, \
976 &type_hex, &type_hex, 0 } },
977 #define DEFTAB(r) \
978 { "chacha" #r "-core", v_core_##r, \
979 { &type_int, &type_hex, &type_hex, 0 } }, \
980 DEFxTAB(chacha, r)
981 #define DEFXTAB(r) DEFxTAB(xchacha, r)
982 CHACHA_VARS(DEFTAB)
983 CHACHA_VARS(DEFXTAB)
984 { 0, 0, { 0 } }
985 };
986
987 int main(int argc, char *argv[])
988 {
989 test_run(argc, argv, defs, SRCDIR"/t/chacha");
990 return (0);
991 }
992
993 #endif
994
995 /*----- That's all, folks -------------------------------------------------*/