symm/...: Start deploying the `rsvr' machinery.
[catacomb] / symm / salsa20.c
1 /* -*-c-*-
2 *
3 * Salsa20 stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "dispatch.h"
38 #include "gcipher.h"
39 #include "grand.h"
40 #include "keysz.h"
41 #include "paranoia.h"
42 #include "rsvr.h"
43 #include "salsa20.h"
44 #include "salsa20-core.h"
45
46 /*----- Global variables --------------------------------------------------*/
47
48 const octet salsa20_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
49
50 /*----- The Salsa20 core function and utilities ---------------------------*/
51
52 /* --- @core@ --- *
53 *
54 * Arguments: @unsigned r@ = number of rounds
55 * @const salsa20_matrix src@ = input matrix
56 * @salsa20_matrix dest@ = where to put the output
57 *
58 * Returns: ---
59 *
60 *
61 * Use: Apply the Salsa20/r core function to @src@, writing the
62 * result to @dest@. This consists of @r@ rounds followed by
63 * the feedforward step.
64 */
65
66 CPU_DISPATCH(static, (void), void, core,
67 (unsigned r, const salsa20_matrix src, salsa20_matrix dest),
68 (r, src, dest), pick_core, simple_core);
69
70 static void simple_core(unsigned r, const salsa20_matrix src,
71 salsa20_matrix dest)
72 { SALSA20_nR(dest, src, r); SALSA20_FFWD(dest, src); }
73
74 #if CPUFAM_X86 || CPUFAM_AMD64
75 extern core__functype salsa20_core_x86ish_sse2;
76 extern core__functype salsa20_core_x86ish_avx;
77 #endif
78
79 #if CPUFAM_ARMEL
80 extern core__functype salsa20_core_arm_neon;
81 #endif
82
83 #if CPUFAM_ARM64
84 extern core__functype salsa20_core_arm64;
85 #endif
86
87 static core__functype *pick_core(void)
88 {
89 #if CPUFAM_X86 || CPUFAM_AMD64
90 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_avx,
91 cpu_feature_p(CPUFEAT_X86_AVX));
92 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_sse2,
93 cpu_feature_p(CPUFEAT_X86_SSE2));
94 #endif
95 #if CPUFAM_ARMEL
96 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm_neon,
97 cpu_feature_p(CPUFEAT_ARM_NEON));
98 #endif
99 #if CPUFAM_ARM64
100 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm64, 1);
101 #endif
102 DISPATCH_PICK_FALLBACK(salsa20_core, simple_core);
103 }
104
105 /* --- @populate@ --- *
106 *
107 * Arguments: @salsa20_matrix a@ = a matrix to fill in
108 * @const void *key@ = pointer to key material
109 * @size_t ksz@ = size of key
110 *
111 * Returns: ---
112 *
113 * Use: Fills in a Salsa20 matrix from the key, setting the
114 * appropriate constants according to the key length. The nonce
115 * and position words are left uninitialized.
116 */
117
118 static void populate(salsa20_matrix a, const void *key, size_t ksz)
119 {
120 const octet *k = key;
121
122 KSZ_ASSERT(salsa20, ksz);
123
124 /* Here's the pattern of key, constant, nonce, and counter pieces in the
125 * matrix, before and after our permutation.
126 *
127 * [ C0 K0 K1 K2 ] [ C0 C1 C2 C3 ]
128 * [ K3 C1 N0 N1 ] --> [ K3 T1 K7 K2 ]
129 * [ T0 T1 C2 K4 ] [ T0 K6 K1 N1 ]
130 * [ K5 K6 K7 C3 ] [ K5 K0 N0 K4 ]
131 */
132
133 a[13] = LOAD32_L(k + 0);
134 a[10] = LOAD32_L(k + 4);
135 if (ksz == 10) {
136 a[ 7] = LOAD16_L(k + 8);
137 a[ 4] = 0;
138 } else {
139 a[ 7] = LOAD32_L(k + 8);
140 a[ 4] = LOAD32_L(k + 12);
141 }
142 if (ksz <= 16) {
143 a[15] = a[13];
144 a[12] = a[10];
145 a[ 9] = a[ 7];
146 a[ 6] = a[ 4];
147 a[ 0] = SALSA20_A128;
148 a[ 1] = SALSA20_B128;
149 a[ 2] = ksz == 10 ? SALSA20_C80 : SALSA20_C128;
150 a[ 3] = SALSA20_D128;
151 } else {
152 a[15] = LOAD32_L(k + 16);
153 a[12] = LOAD32_L(k + 20);
154 a[ 9] = LOAD32_L(k + 24);
155 a[ 6] = LOAD32_L(k + 28);
156 a[ 0] = SALSA20_A256;
157 a[ 1] = SALSA20_B256;
158 a[ 2] = SALSA20_C256;
159 a[ 3] = SALSA20_D256;
160 }
161 }
162
163 /*----- Salsa20 implementation --------------------------------------------*/
164
165 /* --- @salsa20_init@ --- *
166 *
167 * Arguments: @salsa20_ctx *ctx@ = context to fill in
168 * @const void *key@ = pointer to key material
169 * @size_t ksz@ = size of key (either 32 or 16)
170 * @const void *nonce@ = initial nonce, or null
171 *
172 * Returns: ---
173 *
174 * Use: Initializes a Salsa20 context ready for use.
175 */
176
177 void salsa20_init(salsa20_ctx *ctx, const void *key, size_t ksz,
178 const void *nonce)
179 {
180 static const octet zerononce[SALSA20_NONCESZ];
181
182 populate(ctx->a, key, ksz);
183 salsa20_setnonce(ctx, nonce ? nonce : zerononce);
184 }
185
186 /* --- @salsa20_setnonce{,_ietf}@ --- *
187 *
188 * Arguments: @salsa20_ctx *ctx@ = pointer to context
189 * @const void *nonce@ = the nonce (@SALSA20_NONCESZ@ or
190 * @SALSA20_IETF_NONCESZ@ bytes)
191 *
192 * Returns: ---
193 *
194 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
195 * different message. The stream position is reset to zero (see
196 * @salsa20_seek@ etc.).
197 */
198
199 void salsa20_setnonce(salsa20_ctx *ctx, const void *nonce)
200 {
201 const octet *n = nonce;
202
203 ctx->a[14] = LOAD32_L(n + 0);
204 ctx->a[11] = LOAD32_L(n + 4);
205 salsa20_seek(ctx, 0);
206 }
207
208 void salsa20_setnonce_ietf(salsa20_ctx *ctx, const void *nonce)
209 {
210 const octet *n = nonce;
211
212 ctx->a[ 5] = LOAD32_L(n + 0);
213 ctx->a[14] = LOAD32_L(n + 4);
214 ctx->a[11] = LOAD32_L(n + 8);
215 salsa20_seek_ietf(ctx, 0);
216 }
217
218 /* --- @salsa20_seek{,u64,_ietf}@ --- *
219 *
220 * Arguments: @salsa20_ctx *ctx@ = pointer to context
221 * @unsigned long i@, @kludge64 i@, @uint32@ = new position
222 *
223 * Returns: ---
224 *
225 * Use: Sets a new stream position, in units of Salsa20 output
226 * blocks, which are @SALSA20_OUTSZ@ bytes each. Byte
227 * granularity can be achieved by calling @salsa20R_encrypt@
228 * appropriately.
229 */
230
231 void salsa20_seek(salsa20_ctx *ctx, unsigned long i)
232 { kludge64 ii; ASSIGN64(ii, i); salsa20_seeku64(ctx, ii); }
233
234 void salsa20_seeku64(salsa20_ctx *ctx, kludge64 i)
235 {
236 ctx->a[8] = LO64(i); ctx->a[5] = HI64(i);
237 ctx->off = 0;
238 }
239
240 void salsa20_seek_ietf(salsa20_ctx *ctx, uint32 i)
241 { ctx->a[8] = i; }
242
243 /* --- @salsa20_tell{,u64,_ietf}@ --- *
244 *
245 * Arguments: @salsa20_ctx *ctx@ = pointer to context
246 *
247 * Returns: The current position in the output stream, in blocks,
248 * rounding upwards.
249 */
250
251 unsigned long salsa20_tell(salsa20_ctx *ctx)
252 { kludge64 i = salsa20_tellu64(ctx); return (GET64(unsigned long, i)); }
253
254 kludge64 salsa20_tellu64(salsa20_ctx *ctx)
255 { kludge64 i; SET64(i, ctx->a[5], ctx->a[8]); return (i); }
256
257 uint32 salsa20_tell_ietf(salsa20_ctx *ctx)
258 { return (ctx->a[5]); }
259
260 /* --- @salsa20{,12,8}_encrypt@ --- *
261 *
262 * Arguments: @salsa20_ctx *ctx@ = pointer to context
263 * @const void *src@ = source buffer (or null)
264 * @void *dest@ = destination buffer (or null)
265 * @size_t sz@ = size of the buffers
266 *
267 * Returns: ---
268 *
269 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
270 * Salsa20 works by XORing plaintext with a keystream, so
271 * encryption and decryption are the same operation. If @dest@
272 * is null then ignore @src@ and skip @sz@ bytes of the
273 * keystream. If @src@ is null, then just write the keystream
274 * to @dest@.
275 */
276
277 static const rsvr_policy policy = { 0, SALSA20_OUTSZ, SALSA20_OUTSZ };
278
279 #define SALSA20_ENCRYPT(r, ctx, src, dest, sz) \
280 SALSA20_DECOR(salsa20, r, _encrypt)(ctx, src, dest, sz)
281 #define DEFENCRYPT(r) \
282 void SALSA20_ENCRYPT(r, salsa20_ctx *ctx, const void *src, \
283 void *dest, size_t sz) \
284 { \
285 salsa20_matrix b; \
286 const octet *s = src; \
287 octet *d = dest; \
288 rsvr_plan plan; \
289 kludge64 pos, delta; \
290 \
291 rsvr_mkplan(&plan, &policy, ctx->off, sz); \
292 \
293 if (plan.head) { \
294 if (!ctx->off) { \
295 core(r, ctx->a, b); SALSA20_STEP(ctx->a); \
296 SALSA20_PREPBUF(ctx, b); \
297 } \
298 SALSA20_OUTBUF(ctx, d, s, plan.head); \
299 } \
300 \
301 ctx->off -= plan.from_rsvr; \
302 \
303 if (!d) { \
304 if (plan.from_input) { \
305 pos = salsa20_tellu64(ctx); \
306 ASSIGN64(delta, plan.from_input/SALSA20_OUTSZ); \
307 ADD64(pos, pos, delta); \
308 salsa20_seeku64(ctx, pos); \
309 } \
310 } else if (!s) while (plan.from_input) { \
311 core(r, ctx->a, b); SALSA20_STEP(ctx->a); \
312 SALSA20_GENFULL(b, d); plan.from_input -= SALSA20_OUTSZ; \
313 } else while (plan.from_input) { \
314 core(r, ctx->a, b); SALSA20_STEP(ctx->a); \
315 SALSA20_MIXFULL(b, d, s); plan.from_input -= SALSA20_OUTSZ; \
316 } \
317 \
318 if (plan.tail) { \
319 core(r, ctx->a, b); SALSA20_STEP(ctx->a); \
320 SALSA20_PREPBUF(ctx, b); \
321 SALSA20_OUTBUF(ctx, d, s, plan.tail); \
322 } \
323 }
324 SALSA20_VARS(DEFENCRYPT)
325
326 /*----- HSalsa20 implementation -------------------------------------------*/
327
328 #define HSALSA20_RAW(r, ctx, src, dest) \
329 SALSA20_DECOR(hsalsa20, r, _raw)(ctx, src, dest)
330 #define HSALSA20_PRF(r, ctx, src, dest) \
331 SALSA20_DECOR(hsalsa20, r, _prf)(ctx, src, dest)
332
333 /* --- @hsalsa20{,12,8}_prf@ --- *
334 *
335 * Arguments: @salsa20_ctx *ctx@ = pointer to context
336 * @const void *src@ = the input (@HSALSA20_INSZ@ bytes)
337 * @void *dest@ = the output (@HSALSA20_OUTSZ@ bytes)
338 *
339 * Returns: ---
340 *
341 * Use: Apply the HSalsa20/r pseudorandom function to @src@, writing
342 * the result to @out@.
343 */
344
345 #define DEFHSALSA20(r) \
346 static void HSALSA20_RAW(r, salsa20_matrix k, \
347 const uint32 *src, uint32 *dest) \
348 { \
349 salsa20_matrix a; \
350 int i; \
351 \
352 /* --- HSalsa20, computed from full Salsa20 --- * \
353 * \
354 * The security proof makes use of the fact that HSalsa20 (i.e., \
355 * without the final feedforward step) can be computed from full \
356 * Salsa20 using only knowledge of the non-secret input. I don't \
357 * want to compromise the performance of the main function by \
358 * making the feedforward step separate, but this operation is less \
359 * speed critical, so we do it the harder way. \
360 */ \
361 \
362 for (i = 0; i < 4; i++) k[14 - 3*i] = src[i]; \
363 core(r, k, a); \
364 for (i = 0; i < 4; i++) dest[i] = a[5*i] - k[i]; \
365 for (i = 4; i < 8; i++) dest[i] = a[i + 2] - k[26 - 3*i]; \
366 } \
367 \
368 void HSALSA20_PRF(r, salsa20_ctx *ctx, const void *src, void *dest) \
369 { \
370 const octet *s = src; \
371 octet *d = dest; \
372 uint32 in[4], out[8]; \
373 int i; \
374 \
375 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
376 HSALSA20_RAW(r, ctx->a, in, out); \
377 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
378 }
379 SALSA20_VARS(DEFHSALSA20)
380
381 /*----- XSalsa20 implementation -------------------------------------------*/
382
383 /* --- Some convenient macros for naming functions --- *
384 *
385 * Because the crypto core is involved in XSalsa20/r's per-nonce setup, we
386 * need to take an interest in the number of rounds in most of the various
387 * functions, and it will probably help if we distinguish the context
388 * structures for the various versions.
389 */
390
391 #define XSALSA20_CTX(r) SALSA20_DECOR(xsalsa20, r, _ctx)
392 #define XSALSA20_INIT(r, ctx, k, ksz, n) \
393 SALSA20_DECOR(xsalsa20, r, _init)(ctx, k, ksz, n)
394 #define XSALSA20_SETNONCE(r, ctx, n) \
395 SALSA20_DECOR(xsalsa20, r, _setnonce)(ctx, n)
396 #define XSALSA20_SEEK(r, ctx, i) \
397 SALSA20_DECOR(xsalsa20, r, _seek)(ctx, i)
398 #define XSALSA20_SEEKU64(r, ctx, i) \
399 SALSA20_DECOR(xsalsa20, r, _seeku64)(ctx, i)
400 #define XSALSA20_TELL(r, ctx) \
401 SALSA20_DECOR(xsalsa20, r, _tell)(ctx)
402 #define XSALSA20_TELLU64(r, ctx) \
403 SALSA20_DECOR(xsalsa20, r, _tellu64)(ctx)
404 #define XSALSA20_ENCRYPT(r, ctx, src, dest, sz) \
405 SALSA20_DECOR(xsalsa20, r, _encrypt)(ctx, src, dest, sz)
406
407 /* --- @xsalsa20{,12,8}_init@ --- *
408 *
409 * Arguments: @xsalsa20R_ctx *ctx@ = the context to fill in
410 * @const void *key@ = pointer to key material
411 * @size_t ksz@ = size of key (either 32 or 16)
412 * @const void *nonce@ = initial nonce, or null
413 *
414 * Returns: ---
415 *
416 * Use: Initializes an XSalsa20/r context ready for use.
417 *
418 * There is a different function for each number of rounds,
419 * unlike for plain Salsa20.
420 */
421
422 #define DEFXINIT(r) \
423 void XSALSA20_INIT(r, XSALSA20_CTX(r) *ctx, \
424 const void *key, size_t ksz, const void *nonce) \
425 { \
426 static const octet zerononce[XSALSA20_NONCESZ]; \
427 \
428 populate(ctx->k, key, ksz); \
429 ctx->s.a[ 0] = SALSA20_A256; \
430 ctx->s.a[ 1] = SALSA20_B256; \
431 ctx->s.a[ 2] = SALSA20_C256; \
432 ctx->s.a[ 3] = SALSA20_D256; \
433 XSALSA20_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
434 }
435 SALSA20_VARS(DEFXINIT)
436
437 /* --- @xsalsa20{,12,8}_setnonce@ --- *
438 *
439 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
440 * @const void *nonce@ = the nonce (@XSALSA20_NONCESZ@ bytes)
441 *
442 * Returns: ---
443 *
444 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
445 * different message. The stream position is reset to zero (see
446 * @salsa20_seek@ etc.).
447 *
448 * There is a different function for each number of rounds,
449 * unlike for plain Salsa20.
450 */
451
452 #define DEFXNONCE(r) \
453 void XSALSA20_SETNONCE(r, XSALSA20_CTX(r) *ctx, const void *nonce) \
454 { \
455 const octet *n = nonce; \
456 uint32 in[4], out[8]; \
457 int i; \
458 \
459 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
460 HSALSA20_RAW(r, ctx->k, in, out); \
461 for (i = 0; i < 4; i++) ctx->s.a[13 - 3*i] = out[i]; \
462 for (i = 4; i < 8; i++) ctx->s.a[27 - 3*i] = out[i]; \
463 salsa20_setnonce(&ctx->s, n + 16); \
464 }
465 SALSA20_VARS(DEFXNONCE)
466
467 /* --- @xsalsa20{,12,8}_seek{,u64}@ --- *
468 *
469 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
470 * @unsigned long i@, @kludge64 i@ = new position to set
471 *
472 * Returns: ---
473 *
474 * Use: Sets a new stream position, in units of Salsa20 output
475 * blocks, which are @XSALSA20_OUTSZ@ bytes each. Byte
476 * granularity can be achieved by calling @xsalsa20R_encrypt@
477 * appropriately.
478 *
479 * There is a different function for each number of rounds,
480 * unlike for plain Salsa20, because the context structures are
481 * different.
482 */
483
484 /* --- @xsalsa20{,12,8}_tell{,u64}@ --- *
485 *
486 * Arguments: @salsa20_ctx *ctx@ = pointer to context
487 *
488 * Returns: The current position in the output stream, in blocks,
489 * rounding upwards.
490 *
491 * There is a different function for each number of rounds,
492 * unlike for plain Salsa20, because the context structures are
493 * different.
494 */
495
496 /* --- @xsalsa20{,12,8}_encrypt@ --- *
497 *
498 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
499 * @const void *src@ = source buffer (or null)
500 * @void *dest@ = destination buffer (or null)
501 * @size_t sz@ = size of the buffers
502 *
503 * Returns: ---
504 *
505 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
506 * XSalsa20 works by XORing plaintext with a keystream, so
507 * encryption and decryption are the same operation. If @dest@
508 * is null then ignore @src@ and skip @sz@ bytes of the
509 * keystream. If @src@ is null, then just write the keystream
510 * to @dest@.
511 */
512
513 #define DEFXPASSTHRU(r) \
514 void XSALSA20_SEEK(r, XSALSA20_CTX(r) *ctx, unsigned long i) \
515 { salsa20_seek(&ctx->s, i); } \
516 void XSALSA20_SEEKU64(r, XSALSA20_CTX(r) *ctx, kludge64 i) \
517 { salsa20_seeku64(&ctx->s, i); } \
518 unsigned long XSALSA20_TELL(r, XSALSA20_CTX(r) *ctx) \
519 { return salsa20_tell(&ctx->s); } \
520 kludge64 XSALSA20_TELLU64(r, XSALSA20_CTX(r) *ctx) \
521 { return salsa20_tellu64(&ctx->s); } \
522 void XSALSA20_ENCRYPT(r, XSALSA20_CTX(r) *ctx, \
523 const void *src, void *dest, size_t sz) \
524 { SALSA20_ENCRYPT(r, &ctx->s, src, dest, sz); }
525 SALSA20_VARS(DEFXPASSTHRU)
526
527 /*----- Generic cipher interface ------------------------------------------*/
528
529 typedef struct gctx { gcipher c; salsa20_ctx ctx; } gctx;
530
531 static void gsetiv(gcipher *c, const void *iv)
532 { gctx *g = (gctx *)c; salsa20_setnonce(&g->ctx, iv); }
533
534 static void gsetiv_ietf(gcipher *c, const void *iv)
535 { gctx *g = (gctx *)c; salsa20_setnonce_ietf(&g->ctx, iv); }
536
537 static void gdestroy(gcipher *c)
538 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
539
540 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
541 {
542 gctx *g = S_CREATE(gctx);
543 g->c.ops = ops;
544 salsa20_init(&g->ctx, k, sz, 0);
545 return (&g->c);
546 }
547
548 #define DEFGCIPHER(r) \
549 \
550 static const gcipher_ops gops_##r, gops_##r##_ietf; \
551 \
552 static gcipher *ginit_##r(const void *k, size_t sz) \
553 { return (ginit(k, sz, &gops_##r)); } \
554 \
555 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
556 { return (ginit(k, sz, &gops_##r##_ietf)); } \
557 \
558 static void gencrypt_##r(gcipher *c, const void *s, \
559 void *t, size_t sz) \
560 { gctx *g = (gctx *)c; SALSA20_ENCRYPT(r, &g->ctx, s, t, sz); } \
561 \
562 static const gcipher_ops gops_##r = { \
563 &SALSA20_DECOR(salsa20, r, ), \
564 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
565 }; \
566 \
567 static const gcipher_ops gops_##r##_ietf = { \
568 &SALSA20_DECOR(salsa20, r, _ietf), \
569 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
570 }; \
571 \
572 const gccipher SALSA20_DECOR(salsa20, r, ) = { \
573 SALSA20_NAME_##r, salsa20_keysz, \
574 SALSA20_NONCESZ, ginit_##r \
575 }; \
576 \
577 const gccipher SALSA20_DECOR(salsa20, r, _ietf) = { \
578 SALSA20_NAME_##r "-ietf", salsa20_keysz, \
579 SALSA20_IETF_NONCESZ, ginit_##r##_ietf \
580 };
581
582 SALSA20_VARS(DEFGCIPHER)
583
584 #define DEFGXCIPHER(r) \
585 \
586 typedef struct { gcipher c; XSALSA20_CTX(r) ctx; } gxctx_##r; \
587 \
588 static void gxsetiv_##r(gcipher *c, const void *iv) \
589 { gxctx_##r *g = (gxctx_##r *)c; XSALSA20_SETNONCE(r, &g->ctx, iv); } \
590 \
591 static void gxdestroy_##r(gcipher *c) \
592 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
593 \
594 static const gcipher_ops gxops_##r; \
595 \
596 static gcipher *gxinit_##r(const void *k, size_t sz) \
597 { \
598 gxctx_##r *g = S_CREATE(gxctx_##r); \
599 g->c.ops = &gxops_##r; \
600 XSALSA20_INIT(r, &g->ctx, k, sz, 0); \
601 return (&g->c); \
602 } \
603 \
604 static void gxencrypt_##r(gcipher *c, const void *s, \
605 void *t, size_t sz) \
606 { \
607 gxctx_##r *g = (gxctx_##r *)c; \
608 XSALSA20_ENCRYPT(r, &g->ctx, s, t, sz); \
609 } \
610 \
611 static const gcipher_ops gxops_##r = { \
612 &SALSA20_DECOR(xsalsa20, r, ), \
613 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
614 }; \
615 \
616 const gccipher SALSA20_DECOR(xsalsa20, r, ) = { \
617 "x" SALSA20_NAME_##r, salsa20_keysz, \
618 XSALSA20_NONCESZ, gxinit_##r \
619 };
620
621 SALSA20_VARS(DEFGXCIPHER)
622
623 /*----- Generic random number generator interface -------------------------*/
624
625 typedef struct grops {
626 size_t noncesz;
627 void (*seek)(void *, kludge64);
628 kludge64 (*tell)(void *);
629 void (*setnonce)(void *, const void *);
630 void (*generate)(void *, void *, size_t);
631 } grops;
632
633 typedef struct grbasectx {
634 grand r;
635 const grops *ops;
636 } grbasectx;
637
638 static int grmisc(grand *r, unsigned op, ...)
639 {
640 octet buf[XSALSA20_NONCESZ];
641 grbasectx *g = (grbasectx *)r;
642 grand *rr;
643 const octet *p;
644 size_t sz;
645 uint32 i;
646 unsigned long ul;
647 kludge64 pos;
648 va_list ap;
649 int rc = 0;
650
651 va_start(ap, op);
652
653 switch (op) {
654 case GRAND_CHECK:
655 switch (va_arg(ap, unsigned)) {
656 case GRAND_CHECK:
657 case GRAND_SEEDINT:
658 case GRAND_SEEDUINT32:
659 case GRAND_SEEDBLOCK:
660 case GRAND_SEEDRAND:
661 case SALSA20_SEEK:
662 case SALSA20_SEEKU64:
663 case SALSA20_TELL:
664 case SALSA20_TELLU64:
665 rc = 1;
666 break;
667 default:
668 rc = 0;
669 break;
670 }
671 break;
672
673 case GRAND_SEEDINT:
674 i = va_arg(ap, unsigned); STORE32_L(buf, i);
675 memset(buf + 4, 0, g->ops->noncesz - 4);
676 g->ops->setnonce(g, buf);
677 break;
678 case GRAND_SEEDUINT32:
679 i = va_arg(ap, uint32); STORE32_L(buf, i);
680 memset(buf + 4, 0, g->ops->noncesz - 4);
681 g->ops->setnonce(g, buf);
682 break;
683 case GRAND_SEEDBLOCK:
684 p = va_arg(ap, const void *);
685 sz = va_arg(ap, size_t);
686 if (sz < g->ops->noncesz) {
687 memcpy(buf, p, sz);
688 memset(buf + sz, 0, g->ops->noncesz - sz);
689 p = buf;
690 }
691 g->ops->setnonce(g, p);
692 break;
693 case GRAND_SEEDRAND:
694 rr = va_arg(ap, grand *);
695 rr->ops->fill(rr, buf, g->ops->noncesz);
696 g->ops->setnonce(g, buf);
697 break;
698 case SALSA20_SEEK:
699 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
700 g->ops->seek(g, pos);
701 break;
702 case SALSA20_SEEKU64:
703 pos = va_arg(ap, kludge64);
704 g->ops->seek(g, pos);
705 break;
706 case SALSA20_TELL:
707 pos = g->ops->tell(g);
708 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
709 break;
710 case SALSA20_TELLU64:
711 *va_arg(ap, kludge64 *) = g->ops->tell(g);
712 break;
713 default:
714 GRAND_BADOP;
715 break;
716 }
717
718 return (rc);
719 }
720
721 static octet grbyte(grand *r)
722 {
723 grbasectx *g = (grbasectx *)r;
724 octet o;
725 g->ops->generate(g, &o, 1);
726 return (o);
727 }
728
729 static uint32 grword(grand *r)
730 {
731 grbasectx *g = (grbasectx *)r;
732 octet b[4];
733 g->ops->generate(g, b, sizeof(b));
734 return (LOAD32_L(b));
735 }
736
737 static void grfill(grand *r, void *p, size_t sz)
738 {
739 grbasectx *g = (grbasectx *)r;
740 g->ops->generate(r, p, sz);
741 }
742
743 typedef struct grctx {
744 grbasectx r;
745 salsa20_ctx ctx;
746 } grctx;
747
748 static void gr_seek(void *r, kludge64 pos)
749 { grctx *g = r; salsa20_seeku64(&g->ctx, pos); }
750
751 static void gr_seek_ietf(void *r, kludge64 pos)
752 { grctx *g = r; salsa20_seek_ietf(&g->ctx, LO64(pos)); }
753
754 static kludge64 gr_tell(void *r)
755 { grctx *g = r; return (salsa20_tellu64(&g->ctx)); }
756
757 static kludge64 gr_tell_ietf(void *r)
758 {
759 grctx *g = r;
760 kludge64 pos;
761
762 SET64(pos, 0, salsa20_tell_ietf(&g->ctx));
763 return (pos);
764 }
765
766 static void gr_setnonce(void *r, const void *n)
767 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
768
769 static void gr_setnonce_ietf(void *r, const void *n)
770 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
771
772 static void grdestroy(grand *r)
773 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
774
775 static grand *grinit(const void *k, size_t ksz, const void *n,
776 const grand_ops *ops, const grops *myops)
777 {
778 grctx *g = S_CREATE(grctx);
779 g->r.r.ops = ops;
780 g->r.ops = myops;
781 salsa20_init(&g->ctx, k, ksz, 0);
782 if (n) myops->setnonce(g, n);
783 return (&g->r.r);
784 }
785
786 #define DEFGRAND(rr) \
787 \
788 static void gr_generate_##rr(void *r, void *b, size_t sz) \
789 { grctx *g = r; SALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
790 \
791 static const grops grops_##rr = \
792 { SALSA20_NONCESZ, gr_seek, gr_tell, \
793 gr_setnonce, gr_generate_##rr }; \
794 \
795 static const grops grops_##rr##_ietf = \
796 { SALSA20_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
797 gr_setnonce_ietf, gr_generate_##rr }; \
798 \
799 static const grand_ops grops_rand_##rr = { \
800 SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
801 grmisc, grdestroy, grword, \
802 grbyte, grword, grand_defaultrange, grfill \
803 }; \
804 \
805 static const grand_ops grops_rand_##rr##_ietf = { \
806 SALSA20_NAME_##rr "-ietf", GRAND_CRYPTO, 0, \
807 grmisc, grdestroy, grword, \
808 grbyte, grword, grand_defaultrange, grfill \
809 }; \
810 \
811 grand *SALSA20_DECOR(salsa20, rr, _rand) \
812 (const void *k, size_t ksz, const void *n) \
813 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
814 \
815 grand *SALSA20_DECOR(salsa20, rr, _ietf_rand) \
816 (const void *k, size_t ksz, const void *n) \
817 { \
818 return (grinit(k, ksz, n, \
819 &grops_rand_##rr##_ietf, \
820 &grops_##rr##_ietf)); \
821 }
822
823 SALSA20_VARS(DEFGRAND)
824
825 #define DEFXGRAND(rr) \
826 \
827 typedef struct grxctx_##rr { \
828 grbasectx r; \
829 XSALSA20_CTX(rr) ctx; \
830 } grxctx_##rr; \
831 \
832 static void grx_seek_##rr(void *r, kludge64 pos) \
833 { grxctx_##rr *g = r; XSALSA20_SEEKU64(rr, &g->ctx, pos); } \
834 \
835 static kludge64 grx_tell_##rr(void *r) \
836 { grxctx_##rr *g = r; return (XSALSA20_TELLU64(rr, &g->ctx)); } \
837 \
838 static void grx_setnonce_##rr(void *r, const void *n) \
839 { grxctx_##rr *g = r; XSALSA20_SETNONCE(rr, &g->ctx, n); } \
840 \
841 static void grxdestroy_##rr(grand *r) \
842 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
843 \
844 static void grx_generate_##rr(void *r, void *b, size_t sz) \
845 { grxctx_##rr *g = r; XSALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
846 \
847 static const grops grxops_##rr = \
848 { XSALSA20_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
849 grx_setnonce_##rr, grx_generate_##rr }; \
850 \
851 static const grand_ops grxops_rand_##rr = { \
852 "x" SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
853 grmisc, grxdestroy_##rr, grword, \
854 grbyte, grword, grand_defaultrange, grfill \
855 }; \
856 \
857 grand *SALSA20_DECOR(xsalsa20, rr, _rand) \
858 (const void *k, size_t ksz, const void *n) \
859 { \
860 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
861 g->r.r.ops = &grxops_rand_##rr; \
862 g->r.ops = &grxops_##rr; \
863 XSALSA20_INIT(rr, &g->ctx, k, ksz, n); \
864 return (&g->r.r); \
865 }
866 SALSA20_VARS(DEFXGRAND)
867
868 /*----- Test rig ----------------------------------------------------------*/
869
870 #ifdef TEST_RIG
871
872 #include <stdio.h>
873 #include <string.h>
874
875 #include <mLib/quis.h>
876 #include <mLib/testrig.h>
877
878 static const int perm[] = {
879 0, 13, 10, 7,
880 4, 1, 14, 11,
881 8, 5, 2, 15,
882 12, 9, 6, 3
883 };
884
885 #define DEFVCORE(r) \
886 static int v_core_##r(dstr *v) \
887 { \
888 salsa20_matrix a, b; \
889 dstr d = DSTR_INIT; \
890 int i, j, n; \
891 int ok = 1; \
892 \
893 DENSURE(&d, SALSA20_OUTSZ); d.len = SALSA20_OUTSZ; \
894 n = *(int *)v[0].buf; \
895 for (i = 0; i < SALSA20_OUTSZ/4; i++) \
896 b[i] = LOAD32_L(v[1].buf + 4*i); \
897 for (i = 0; i < n; i++) { \
898 for (j = 0; j < 16; j++) a[perm[j]] = b[j]; \
899 core(r, a, b); \
900 memcpy(a, b, sizeof(a)); \
901 } \
902 for (i = 0; i < SALSA20_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, b[i]); \
903 \
904 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
905 ok = 0; \
906 printf("\nfail core:" \
907 "\n\titerations = %d" \
908 "\n\tin = ", n); \
909 type_hex.dump(&v[1], stdout); \
910 printf("\n\texpected = "); \
911 type_hex.dump(&v[2], stdout); \
912 printf("\n\tcalculated = "); \
913 type_hex.dump(&d, stdout); \
914 putchar('\n'); \
915 } \
916 \
917 dstr_destroy(&d); \
918 return (ok); \
919 }
920 SALSA20_VARS(DEFVCORE)
921
922 #define SALSA20_CTX(r) salsa20_ctx
923
924 #define SALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
925 kludge64 pos64; \
926 salsa20_init(ctx, k, ksz, 0); \
927 if (nsz == 8) salsa20_setnonce(ctx, n); \
928 else if (nsz == 12) salsa20_setnonce_ietf(ctx, n); \
929 if (psz == 8) { LOAD64_(pos64, p); salsa20_seeku64(ctx, pos64); } \
930 else if (psz == 4) salsa20_seek_ietf(ctx, LOAD32(p)); \
931 } while (0)
932
933 #define XSALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
934 kludge64 pos64; \
935 XSALSA20_INIT(r, ctx, k, ksz, 0); \
936 if (nsz == 24) XSALSA20_SETNONCE(r, ctx, n); \
937 if (psz == 8) { LOAD64_(pos64, p); XSALSA20_SEEKU64(r, ctx, pos64); } \
938 } while (0)
939
940 #define DEFxVENC(base, BASE, r) \
941 static int v_encrypt_##base##_##r(dstr *v) \
942 { \
943 BASE##_CTX(r) ctx; \
944 dstr d = DSTR_INIT; \
945 const octet *p, *p0; \
946 octet *q; \
947 size_t sz, sz0, step; \
948 unsigned long skip; \
949 int ok = 1; \
950 \
951 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
952 else { p0 = 0; sz0 = v[5].len; } \
953 DENSURE(&d, sz0); d.len = sz0; \
954 skip = *(unsigned long *)v[3].buf; \
955 \
956 step = 0; \
957 while (step < sz0 + skip) { \
958 step = step ? 3*step + 4 : 1; \
959 if (step > sz0 + skip) step = sz0 + skip; \
960 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
961 v[1].buf, v[1].len, v[2].buf, v[2].len); \
962 \
963 for (sz = skip; sz >= step; sz -= step) \
964 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
965 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
966 for (p = p0, q = (octet *)d.buf, sz = sz0; \
967 sz >= step; \
968 sz -= step, q += step) { \
969 BASE##_ENCRYPT(r, &ctx, p, q, step); \
970 if (p) p += step; \
971 } \
972 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
973 \
974 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
975 ok = 0; \
976 printf("\nfail encrypt:" \
977 "\n\tstep = %lu" \
978 "\n\tkey = ", (unsigned long)step); \
979 type_hex.dump(&v[0], stdout); \
980 printf("\n\tnonce = "); \
981 type_hex.dump(&v[1], stdout); \
982 printf("\n\tposition = "); \
983 type_hex.dump(&v[2], stdout); \
984 printf("\n\tskip = %lu", skip); \
985 printf("\n\tmessage = "); \
986 type_hex.dump(&v[4], stdout); \
987 printf("\n\texpected = "); \
988 type_hex.dump(&v[5], stdout); \
989 printf("\n\tcalculated = "); \
990 type_hex.dump(&d, stdout); \
991 putchar('\n'); \
992 } \
993 } \
994 \
995 dstr_destroy(&d); \
996 return (ok); \
997 }
998 #define DEFVENC(r) DEFxVENC(salsa20, SALSA20, r)
999 #define DEFXVENC(r) DEFxVENC(xsalsa20, XSALSA20, r)
1000 SALSA20_VARS(DEFVENC)
1001 SALSA20_VARS(DEFXVENC)
1002
1003 static test_chunk defs[] = {
1004 #define DEFxTAB(pre, base, r) \
1005 { pre SALSA20_NAME_##r, v_encrypt_##base##_##r, \
1006 { &type_hex, &type_hex, &type_hex, &type_ulong, \
1007 &type_hex, &type_hex, 0 } },
1008 #define DEFTAB(r) \
1009 { SALSA20_NAME_##r "-core", v_core_##r, \
1010 { &type_int, &type_hex, &type_hex, 0 } }, \
1011 DEFxTAB("", salsa20, r)
1012 #define DEFXTAB(r) DEFxTAB("x", xsalsa20, r)
1013 SALSA20_VARS(DEFTAB)
1014 SALSA20_VARS(DEFXTAB)
1015 { 0, 0, { 0 } }
1016 };
1017
1018 int main(int argc, char *argv[])
1019 {
1020 test_run(argc, argv, defs, SRCDIR"/t/salsa20");
1021 return (0);
1022 }
1023
1024 #endif
1025
1026 /*----- That's all, folks -------------------------------------------------*/