6d9b3b2272852e5de9be70fdd3619363dea1a110
[catacomb] / symm / rijndael-x86ish-aesni.S
1 /// -*- mode: asm; asm-comment-char: ?/ -*-
2 ///
3 /// AESNI-based implementation of Rijndael
4 ///
5 /// (c) 2015 Straylight/Edgeware
6 ///
7
8 ///----- Licensing notice ---------------------------------------------------
9 ///
10 /// This file is part of Catacomb.
11 ///
12 /// Catacomb is free software; you can redistribute it and/or modify
13 /// it under the terms of the GNU Library General Public License as
14 /// published by the Free Software Foundation; either version 2 of the
15 /// License, or (at your option) any later version.
16 ///
17 /// Catacomb is distributed in the hope that it will be useful,
18 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
19 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 /// GNU Library General Public License for more details.
21 ///
22 /// You should have received a copy of the GNU Library General Public
23 /// License along with Catacomb; if not, write to the Free
24 /// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 /// MA 02111-1307, USA.
26
27 ///--------------------------------------------------------------------------
28 /// Preliminaries.
29
30 #include "config.h"
31 #include "asm-common.h"
32
33 .arch .aes
34
35 .extern F(abort)
36 .extern F(rijndael_rcon)
37
38 .text
39
40 ///--------------------------------------------------------------------------
41 /// Main code.
42
43 /// The AESNI instructions implement a little-endian version of AES, but
44 /// Catacomb's internal interface presents as big-endian so as to work better
45 /// with things like GCM. We therefore maintain the round keys in
46 /// little-endian form, and have to end-swap blocks in and out.
47 ///
48 /// For added amusement, the AESNI instructions don't implement the
49 /// larger-block versions of Rijndael, so we have to end-swap the keys if
50 /// we're preparing for one of those.
51
52 // Useful constants.
53 .equ maxrounds, 16 // maximum number of rounds
54 .equ maxblksz, 32 // maximum block size, in bytes
55 .equ kbufsz, maxblksz*(maxrounds + 1) // size of a key-schedule buffer
56
57 // Context structure.
58 .equ nr, 0 // number of rounds
59 .equ w, nr + 4 // encryption key words
60 .equ wi, w + kbufsz // decryption key words
61
62 ///--------------------------------------------------------------------------
63 /// Key setup.
64
65 FUNC(rijndael_setup_x86ish_aesni_avx)
66 vzeroupper // avoid penalty on `legacy' XMM access
67 endprologue
68 // and drop through...
69 ENDFUNC
70
71 FUNC(rijndael_setup_x86ish_aesni)
72
73 #define SI WHOLE(si)
74 #define DI WHOLE(di)
75
76 #if CPUFAM_X86
77 // Arguments are on the stack. We'll need to stack the caller's
78 // register veriables, but we'll manage.
79
80 # define CTX ebp // context pointer
81 # define BLKSZ [esp + 24] // block size
82
83 # define KSZ ebx // key size
84 # define NKW edx // total number of key words
85 # define NKW_NEEDS_REFRESH 1 // ... needs recalculating
86 # define RCON ecx // round constants table
87 # define LIM edx // limit pointer
88 # define CYIX edi // index in shift-register cycle
89
90 # define NR ecx // number of rounds
91 # define LRK eax // distance to last key
92 # define BLKOFF edx // block size in bytes
93
94 // Stack the caller's registers.
95 pushreg ebp
96 pushreg ebx
97 pushreg esi
98 pushreg edi
99
100 // Set up our own variables.
101 mov CTX, [esp + 20] // context base pointer
102 mov SI, [esp + 28] // key material
103 mov KSZ, [esp + 32] // key size, in words
104 #endif
105
106 #if CPUFAM_AMD64 && ABI_SYSV
107 // Arguments are in registers. We have plenty, but, to be honest,
108 // the initial register allocation is a bit annoying.
109
110 # define CTX r8 // context pointer
111 # define BLKSZ r9d // block size
112
113 # define KSZ edx // key size
114 # define NKW r10d // total number of key words
115 # define RCON rdi // round constants table
116 # define LIM rcx // limit pointer
117 # define CYIX r11d // index in shift-register cycle
118
119 # define NR ecx // number of rounds
120 # define LRK eax // distance to last key
121 # define BLKOFF r9d // block size in bytes
122
123 // Move arguments to more useful places.
124 mov CTX, rdi // context base pointer
125 mov BLKSZ, esi // block size in words
126 mov SI, rdx // key material
127 mov KSZ, ecx // key size, in words
128 #endif
129
130 #if CPUFAM_AMD64 && ABI_WIN
131 // Arguments are in different registers, and they're a little tight.
132
133 # define CTX r8 // context pointer
134 # define BLKSZ edx // block size
135
136 # define KSZ r9d // key size
137 # define NKW r10d // total number of key words
138 # define RCON rdi // round constants table
139 # define LIM rcx // limit pointer
140 # define CYIX r11d // index in shift-register cycle
141
142 # define NR ecx // number of rounds
143 # define LRK eax // distance to last key
144 # define BLKOFF edx // block size in bytes
145
146 // We'll need the index registers, which belong to the caller in this
147 // ABI.
148 pushreg rsi
149 pushreg rdi
150
151 // Move arguments to more useful places.
152 mov rsi, r8 // key material
153 mov CTX, rcx // context base pointer
154 #endif
155
156 endprologue
157
158 // The initial round key material is taken directly from the input
159 // key, so copy it over.
160 #if CPUFAM_AMD64 && ABI_SYSV
161 // We've been lucky. We already have a copy of the context pointer
162 // in rdi, and the key size in ecx.
163 add rdi, w
164 #else
165 lea DI, [CTX + w]
166 mov ecx, KSZ
167 #endif
168 rep movsd
169
170 // Find out other useful things.
171 mov NKW, [CTX + nr] // number of rounds
172 add NKW, 1
173 imul NKW, BLKSZ // total key size in words
174 #if !NKW_NEEDS_REFRESH
175 // If we can't keep NKW for later, then we use the same register for
176 // it and LIM, so this move is unnecessary.
177 mov DWORD(LIM), NKW
178 #endif
179 sub DWORD(LIM), KSZ // offset by the key size
180
181 // Find the round constants.
182 ldgot WHOLE(c)
183 leaext RCON, F(rijndael_rcon), WHOLE(c)
184
185 // Prepare for the main loop.
186 lea SI, [CTX + w]
187 mov eax, [SI + 4*WHOLE(KSZ) - 4] // most recent key word
188 lea LIM, [SI + 4*LIM] // limit, offset by one key expansion
189 xor CYIX, CYIX // start of new cycle
190
191 // Main key expansion loop. The first word of each key-length chunk
192 // needs special treatment.
193 //
194 // This is rather tedious because the Intel `AESKEYGENASSIST'
195 // instruction is very strangely shaped. Firstly, it wants to
196 // operate on vast SSE registers, even though we're data-blocked from
197 // doing more than operation at a time unless we're doing two key
198 // schedules simultaneously -- and even then we can't do more than
199 // two, because the instruction ignores two of its input words
200 // entirely, and produces two different outputs for each of the other
201 // two. And secondly it insists on taking the magic round constant
202 // as an immediate, so it's kind of annoying if you're not
203 // open-coding the whole thing. It's much easier to leave that as
204 // zero and XOR in the round constant by hand.
205 0: cmp CYIX, 0 // first word of the cycle?
206 je 1f
207 cmp CYIX, 4 // fourth word of the cycle?
208 jne 2f
209 cmp KSZ, 7 // and a large key?
210 jb 2f
211
212 // Fourth word of the cycle, and seven or eight words of key. Do a
213 // byte substitution.
214 movd xmm0, eax
215 pshufd xmm0, xmm0, SHUF(3, 0, 1, 2)
216 aeskeygenassist xmm1, xmm0, 0
217 movd eax, xmm1
218 jmp 2f
219
220 // First word of the cycle. This is the complicated piece.
221 1: movd xmm0, eax
222 pshufd xmm0, xmm0, SHUF(1, 2, 3, 0)
223 aeskeygenassist xmm1, xmm0, 0
224 pshufd xmm1, xmm1, SHUF(3, 0, 1, 2)
225 movd eax, xmm1
226 xor al, [RCON]
227 inc RCON
228
229 // Common tail. Mix in the corresponding word from the previous
230 // cycle and prepare for the next loop.
231 2: xor eax, [SI]
232 mov [SI + 4*WHOLE(KSZ)], eax
233 add SI, 4
234 inc CYIX
235 cmp SI, LIM
236 jae 9f
237 cmp CYIX, KSZ
238 jb 0b
239 xor CYIX, CYIX
240 jmp 0b
241
242 // Next job is to construct the decryption keys. The keys for the
243 // first and last rounds don't need to be mangled, but the remaining
244 // ones do -- and they all need to be reordered too.
245 //
246 // The plan of action, then, is to copy the final encryption round's
247 // keys into place first, then to do each of the intermediate rounds
248 // in reverse order, and finally do the first round.
249 //
250 // Do all of the heavy lifting with SSE registers. The order we're
251 // doing this in means that it's OK if we read or write too much, and
252 // there's easily enough buffer space for the over-enthusiastic reads
253 // and writes because the context has space for 32-byte blocks, which
254 // is our maximum and an exact fit for two SSE registers.
255 9: mov NR, [CTX + nr] // number of rounds
256 #if NKW_NEEDS_REFRESH
257 mov BLKOFF, BLKSZ
258 mov LRK, NR
259 imul LRK, BLKOFF
260 #else
261 // If we retain NKW, then BLKSZ and BLKOFF are the same register
262 // because we won't need the former again.
263 mov LRK, NKW
264 sub LRK, BLKSZ
265 #endif
266 lea DI, [CTX + wi]
267 lea SI, [CTX + w + 4*WHOLE(LRK)] // last round's keys
268 shl BLKOFF, 2 // block size (in bytes now)
269
270 // Copy the last encryption round's keys.
271 movdqu xmm0, [SI]
272 movdqu [DI], xmm0
273 cmp BLKOFF, 16
274 jbe 0f
275 movdqu xmm0, [SI + 16]
276 movdqu [DI + 16], xmm0
277
278 // Update the loop variables and stop if we've finished.
279 0: add DI, WHOLE(BLKOFF)
280 sub SI, WHOLE(BLKOFF)
281 sub NR, 1
282 jbe 9f
283
284 // Do another middle round's keys...
285 movdqu xmm0, [SI]
286 aesimc xmm0, xmm0
287 movdqu [DI], xmm0
288 cmp BLKOFF, 16
289 jbe 0b
290 movdqu xmm0, [SI + 16]
291 aesimc xmm0, xmm0
292 movdqu [DI + 16], xmm0
293 jmp 0b
294
295 // Finally do the first encryption round.
296 9: movdqu xmm0, [SI]
297 movdqu [DI], xmm0
298 cmp BLKOFF, 16
299 jbe 1f
300 movdqu xmm0, [SI + 16]
301 movdqu [DI + 16], xmm0
302
303 // If the block size is not exactly four words then we must end-swap
304 // everything. We can use fancy SSE toys for this.
305 1: cmp BLKOFF, 16
306 je 9f
307
308 // Find the byte-reordering table.
309 ldgot ecx
310 movdqa xmm5, [INTADDR(endswap_tab, ecx)]
311
312 #if NKW_NEEDS_REFRESH
313 // Calculate the number of subkey words again. (It's a good job
314 // we've got a fast multiplier.)
315 mov NKW, [CTX + nr]
316 add NKW, 1
317 imul NKW, BLKSZ
318 #endif
319
320 // End-swap the encryption keys.
321 lea SI, [CTX + w]
322 call endswap_block
323
324 // And the decryption keys.
325 lea SI, [CTX + wi]
326 call endswap_block
327
328 9: // All done.
329 #if CPUFAM_X86
330 popreg edi
331 popreg esi
332 popreg ebx
333 popreg ebp
334 #endif
335 #if CPUFAM_AMD64 && ABI_WIN
336 popreg rdi
337 popreg rsi
338 #endif
339 ret
340
341 ENDFUNC
342
343 INTFUNC(endswap_block)
344 // End-swap NKW words starting at SI. The end-swapping table is
345 // already loaded into XMM5; and it's OK to work in 16-byte chunks.
346 endprologue
347
348 mov ecx, NKW
349 0: movdqu xmm1, [SI]
350 pshufb xmm1, xmm5
351 movdqu [SI], xmm1
352 add SI, 16
353 sub ecx, 4
354 ja 0b
355
356 ret
357
358 ENDFUNC
359
360 #undef CTX
361 #undef BLKSZ
362 #undef SI
363 #undef DI
364 #undef KSZ
365 #undef RCON
366 #undef LIM
367 #undef NR
368 #undef LRK
369 #undef BLKOFF
370
371 ///--------------------------------------------------------------------------
372 /// Encrypting and decrypting blocks.
373
374 .macro encdec op, aes, koff
375 FUNC(rijndael_\op\()_x86ish_aesni_avx)
376 vzeroupper // avoid XMM penalties
377 endprologue
378 // and drop through...
379 ENDFUNC
380
381 FUNC(rijndael_\op\()_x86ish_aesni)
382
383 #if CPUFAM_X86
384 // Arguments come in on the stack, and need to be collected. We
385 // don't have a shortage of registers.
386
387 # define K eax
388 # define SRC edx
389 # define DST edx
390 # define NR ecx
391
392 mov K, [esp + 4]
393 mov SRC, [esp + 8]
394 #endif
395
396 #if CPUFAM_AMD64 && ABI_SYSV
397 // Arguments come in registers. All is good.
398
399 # define K rdi
400 # define SRC rsi
401 # define DST rdx
402 # define NR eax
403 #endif
404
405 #if CPUFAM_AMD64 && ABI_WIN
406 // Arguments come in different registers.
407
408 # define K rcx
409 # define SRC rdx
410 # define DST r8
411 # define NR eax
412 #endif
413
414 endprologue
415
416 // Find the magic endianness-swapping table.
417 ldgot ecx
418 movdqa xmm5, [INTADDR(endswap_tab, ecx)]
419
420 // Initial setup.
421 movdqu xmm0, [SRC]
422 pshufb xmm0, xmm5
423 mov NR, [K + nr]
424 add K, \koff
425
426 // Initial whitening.
427 movdqu xmm1, [K]
428 add K, 16
429 pxor xmm0, xmm1
430 #if CPUFAM_X86
431 mov DST, [esp + 12]
432 #endif
433
434 // Dispatch to the correct code.
435 cmp NR, 10
436 je 10f
437 jb bogus
438 cmp NR, 14
439 je 14f
440 ja bogus
441 cmp NR, 12
442 je 12f
443 jb 11f
444 jmp 13f
445
446 .align 2
447
448 // 14 rounds...
449 14: movdqu xmm1, [K]
450 add K, 16
451 \aes xmm0, xmm1
452
453 // 13 rounds...
454 13: movdqu xmm1, [K]
455 add K, 16
456 \aes xmm0, xmm1
457
458 // 12 rounds...
459 12: movdqu xmm1, [K]
460 add K, 16
461 \aes xmm0, xmm1
462
463 // 11 rounds...
464 11: movdqu xmm1, [K]
465 add K, 16
466 \aes xmm0, xmm1
467
468 // 10 rounds...
469 10: movdqu xmm1, [K]
470 \aes xmm0, xmm1
471
472 // 9 rounds...
473 movdqu xmm1, [K + 16]
474 \aes xmm0, xmm1
475
476 // 8 rounds...
477 movdqu xmm1, [K + 32]
478 \aes xmm0, xmm1
479
480 // 7 rounds...
481 movdqu xmm1, [K + 48]
482 \aes xmm0, xmm1
483
484 // 6 rounds...
485 movdqu xmm1, [K + 64]
486 \aes xmm0, xmm1
487
488 // 5 rounds...
489 movdqu xmm1, [K + 80]
490 \aes xmm0, xmm1
491
492 // 4 rounds...
493 movdqu xmm1, [K + 96]
494 \aes xmm0, xmm1
495
496 // 3 rounds...
497 movdqu xmm1, [K + 112]
498 \aes xmm0, xmm1
499
500 // 2 rounds...
501 movdqu xmm1, [K + 128]
502 \aes xmm0, xmm1
503
504 // Final round...
505 movdqu xmm1, [K + 144]
506 \aes\()last xmm0, xmm1
507
508 // Unpermute the ciphertext block and store it.
509 pshufb xmm0, xmm5
510 movdqu [DST], xmm0
511
512 // And we're done.
513 ret
514
515 #undef K
516 #undef SRC
517 #undef DST
518 #undef NR
519
520 ENDFUNC
521 .endm
522
523 encdec eblk, aesenc, w
524 encdec dblk, aesdec, wi
525
526 ///--------------------------------------------------------------------------
527 /// Random utilities.
528
529 INTFUNC(bogus)
530 // Abort the process because of a programming error. Indirecting
531 // through this point serves several purposes: (a) by CALLing, rather
532 // than branching to, `abort', we can save the return address, which
533 // might at least provide a hint as to what went wrong; (b) we don't
534 // have conditional CALLs (and they'd be big anyway); and (c) we can
535 // write a HLT here as a backstop against `abort' being mad.
536 endprologue
537
538 callext F(abort)
539 0: hlt
540 jmp 0b
541
542 ENDFUNC
543
544 ///--------------------------------------------------------------------------
545 /// Data tables.
546
547 RODATA
548
549 .align 16
550 endswap_tab:
551 .byte 3, 2, 1, 0
552 .byte 7, 6, 5, 4
553 .byte 11, 10, 9, 8
554 .byte 15, 14, 13, 12
555
556 ///----- That's all, folks --------------------------------------------------