symm/: Add ARM NEON implementations of ChaCha and Salsa20.
[catacomb] / symm / chacha.c
1 /* -*-c-*-
2 *
3 * ChaCha stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "chacha.h"
38 #include "chacha-core.h"
39 #include "dispatch.h"
40 #include "gcipher.h"
41 #include "grand.h"
42 #include "keysz.h"
43 #include "paranoia.h"
44
45 /*----- Global variables --------------------------------------------------*/
46
47 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
48
49 /*----- The ChaCha core function and utilities ----------------------------*/
50
51 /* --- @core@ --- *
52 *
53 * Arguments: @unsigned r@ = number of rounds
54 * @const chacha_matrix src@ = input matrix
55 * @chacha_matrix dest@ = where to put the output
56 *
57 * Returns: ---
58 *
59 *
60 * Use: Apply the ChaCha/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
63 */
64
65 CPU_DISPATCH(static, (void),
66 void, core, (unsigned r, const chacha_matrix src,
67 chacha_matrix dest),
68 (r, src, dest),
69 pick_core, simple_core);
70
71 static void simple_core(unsigned r, const chacha_matrix src,
72 chacha_matrix dest)
73 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
74
75 #if CPUFAM_X86 || CPUFAM_AMD64
76 extern core__functype chacha_core_x86ish_sse2;
77 #endif
78
79 #if CPUFAM_ARMEL
80 extern core__functype chacha_core_arm_neon;
81 #endif
82
83 static core__functype *pick_core(void)
84 {
85 #if CPUFAM_X86 || CPUFAM_AMD64
86 DISPATCH_PICK_COND(chacha_core, chacha_core_x86ish_sse2,
87 cpu_feature_p(CPUFEAT_X86_SSE2));
88 #endif
89 #if CPUFAM_ARMEL
90 DISPATCH_PICK_COND(chacha_core, chacha_core_arm_neon,
91 cpu_feature_p(CPUFEAT_ARM_NEON));
92 #endif
93 DISPATCH_PICK_FALLBACK(chacha_core, simple_core);
94 }
95
96 /* --- @populate@ --- *
97 *
98 * Arguments: @chacha_matrix a@ = a matrix to fill in
99 * @const void *key@ = pointer to key material
100 * @size_t ksz@ = size of key
101 *
102 * Returns: ---
103 *
104 * Use: Fills in a ChaCha matrix from the key, setting the
105 * appropriate constants according to the key length. The nonce
106 * and position words are left uninitialized.
107 */
108
109 static void populate(chacha_matrix a, const void *key, size_t ksz)
110 {
111 const octet *k = key;
112
113 KSZ_ASSERT(chacha, ksz);
114
115 a[ 4] = LOAD32_L(k + 0);
116 a[ 5] = LOAD32_L(k + 4);
117 if (ksz == 10) {
118 a[ 6] = LOAD16_L(k + 8);
119 a[ 7] = 0;
120 } else {
121 a[ 6] = LOAD32_L(k + 8);
122 a[ 7] = LOAD32_L(k + 12);
123 }
124 if (ksz <= 16) {
125 a[ 8] = a[ 4];
126 a[ 9] = a[ 5];
127 a[10] = a[ 6];
128 a[11] = a[ 7];
129 a[ 0] = CHACHA_A128;
130 a[ 1] = CHACHA_B128;
131 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
132 a[ 3] = CHACHA_D128;
133 } else {
134 a[ 8] = LOAD32_L(k + 16);
135 a[ 9] = LOAD32_L(k + 20);
136 a[10] = LOAD32_L(k + 24);
137 a[11] = LOAD32_L(k + 28);
138 a[ 0] = CHACHA_A256;
139 a[ 1] = CHACHA_B256;
140 a[ 2] = CHACHA_C256;
141 a[ 3] = CHACHA_D256;
142 }
143 }
144
145 /*----- ChaCha implementation ---------------------------------------------*/
146
147 /* --- @chacha_init@ --- *
148 *
149 * Arguments: @chacha_ctx *ctx@ = context to fill in
150 * @const void *key@ = pointer to key material
151 * @size_t ksz@ = size of key (either 32 or 16)
152 * @const void *nonce@ = initial nonce, or null
153 *
154 * Returns: ---
155 *
156 * Use: Initializes a ChaCha context ready for use.
157 */
158
159 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
160 const void *nonce)
161 {
162 static const octet zerononce[CHACHA_NONCESZ];
163
164 populate(ctx->a, key, ksz);
165 chacha_setnonce(ctx, nonce ? nonce : zerononce);
166 }
167
168 /* --- @chacha_setnonce@ --- *
169 *
170 * Arguments: @chacha_ctx *ctx@ = pointer to context
171 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ bytes)
172 *
173 * Returns: ---
174 *
175 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
176 * different message. The stream position is reset to zero (see
177 * @chacha_seek@ etc.).
178 */
179
180 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
181 {
182 const octet *n = nonce;
183
184 ctx->a[14] = LOAD32_L(n + 0);
185 ctx->a[15] = LOAD32_L(n + 4);
186 chacha_seek(ctx, 0);
187 }
188
189 /* --- @chacha_seek@, @chacha_seeku64@ --- *
190 *
191 * Arguments: @chacha_ctx *ctx@ = pointer to context
192 * @unsigned long i@, @kludge64 i@ = new position to set
193 *
194 * Returns: ---
195 *
196 * Use: Sets a new stream position, in units of Chacha output
197 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
198 * granularity can be achieved by calling @chachaR_encrypt@
199 * appropriately.
200 */
201
202 void chacha_seek(chacha_ctx *ctx, unsigned long i)
203 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
204
205 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
206 {
207 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
208 ctx->bufi = CHACHA_OUTSZ;
209 }
210
211 /* --- @chacha_tell@, @chacha_tellu64@ --- *
212 *
213 * Arguments: @chacha_ctx *ctx@ = pointer to context
214 *
215 * Returns: The current position in the output stream, in blocks,
216 * rounding upwards.
217 */
218
219 unsigned long chacha_tell(chacha_ctx *ctx)
220 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
221
222 kludge64 chacha_tellu64(chacha_ctx *ctx)
223 { kludge64 i; SET64(i, ctx->a[9], ctx->a[8]); return (i); }
224
225 /* --- @chacha{,12,8}_encrypt@ --- *
226 *
227 * Arguments: @chacha_ctx *ctx@ = pointer to context
228 * @const void *src@ = source buffer (or null)
229 * @void *dest@ = destination buffer (or null)
230 * @size_t sz@ = size of the buffers
231 *
232 * Returns: ---
233 *
234 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
235 * ChaCha works by XORing plaintext with a keystream, so
236 * encryption and decryption are the same operation. If @dest@
237 * is null then ignore @src@ and skip @sz@ bytes of the
238 * keystream. If @src@ is null, then just write the keystream
239 * to @dest@.
240 */
241
242 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
243 chacha##r##_encrypt(ctx, src, dest, sz)
244 #define DEFENCRYPT(r) \
245 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
246 void *dest, size_t sz) \
247 { \
248 chacha_matrix b; \
249 const octet *s = src; \
250 octet *d = dest; \
251 size_t n; \
252 kludge64 pos, delta; \
253 \
254 SALSA20_OUTBUF(ctx, d, s, sz); \
255 if (!sz) return; \
256 \
257 if (!dest) { \
258 n = sz/CHACHA_OUTSZ; \
259 pos = chacha_tellu64(ctx); \
260 ASSIGN64(delta, n); \
261 ADD64(pos, pos, delta); \
262 chacha_seeku64(ctx, pos); \
263 sz = sz%CHACHA_OUTSZ; \
264 } else if (!src) { \
265 while (sz >= CHACHA_OUTSZ) { \
266 core(r, ctx->a, b); \
267 CHACHA_STEP(ctx->a); \
268 SALSA20_GENFULL(b, d); \
269 sz -= CHACHA_OUTSZ; \
270 } \
271 } else { \
272 while (sz >= CHACHA_OUTSZ) { \
273 core(r, ctx->a, b); \
274 CHACHA_STEP(ctx->a); \
275 SALSA20_MIXFULL(b, d, s); \
276 sz -= CHACHA_OUTSZ; \
277 } \
278 } \
279 \
280 if (sz) { \
281 core(r, ctx->a, b); \
282 CHACHA_STEP(ctx->a); \
283 SALSA20_PREPBUF(ctx, b); \
284 SALSA20_OUTBUF(ctx, d, s, sz); \
285 assert(!sz); \
286 } \
287 }
288 CHACHA_VARS(DEFENCRYPT)
289
290 /*----- HChaCha implementation --------------------------------------------*/
291
292 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
293 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
294
295 /* --- @hchacha{20,12,8}_prf@ --- *
296 *
297 * Arguments: @chacha_ctx *ctx@ = pointer to context
298 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
299 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
300 *
301 * Returns: ---
302 *
303 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
304 * the result to @out@.
305 */
306
307 #define DEFHCHACHA(r) \
308 static void HCHACHA_RAW(r, chacha_matrix k, \
309 const uint32 *src, uint32 *dest) \
310 { \
311 chacha_matrix a; \
312 int i; \
313 \
314 /* --- HChaCha, computed from full ChaCha --- * \
315 * \
316 * The security proof makes use of the fact that HChaCha (i.e., \
317 * without the final feedforward step) can be computed from full \
318 * ChaCha using only knowledge of the non-secret input. I don't \
319 * want to compromise the performance of the main function by \
320 * making the feedforward step separate, but this operation is less \
321 * speed critical, so we do it the harder way. \
322 */ \
323 \
324 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
325 core(r, k, a); \
326 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
327 } \
328 \
329 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
330 { \
331 const octet *s = src; \
332 octet *d = dest; \
333 uint32 in[4], out[8]; \
334 int i; \
335 \
336 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
337 HCHACHA_RAW(r, ctx->a, in, out); \
338 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
339 }
340 CHACHA_VARS(DEFHCHACHA)
341
342 /*----- XChaCha implementation -------------------------------------------*/
343
344 /* --- Some convenient macros for naming functions --- *
345 *
346 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
347 * need to take an interest in the number of rounds in most of the various
348 * functions, and it will probably help if we distinguish the context
349 * structures for the various versions.
350 */
351
352 #define XCHACHA_CTX(r) xchacha##r##_ctx
353 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
354 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
355 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
356 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
357 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
358 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
359 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
360 xchacha##r##_encrypt(ctx, src, dest, sz)
361
362 /* --- @xchacha{20,12,8}_init@ --- *
363 *
364 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
365 * @const void *key@ = pointer to key material
366 * @size_t ksz@ = size of key (either 32 or 16)
367 * @const void *nonce@ = initial nonce, or null
368 *
369 * Returns: ---
370 *
371 * Use: Initializes an XChaCha/r context ready for use.
372 *
373 * There is a different function for each number of rounds,
374 * unlike for plain ChaCha.
375 */
376
377 #define DEFXINIT(r) \
378 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
379 const void *key, size_t ksz, const void *nonce) \
380 { \
381 static const octet zerononce[XCHACHA_NONCESZ]; \
382 \
383 populate(ctx->k, key, ksz); \
384 ctx->s.a[ 0] = CHACHA_A256; \
385 ctx->s.a[ 1] = CHACHA_B256; \
386 ctx->s.a[ 2] = CHACHA_C256; \
387 ctx->s.a[ 3] = CHACHA_D256; \
388 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
389 }
390 CHACHA_VARS(DEFXINIT)
391
392 /* --- @xchacha{20,12,8}_setnonce@ --- *
393 *
394 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
395 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
396 *
397 * Returns: ---
398 *
399 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
400 * different message. The stream position is reset to zero (see
401 * @chacha_seek@ etc.).
402 *
403 * There is a different function for each number of rounds,
404 * unlike for plain ChaCha.
405 */
406
407 #define DEFXNONCE(r) \
408 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
409 { \
410 const octet *n = nonce; \
411 uint32 in[4]; \
412 int i; \
413 \
414 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
415 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
416 chacha_setnonce(&ctx->s, n + 16); \
417 }
418 CHACHA_VARS(DEFXNONCE)
419
420 /* --- @xchacha{20,12,8}_seek@, @xchacha{20,12,8}_seeku64@ --- *
421 *
422 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
423 * @unsigned long i@, @kludge64 i@ = new position to set
424 *
425 * Returns: ---
426 *
427 * Use: Sets a new stream position, in units of ChaCha output
428 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
429 * granularity can be achieved by calling @xchachaR_encrypt@
430 * appropriately.
431 *
432 * There is a different function for each number of rounds,
433 * unlike for plain ChaCha, because the context structures are
434 * different.
435 */
436
437 /* --- @xchacha{20,12,8}_tell@, @xchacha{20,12,8}_tellu64@ --- *
438 *
439 * Arguments: @chacha_ctx *ctx@ = pointer to context
440 *
441 * Returns: The current position in the output stream, in blocks,
442 * rounding upwards.
443 *
444 * There is a different function for each number of rounds,
445 * unlike for plain ChaCha, because the context structures are
446 * different.
447 */
448
449 /* --- @xchacha{,12,8}_encrypt@ --- *
450 *
451 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
452 * @const void *src@ = source buffer (or null)
453 * @void *dest@ = destination buffer (or null)
454 * @size_t sz@ = size of the buffers
455 *
456 * Returns: ---
457 *
458 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
459 * XChaCha works by XORing plaintext with a keystream, so
460 * encryption and decryption are the same operation. If @dest@
461 * is null then ignore @src@ and skip @sz@ bytes of the
462 * keystream. If @src@ is null, then just write the keystream
463 * to @dest@.
464 */
465
466 #define DEFXPASSTHRU(r) \
467 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
468 { chacha_seek(&ctx->s, i); } \
469 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
470 { chacha_seeku64(&ctx->s, i); } \
471 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
472 { return chacha_tell(&ctx->s); } \
473 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
474 { return chacha_tellu64(&ctx->s); } \
475 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
476 const void *src, void *dest, size_t sz) \
477 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
478 CHACHA_VARS(DEFXPASSTHRU)
479
480 /*----- Generic cipher interface ------------------------------------------*/
481
482 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
483
484 static void gsetiv(gcipher *c, const void *iv)
485 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
486
487 static void gdestroy(gcipher *c)
488 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
489
490 #define DEFGCIPHER(r) \
491 \
492 static const gcipher_ops gops_##r; \
493 \
494 static gcipher *ginit_##r(const void *k, size_t sz) \
495 { \
496 gctx *g = S_CREATE(gctx); \
497 g->c.ops = &gops_##r; \
498 chacha_init(&g->ctx, k, sz, 0); \
499 return (&g->c); \
500 } \
501 \
502 static void gencrypt_##r(gcipher *c, const void *s, \
503 void *t, size_t sz) \
504 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
505 \
506 static const gcipher_ops gops_##r = { \
507 &chacha##r, \
508 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
509 }; \
510 \
511 const gccipher chacha##r = { \
512 "chacha" #r, chacha_keysz, \
513 CHACHA_NONCESZ, ginit_##r \
514 };
515
516 CHACHA_VARS(DEFGCIPHER)
517
518 #define DEFGXCIPHER(r) \
519 \
520 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
521 \
522 static void gxsetiv_##r(gcipher *c, const void *iv) \
523 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
524 \
525 static void gxdestroy_##r(gcipher *c) \
526 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
527 \
528 static const gcipher_ops gxops_##r; \
529 \
530 static gcipher *gxinit_##r(const void *k, size_t sz) \
531 { \
532 gxctx_##r *g = S_CREATE(gxctx_##r); \
533 g->c.ops = &gxops_##r; \
534 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
535 return (&g->c); \
536 } \
537 \
538 static void gxencrypt_##r(gcipher *c, const void *s, \
539 void *t, size_t sz) \
540 { \
541 gxctx_##r *g = (gxctx_##r *)c; \
542 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
543 } \
544 \
545 static const gcipher_ops gxops_##r = { \
546 &xchacha##r, \
547 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
548 }; \
549 \
550 const gccipher xchacha##r = { \
551 "xchacha" #r, chacha_keysz, \
552 CHACHA_NONCESZ, gxinit_##r \
553 };
554
555 CHACHA_VARS(DEFGXCIPHER)
556
557 /*----- Generic random number generator interface -------------------------*/
558
559 typedef struct grops {
560 size_t noncesz;
561 void (*seek)(void *, kludge64);
562 kludge64 (*tell)(void *);
563 void (*setnonce)(void *, const void *);
564 void (*generate)(void *, void *, size_t);
565 } grops;
566
567 typedef struct grbasectx {
568 grand r;
569 const grops *ops;
570 } grbasectx;
571
572 static int grmisc(grand *r, unsigned op, ...)
573 {
574 octet buf[XCHACHA_NONCESZ];
575 grbasectx *g = (grbasectx *)r;
576 grand *rr;
577 const octet *p;
578 size_t sz;
579 uint32 i;
580 unsigned long ul;
581 kludge64 pos;
582 va_list ap;
583 int rc = 0;
584
585 va_start(ap, op);
586
587 switch (op) {
588 case GRAND_CHECK:
589 switch (va_arg(ap, unsigned)) {
590 case GRAND_CHECK:
591 case GRAND_SEEDINT:
592 case GRAND_SEEDUINT32:
593 case GRAND_SEEDBLOCK:
594 case GRAND_SEEDRAND:
595 case CHACHA_SEEK:
596 case CHACHA_SEEKU64:
597 case CHACHA_TELL:
598 case CHACHA_TELLU64:
599 rc = 1;
600 break;
601 default:
602 rc = 0;
603 break;
604 }
605 break;
606
607 case GRAND_SEEDINT:
608 i = va_arg(ap, unsigned); STORE32_L(buf, i);
609 memset(buf + 4, 0, g->ops->noncesz - 4);
610 g->ops->setnonce(g, buf);
611 break;
612 case GRAND_SEEDUINT32:
613 i = va_arg(ap, uint32); STORE32_L(buf, i);
614 memset(buf + 4, 0, g->ops->noncesz - 4);
615 g->ops->setnonce(g, buf);
616 break;
617 case GRAND_SEEDBLOCK:
618 p = va_arg(ap, const void *);
619 sz = va_arg(ap, size_t);
620 if (sz < g->ops->noncesz) {
621 memcpy(buf, p, sz);
622 memset(buf + sz, 0, g->ops->noncesz - sz);
623 p = buf;
624 }
625 g->ops->setnonce(g, p);
626 break;
627 case GRAND_SEEDRAND:
628 rr = va_arg(ap, grand *);
629 rr->ops->fill(rr, buf, g->ops->noncesz);
630 g->ops->setnonce(g, buf);
631 break;
632 case CHACHA_SEEK:
633 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
634 g->ops->seek(g, pos);
635 break;
636 case CHACHA_SEEKU64:
637 pos = va_arg(ap, kludge64);
638 g->ops->seek(g, pos);
639 break;
640 case CHACHA_TELL:
641 pos = g->ops->tell(g);
642 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
643 break;
644 case CHACHA_TELLU64:
645 *va_arg(ap, kludge64 *) = g->ops->tell(g);
646 break;
647 default:
648 GRAND_BADOP;
649 break;
650 }
651
652 return (rc);
653 }
654
655 static octet grbyte(grand *r)
656 {
657 grbasectx *g = (grbasectx *)r;
658 octet o;
659 g->ops->generate(g, &o, 1);
660 return (o);
661 }
662
663 static uint32 grword(grand *r)
664 {
665 grbasectx *g = (grbasectx *)r;
666 octet b[4];
667 g->ops->generate(g, b, sizeof(b));
668 return (LOAD32_L(b));
669 }
670
671 static void grfill(grand *r, void *p, size_t sz)
672 {
673 grbasectx *g = (grbasectx *)r;
674 g->ops->generate(r, p, sz);
675 }
676
677 typedef struct grctx {
678 grbasectx r;
679 chacha_ctx ctx;
680 } grctx;
681
682 static void gr_seek(void *r, kludge64 pos)
683 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
684
685 static kludge64 gr_tell(void *r)
686 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
687
688 static void gr_setnonce(void *r, const void *n)
689 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
690
691 static void grdestroy(grand *r)
692 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
693
694 #define DEFGRAND(rr) \
695 \
696 static void gr_generate_##rr(void *r, void *b, size_t sz) \
697 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
698 \
699 static const grops grops_##rr = \
700 { CHACHA_NONCESZ, gr_seek, gr_tell, \
701 gr_setnonce, gr_generate_##rr }; \
702 \
703 static const grand_ops grops_rand_##rr = { \
704 "chacha" #rr, GRAND_CRYPTO, 0, \
705 grmisc, grdestroy, grword, \
706 grbyte, grword, grand_defaultrange, grfill \
707 }; \
708 \
709 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
710 { \
711 grctx *g = S_CREATE(g); \
712 g->r.r.ops = &grops_rand_##rr; \
713 g->r.ops = &grops_##rr; \
714 chacha_init(&g->ctx, k, ksz, n); \
715 return (&g->r.r); \
716 }
717 CHACHA_VARS(DEFGRAND)
718
719 #define DEFXGRAND(rr) \
720 \
721 typedef struct grxctx_##rr { \
722 grbasectx r; \
723 XCHACHA_CTX(rr) ctx; \
724 } grxctx_##rr; \
725 \
726 static void grx_seek_##rr(void *r, kludge64 pos) \
727 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
728 \
729 static kludge64 grx_tell_##rr(void *r) \
730 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
731 \
732 static void grx_setnonce_##rr(void *r, const void *n) \
733 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
734 \
735 static void grxdestroy_##rr(grand *r) \
736 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
737 \
738 static void grx_generate_##rr(void *r, void *b, size_t sz) \
739 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
740 \
741 static const grops grxops_##rr = \
742 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
743 grx_setnonce_##rr, grx_generate_##rr }; \
744 \
745 static const grand_ops grxops_rand_##rr = { \
746 "xchacha" #rr, GRAND_CRYPTO, 0, \
747 grmisc, grxdestroy_##rr, grword, \
748 grbyte, grword, grand_defaultrange, grfill \
749 }; \
750 \
751 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
752 { \
753 grxctx_##rr *g = S_CREATE(g); \
754 g->r.r.ops = &grxops_rand_##rr; \
755 g->r.ops = &grxops_##rr; \
756 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
757 return (&g->r.r); \
758 }
759 CHACHA_VARS(DEFXGRAND)
760
761 /*----- Test rig ----------------------------------------------------------*/
762
763 #ifdef TEST_RIG
764
765 #include <stdio.h>
766 #include <string.h>
767
768 #include <mLib/quis.h>
769 #include <mLib/testrig.h>
770
771 #define DEFVCORE(r) \
772 static int v_core_##r(dstr *v) \
773 { \
774 chacha_matrix a, b; \
775 dstr d = DSTR_INIT; \
776 int i, n; \
777 int ok = 1; \
778 \
779 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
780 n = *(int *)v[0].buf; \
781 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
782 a[i] = LOAD32_L(v[1].buf + 4*i); \
783 for (i = 0; i < n; i++) { \
784 core(r, a, b); \
785 memcpy(a, b, sizeof(a)); \
786 } \
787 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
788 \
789 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
790 ok = 0; \
791 printf("\nfail core:" \
792 "\n\titerations = %d" \
793 "\n\tin = ", n); \
794 type_hex.dump(&v[1], stdout); \
795 printf("\n\texpected = "); \
796 type_hex.dump(&v[2], stdout); \
797 printf("\n\tcalculated = "); \
798 type_hex.dump(&d, stdout); \
799 putchar('\n'); \
800 } \
801 \
802 dstr_destroy(&d); \
803 return (ok); \
804 }
805 CHACHA_VARS(DEFVCORE)
806
807 #define CHACHA_CTX(r) chacha_ctx
808 #define CHACHA_INIT(r, ctx, k, ksz, n) chacha_init(ctx, k, ksz, n)
809 #define CHACHA_SEEKU64(r, ctx, i) chacha_seeku64(ctx, i)
810 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
811
812 #define DEFxVENC(base, BASE, r) \
813 static int v_encrypt_##base##_##r(dstr *v) \
814 { \
815 BASE##_CTX(r) ctx; \
816 dstr d = DSTR_INIT; \
817 kludge64 pos; \
818 const octet *p, *p0; \
819 octet *q; \
820 size_t sz, sz0, step; \
821 unsigned long skip; \
822 int ok = 1; \
823 \
824 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
825 else { p0 = 0; sz0 = v[5].len; } \
826 DENSURE(&d, sz0); d.len = sz0; \
827 skip = *(unsigned long *)v[3].buf; \
828 \
829 step = 0; \
830 while (step < sz0 + skip) { \
831 step = step ? 3*step + 4 : 1; \
832 if (step > sz0 + skip) step = sz0 + skip; \
833 BASE##_INIT(r, &ctx, v[0].buf, v[0].len, v[1].buf); \
834 if (v[2].len) { \
835 LOAD64_(pos, v[2].buf); \
836 BASE##_SEEKU64(r, &ctx, pos); \
837 } \
838 \
839 for (sz = skip; sz >= step; sz -= step) \
840 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
841 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
842 for (p = p0, q = (octet *)d.buf, sz = sz0; \
843 sz >= step; \
844 sz -= step, q += step) { \
845 BASE##_ENCRYPT(r, &ctx, p, q, step); \
846 if (p) p += step; \
847 } \
848 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
849 \
850 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
851 ok = 0; \
852 printf("\nfail encrypt:" \
853 "\n\tstep = %lu" \
854 "\n\tkey = ", (unsigned long)step); \
855 type_hex.dump(&v[0], stdout); \
856 printf("\n\tnonce = "); \
857 type_hex.dump(&v[1], stdout); \
858 printf("\n\tposition = "); \
859 type_hex.dump(&v[2], stdout); \
860 printf("\n\tskip = %lu", skip); \
861 printf("\n\tmessage = "); \
862 type_hex.dump(&v[4], stdout); \
863 printf("\n\texpected = "); \
864 type_hex.dump(&v[5], stdout); \
865 printf("\n\tcalculated = "); \
866 type_hex.dump(&d, stdout); \
867 putchar('\n'); \
868 } \
869 } \
870 \
871 dstr_destroy(&d); \
872 return (ok); \
873 }
874 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
875 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
876 CHACHA_VARS(DEFVENC)
877 CHACHA_VARS(DEFXVENC)
878
879 static test_chunk defs[] = {
880 #define DEFxTAB(base, r) \
881 { #base #r, v_encrypt_##base##_##r, \
882 { &type_hex, &type_hex, &type_hex, &type_ulong, \
883 &type_hex, &type_hex, 0 } },
884 #define DEFTAB(r) \
885 { "chacha" #r "-core", v_core_##r, \
886 { &type_int, &type_hex, &type_hex, 0 } }, \
887 DEFxTAB(chacha, r)
888 #define DEFXTAB(r) DEFxTAB(xchacha, r)
889 CHACHA_VARS(DEFTAB)
890 CHACHA_VARS(DEFXTAB)
891 { 0, 0, { 0 } }
892 };
893
894 int main(int argc, char *argv[])
895 {
896 test_run(argc, argv, defs, SRCDIR"/t/chacha");
897 return (0);
898 }
899
900 #endif
901
902 /*----- That's all, folks -------------------------------------------------*/