math/mpx.c: Eliminate clone-and-hack of shifting primitives.
[catacomb] / math / mpx.c
1 /* -*-c-*-
2 *
3 * Low-level multiprecision arithmetic
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <assert.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34
35 #include <mLib/bits.h>
36 #include <mLib/macros.h>
37
38 #include "mptypes.h"
39 #include "mpx.h"
40 #include "bitops.h"
41
42 /*----- Loading and storing -----------------------------------------------*/
43
44 /* --- @mpx_storel@ --- *
45 *
46 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
47 * @void *pp@ = pointer to octet array
48 * @size_t sz@ = size of octet array
49 *
50 * Returns: ---
51 *
52 * Use: Stores an MP in an octet array, least significant octet
53 * first. High-end octets are silently discarded if there
54 * isn't enough space for them.
55 */
56
57 void mpx_storel(const mpw *v, const mpw *vl, void *pp, size_t sz)
58 {
59 mpw n, w = 0;
60 octet *p = pp, *q = p + sz;
61 unsigned bits = 0;
62
63 while (p < q) {
64 if (bits < 8) {
65 if (v >= vl) {
66 *p++ = U8(w);
67 break;
68 }
69 n = *v++;
70 *p++ = U8(w | n << bits);
71 w = n >> (8 - bits);
72 bits += MPW_BITS - 8;
73 } else {
74 *p++ = U8(w);
75 w >>= 8;
76 bits -= 8;
77 }
78 }
79 memset(p, 0, q - p);
80 }
81
82 /* --- @mpx_loadl@ --- *
83 *
84 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
85 * @const void *pp@ = pointer to octet array
86 * @size_t sz@ = size of octet array
87 *
88 * Returns: ---
89 *
90 * Use: Loads an MP in an octet array, least significant octet
91 * first. High-end octets are ignored if there isn't enough
92 * space for them.
93 */
94
95 void mpx_loadl(mpw *v, mpw *vl, const void *pp, size_t sz)
96 {
97 unsigned n;
98 mpw w = 0;
99 const octet *p = pp, *q = p + sz;
100 unsigned bits = 0;
101
102 if (v >= vl)
103 return;
104 while (p < q) {
105 n = U8(*p++);
106 w |= n << bits;
107 bits += 8;
108 if (bits >= MPW_BITS) {
109 *v++ = MPW(w);
110 w = n >> (MPW_BITS - bits + 8);
111 bits -= MPW_BITS;
112 if (v >= vl)
113 return;
114 }
115 }
116 *v++ = w;
117 MPX_ZERO(v, vl);
118 }
119
120 /* --- @mpx_storeb@ --- *
121 *
122 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
123 * @void *pp@ = pointer to octet array
124 * @size_t sz@ = size of octet array
125 *
126 * Returns: ---
127 *
128 * Use: Stores an MP in an octet array, most significant octet
129 * first. High-end octets are silently discarded if there
130 * isn't enough space for them.
131 */
132
133 void mpx_storeb(const mpw *v, const mpw *vl, void *pp, size_t sz)
134 {
135 mpw n, w = 0;
136 octet *p = pp, *q = p + sz;
137 unsigned bits = 0;
138
139 while (q > p) {
140 if (bits < 8) {
141 if (v >= vl) {
142 *--q = U8(w);
143 break;
144 }
145 n = *v++;
146 *--q = U8(w | n << bits);
147 w = n >> (8 - bits);
148 bits += MPW_BITS - 8;
149 } else {
150 *--q = U8(w);
151 w >>= 8;
152 bits -= 8;
153 }
154 }
155 memset(p, 0, q - p);
156 }
157
158 /* --- @mpx_loadb@ --- *
159 *
160 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
161 * @const void *pp@ = pointer to octet array
162 * @size_t sz@ = size of octet array
163 *
164 * Returns: ---
165 *
166 * Use: Loads an MP in an octet array, most significant octet
167 * first. High-end octets are ignored if there isn't enough
168 * space for them.
169 */
170
171 void mpx_loadb(mpw *v, mpw *vl, const void *pp, size_t sz)
172 {
173 unsigned n;
174 mpw w = 0;
175 const octet *p = pp, *q = p + sz;
176 unsigned bits = 0;
177
178 if (v >= vl)
179 return;
180 while (q > p) {
181 n = U8(*--q);
182 w |= n << bits;
183 bits += 8;
184 if (bits >= MPW_BITS) {
185 *v++ = MPW(w);
186 w = n >> (MPW_BITS - bits + 8);
187 bits -= MPW_BITS;
188 if (v >= vl)
189 return;
190 }
191 }
192 *v++ = w;
193 MPX_ZERO(v, vl);
194 }
195
196 /* --- @mpx_storel2cn@ --- *
197 *
198 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
199 * @void *pp@ = pointer to octet array
200 * @size_t sz@ = size of octet array
201 *
202 * Returns: ---
203 *
204 * Use: Stores a negative MP in an octet array, least significant
205 * octet first, as two's complement. High-end octets are
206 * silently discarded if there isn't enough space for them.
207 * This obviously makes the output bad.
208 */
209
210 void mpx_storel2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
211 {
212 unsigned c = 1;
213 unsigned b = 0;
214 mpw n, w = 0;
215 octet *p = pp, *q = p + sz;
216 unsigned bits = 0;
217
218 while (p < q) {
219 if (bits < 8) {
220 if (v >= vl) {
221 b = w;
222 break;
223 }
224 n = *v++;
225 b = w | n << bits;
226 w = n >> (8 - bits);
227 bits += MPW_BITS - 8;
228 } else {
229 b = w;
230 w >>= 8;
231 bits -= 8;
232 }
233 b = U8(~b + c);
234 c = c && !b;
235 *p++ = b;
236 }
237 while (p < q) {
238 b = U8(~b + c);
239 c = c && !b;
240 *p++ = b;
241 b = 0;
242 }
243 }
244
245 /* --- @mpx_loadl2cn@ --- *
246 *
247 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
248 * @const void *pp@ = pointer to octet array
249 * @size_t sz@ = size of octet array
250 *
251 * Returns: ---
252 *
253 * Use: Loads a negative MP in an octet array, least significant
254 * octet first, as two's complement. High-end octets are
255 * ignored if there isn't enough space for them. This probably
256 * means you made the wrong choice coming here.
257 */
258
259 void mpx_loadl2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
260 {
261 unsigned n;
262 unsigned c = 1;
263 mpw w = 0;
264 const octet *p = pp, *q = p + sz;
265 unsigned bits = 0;
266
267 if (v >= vl)
268 return;
269 while (p < q) {
270 n = U8(~(*p++) + c);
271 c = c && !n;
272 w |= n << bits;
273 bits += 8;
274 if (bits >= MPW_BITS) {
275 *v++ = MPW(w);
276 w = n >> (MPW_BITS - bits + 8);
277 bits -= MPW_BITS;
278 if (v >= vl)
279 return;
280 }
281 }
282 *v++ = w;
283 MPX_ZERO(v, vl);
284 }
285
286 /* --- @mpx_storeb2cn@ --- *
287 *
288 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
289 * @void *pp@ = pointer to octet array
290 * @size_t sz@ = size of octet array
291 *
292 * Returns: ---
293 *
294 * Use: Stores a negative MP in an octet array, most significant
295 * octet first, as two's complement. High-end octets are
296 * silently discarded if there isn't enough space for them,
297 * which probably isn't what you meant.
298 */
299
300 void mpx_storeb2cn(const mpw *v, const mpw *vl, void *pp, size_t sz)
301 {
302 mpw n, w = 0;
303 unsigned b = 0;
304 unsigned c = 1;
305 octet *p = pp, *q = p + sz;
306 unsigned bits = 0;
307
308 while (q > p) {
309 if (bits < 8) {
310 if (v >= vl) {
311 b = w;
312 break;
313 }
314 n = *v++;
315 b = w | n << bits;
316 w = n >> (8 - bits);
317 bits += MPW_BITS - 8;
318 } else {
319 b = w;
320 w >>= 8;
321 bits -= 8;
322 }
323 b = U8(~b + c);
324 c = c && !b;
325 *--q = b;
326 }
327 while (q > p) {
328 b = ~b + c;
329 c = c && !(b & 0xff);
330 *--q = b;
331 b = 0;
332 }
333 }
334
335 /* --- @mpx_loadb2cn@ --- *
336 *
337 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
338 * @const void *pp@ = pointer to octet array
339 * @size_t sz@ = size of octet array
340 *
341 * Returns: ---
342 *
343 * Use: Loads a negative MP in an octet array, most significant octet
344 * first as two's complement. High-end octets are ignored if
345 * there isn't enough space for them. This probably means you
346 * chose this function wrongly.
347 */
348
349 void mpx_loadb2cn(mpw *v, mpw *vl, const void *pp, size_t sz)
350 {
351 unsigned n;
352 unsigned c = 1;
353 mpw w = 0;
354 const octet *p = pp, *q = p + sz;
355 unsigned bits = 0;
356
357 if (v >= vl)
358 return;
359 while (q > p) {
360 n = U8(~(*--q) + c);
361 c = c && !n;
362 w |= n << bits;
363 bits += 8;
364 if (bits >= MPW_BITS) {
365 *v++ = MPW(w);
366 w = n >> (MPW_BITS - bits + 8);
367 bits -= MPW_BITS;
368 if (v >= vl)
369 return;
370 }
371 }
372 *v++ = w;
373 MPX_ZERO(v, vl);
374 }
375
376 /*----- Logical shifting --------------------------------------------------*/
377
378 /* --- @MPX_SHIFT1@ --- *
379 *
380 * Arguments: @init@ = initial accumulator value
381 * @out@ = expression to store in each output word
382 * @next@ = expression for next accumulator value
383 *
384 * Use: Performs a single-position shift. The input is scanned
385 * right-to-left. In the expressions @out@ and @next@, the
386 * accumulator is available in @w@ and the current input word is
387 * in @t@.
388 *
389 * This macro is intended to be used in the @shift1@ argument of
390 * @MPX_SHIFTOP@, and expects variables describing the operation
391 * to be set up accordingly.
392 */
393
394 #define MPX_SHIFT1(init, out, next) do { \
395 mpw t, w = (init); \
396 while (av < avl) { \
397 if (dv >= dvl) break; \
398 t = MPW(*av++); \
399 *dv++ = (out); \
400 w = (next); \
401 } \
402 if (dv < dvl) { *dv++ = MPW(w); MPX_ZERO(dv, dvl); } \
403 } while (0)
404
405 /* --- @MPX_SHIFTW@ --- *
406 *
407 * Arguments: @max@ = the maximum shift (in words) which is nontrivial
408 * @clear@ = function (or macro) to clear low-order output words
409 * @copy@ = statement to copy words from input to output
410 *
411 * Use: Performs a shift by a whole number of words. If the shift
412 * amount is @max@ or more words, then the destination is
413 * @clear@ed entirely; otherwise, @copy@ is executed.
414 *
415 * This macro is intended to be used in the @shiftw@ argument of
416 * @MPX_SHIFTOP@, and expects variables describing the operation
417 * to be set up accordingly.
418 */
419
420 #define MPX_SHIFTW(max, clear, copy) do { \
421 if (nw >= (max)) clear(dv, dvl); \
422 else copy \
423 } while (0)
424
425 /* --- @MPX_SHIFTOP@ --- *
426 *
427 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
428 * @shift1@ = statement to shift by a single bit
429 * @shiftw@ = statement to shift by a whole number of words
430 * @shift@ = statement to perform a general shift
431 *
432 * Use: Emits a shift operation. The input is @av@..@avl@; the
433 * output is @dv@..@dvl@; and the shift amount (in bits) is
434 * @n@. In @shiftw@ and @shift@, @nw@ and @nb@ are set up such
435 * that @n = nw*MPW_BITS + nb@ and @nb < MPW_BITS@.
436 */
437
438 #define MPX_SHIFTOP(name, shift1, shiftw, shift) \
439 \
440 void mpx_##name(mpw *dv, mpw *dvl, \
441 const mpw *av, const mpw *avl, \
442 size_t n) \
443 { \
444 \
445 if (n == 0) \
446 MPX_COPY(dv, dvl, av, avl); \
447 else if (n == 1) \
448 do shift1 while (0); \
449 else { \
450 size_t nw = n/MPW_BITS; \
451 unsigned nb = n%MPW_BITS; \
452 if (!nb) do shiftw while (0); \
453 else do shift while (0); \
454 } \
455 }
456
457 /* --- @MPX_SHIFT_LEFT@ --- *
458 *
459 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
460 * @init1@ = initializer for single-bit shift accumulator
461 * @clear@ = function (or macro) to clear low-order output words
462 * @flush@ = expression for low-order nontrivial output word
463 *
464 * Use: Emits a left-shift operation. This expands to a call on
465 * @MPX_SHIFTOP@, but implements the complicated @shift@
466 * statement.
467 *
468 * The @init1@ argument is as for @MPX_SHIFT1@, and @clear@ is
469 * as for @MPX_SHIFTW@ (though is used elsewhere). In a general
470 * shift, @nw@ whole low-order output words are set using
471 * @clear@; high-order words are zeroed; and the remaining words
472 * set with a left-to-right pass across the input; at the end of
473 * the operation, the least significant output word above those
474 * @clear@ed is set using @flush@, which may use the accumulator
475 * @w@ = @av[0] << nb@.
476 */
477
478 #define MPX_SHIFT_LEFT(name, init1, clear, flush) \
479 MPX_SHIFTOP(name, { \
480 MPX_SHIFT1(init1, \
481 w | (t << 1), \
482 t >> (MPW_BITS - 1)); \
483 }, { \
484 MPX_SHIFTW(dvl - dv, clear, { \
485 MPX_COPY(dv + nw, dvl, av, avl); \
486 clear(dv, dv + nw); \
487 }); \
488 }, { \
489 size_t nr = MPW_BITS - nb; \
490 size_t dvn = dvl - dv; \
491 size_t avn = avl - av; \
492 mpw w; \
493 \
494 if (dvn <= nw) { \
495 clear(dv, dvl); \
496 break; \
497 } \
498 \
499 if (dvn <= avn + nw) { \
500 avl = av + dvn - nw; \
501 w = *--avl << nb; \
502 } else { \
503 size_t off = avn + nw + 1; \
504 MPX_ZERO(dv + off, dvl); \
505 dvl = dv + off; \
506 w = 0; \
507 } \
508 \
509 while (avl > av) { \
510 mpw t = *--avl; \
511 *--dvl = MPW(w | (t >> nr)); \
512 w = t << nb; \
513 } \
514 \
515 *--dvl = MPW(flush); \
516 clear(dv, dvl); \
517 })
518
519 /* --- @mpx_lsl@ --- *
520 *
521 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
522 * @const mpw *av, *avl@ = source vector base and limit
523 * @size_t n@ = number of bit positions to shift by
524 *
525 * Returns: ---
526 *
527 * Use: Performs a logical shift left operation on an integer.
528 */
529
530 MPX_SHIFT_LEFT(lsl, 0, MPX_ZERO, w)
531
532 /* --- @mpx_lslc@ --- *
533 *
534 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
535 * @const mpw *av, *avl@ = source vector base and limit
536 * @size_t n@ = number of bit positions to shift by
537 *
538 * Returns: ---
539 *
540 * Use: Performs a logical shift left operation on an integer, only
541 * it fills in the bits with ones instead of zeroes.
542 */
543
544 MPX_SHIFT_LEFT(lslc, 1, MPX_ONE, w | (MPW_MAX >> nr))
545
546 /* --- @mpx_lsr@ --- *
547 *
548 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
549 * @const mpw *av, *avl@ = source vector base and limit
550 * @size_t n@ = number of bit positions to shift by
551 *
552 * Returns: ---
553 *
554 * Use: Performs a logical shift right operation on an integer.
555 */
556
557 MPX_SHIFTOP(lsr, {
558 MPX_SHIFT1(av < avl ? *av++ >> 1 : 0,
559 w | (t << (MPW_BITS - 1)),
560 t >> 1);
561 }, {
562 MPX_SHIFTW(avl - av, MPX_ZERO,
563 { MPX_COPY(dv, dvl, av + nw, avl); });
564 }, {
565 size_t nr = MPW_BITS - nb;
566 mpw w;
567
568 av += nw;
569 w = av < avl ? *av++ : 0;
570 while (av < avl) {
571 mpw t;
572 if (dv >= dvl) goto done;
573 t = *av++;
574 *dv++ = MPW((w >> nb) | (t << nr));
575 w = t;
576 }
577 if (dv < dvl) {
578 *dv++ = MPW(w >> nb);
579 MPX_ZERO(dv, dvl);
580 }
581 done:;
582 })
583
584 /*----- Bitwise operations ------------------------------------------------*/
585
586 /* --- @mpx_bitop@ --- *
587 *
588 * Arguments: @mpw *dv, *dvl@ = destination vector
589 * @const mpw *av, *avl@ = first source vector
590 * @const mpw *bv, *bvl@ = second source vector
591 *
592 * Returns: ---
593 *
594 * Use; Provides the dyadic boolean functions.
595 */
596
597 #define MPX_BITBINOP(string) \
598 \
599 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
600 const mpw *bv, const mpw *bvl) \
601 { \
602 MPX_SHRINK(av, avl); \
603 MPX_SHRINK(bv, bvl); \
604 \
605 while (dv < dvl) { \
606 mpw a, b; \
607 a = (av < avl) ? *av++ : 0; \
608 b = (bv < bvl) ? *bv++ : 0; \
609 *dv++ = B##string(a, b); \
610 IGNORE(a); IGNORE(b); \
611 } \
612 }
613
614 MPX_DOBIN(MPX_BITBINOP)
615
616 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
617 {
618 MPX_SHRINK(av, avl);
619
620 while (dv < dvl) {
621 mpw a;
622 a = (av < avl) ? *av++ : 0;
623 *dv++ = ~a;
624 }
625 }
626
627 /*----- Unsigned arithmetic -----------------------------------------------*/
628
629 /* --- @mpx_2c@ --- *
630 *
631 * Arguments: @mpw *dv, *dvl@ = destination vector
632 * @const mpw *v, *vl@ = source vector
633 *
634 * Returns: ---
635 *
636 * Use: Calculates the two's complement of @v@.
637 */
638
639 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
640 {
641 mpw c = 0;
642 while (dv < dvl && v < vl)
643 *dv++ = c = MPW(~*v++);
644 if (dv < dvl) {
645 if (c > MPW_MAX / 2)
646 c = MPW(~0);
647 while (dv < dvl)
648 *dv++ = c;
649 }
650 MPX_UADDN(dv, dvl, 1);
651 }
652
653 /* --- @mpx_ueq@ --- *
654 *
655 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
656 * @const mpw *bv, *bvl@ = second argument vector base and limit
657 *
658 * Returns: Nonzero if the two vectors are equal.
659 *
660 * Use: Performs an unsigned integer test for equality.
661 */
662
663 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
664 {
665 MPX_SHRINK(av, avl);
666 MPX_SHRINK(bv, bvl);
667 if (avl - av != bvl - bv)
668 return (0);
669 while (av < avl) {
670 if (*av++ != *bv++)
671 return (0);
672 }
673 return (1);
674 }
675
676 /* --- @mpx_ucmp@ --- *
677 *
678 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
679 * @const mpw *bv, *bvl@ = second argument vector base and limit
680 *
681 * Returns: Less than, equal to, or greater than zero depending on
682 * whether @a@ is less than, equal to or greater than @b@,
683 * respectively.
684 *
685 * Use: Performs an unsigned integer comparison.
686 */
687
688 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
689 {
690 MPX_SHRINK(av, avl);
691 MPX_SHRINK(bv, bvl);
692
693 if (avl - av > bvl - bv)
694 return (+1);
695 else if (avl - av < bvl - bv)
696 return (-1);
697 else while (avl > av) {
698 mpw a = *--avl, b = *--bvl;
699 if (a > b)
700 return (+1);
701 else if (a < b)
702 return (-1);
703 }
704 return (0);
705 }
706
707 /* --- @mpx_uadd@ --- *
708 *
709 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
710 * @const mpw *av, *avl@ = first addend vector base and limit
711 * @const mpw *bv, *bvl@ = second addend vector base and limit
712 *
713 * Returns: ---
714 *
715 * Use: Performs unsigned integer addition. If the result overflows
716 * the destination vector, high-order bits are discarded. This
717 * means that two's complement addition happens more or less for
718 * free, although that's more a side-effect than anything else.
719 * The result vector may be equal to either or both source
720 * vectors, but may not otherwise overlap them.
721 */
722
723 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
724 const mpw *bv, const mpw *bvl)
725 {
726 mpw c = 0;
727
728 while (av < avl || bv < bvl) {
729 mpw a, b;
730 mpd x;
731 if (dv >= dvl)
732 return;
733 a = (av < avl) ? *av++ : 0;
734 b = (bv < bvl) ? *bv++ : 0;
735 x = (mpd)a + (mpd)b + c;
736 *dv++ = MPW(x);
737 c = x >> MPW_BITS;
738 }
739 if (dv < dvl) {
740 *dv++ = c;
741 MPX_ZERO(dv, dvl);
742 }
743 }
744
745 /* --- @mpx_uaddn@ --- *
746 *
747 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
748 * @mpw n@ = other addend
749 *
750 * Returns: ---
751 *
752 * Use: Adds a small integer to a multiprecision number.
753 */
754
755 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
756
757 /* --- @mpx_uaddnlsl@ --- *
758 *
759 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
760 * @mpw a@ = second argument
761 * @unsigned o@ = offset in bits
762 *
763 * Returns: ---
764 *
765 * Use: Computes %$d + 2^o a$%. If the result overflows then
766 * high-order bits are discarded, as usual. We must have
767 * @0 < o < MPW_BITS@.
768 */
769
770 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
771 {
772 mpd x = (mpd)a << o;
773
774 while (x && dv < dvl) {
775 x += *dv;
776 *dv++ = MPW(x);
777 x >>= MPW_BITS;
778 }
779 }
780
781 /* --- @mpx_usub@ --- *
782 *
783 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
784 * @const mpw *av, *avl@ = first argument vector base and limit
785 * @const mpw *bv, *bvl@ = second argument vector base and limit
786 *
787 * Returns: ---
788 *
789 * Use: Performs unsigned integer subtraction. If the result
790 * overflows the destination vector, high-order bits are
791 * discarded. This means that two's complement subtraction
792 * happens more or less for free, althuogh that's more a side-
793 * effect than anything else. The result vector may be equal to
794 * either or both source vectors, but may not otherwise overlap
795 * them.
796 */
797
798 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
799 const mpw *bv, const mpw *bvl)
800 {
801 mpw c = 0;
802
803 while (av < avl || bv < bvl) {
804 mpw a, b;
805 mpd x;
806 if (dv >= dvl)
807 return;
808 a = (av < avl) ? *av++ : 0;
809 b = (bv < bvl) ? *bv++ : 0;
810 x = (mpd)a - (mpd)b - c;
811 *dv++ = MPW(x);
812 if (x >> MPW_BITS)
813 c = 1;
814 else
815 c = 0;
816 }
817 if (c)
818 c = MPW_MAX;
819 while (dv < dvl)
820 *dv++ = c;
821 }
822
823 /* --- @mpx_usubn@ --- *
824 *
825 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
826 * @n@ = subtrahend
827 *
828 * Returns: ---
829 *
830 * Use: Subtracts a small integer from a multiprecision number.
831 */
832
833 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
834
835 /* --- @mpx_uaddnlsl@ --- *
836 *
837 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
838 * @mpw a@ = second argument
839 * @unsigned o@ = offset in bits
840 *
841 * Returns: ---
842 *
843 * Use: Computes %$d + 2^o a$%. If the result overflows then
844 * high-order bits are discarded, as usual. We must have
845 * @0 < o < MPW_BITS@.
846 */
847
848 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
849 {
850 mpw b = a >> (MPW_BITS - o);
851 a <<= o;
852
853 if (dv < dvl) {
854 mpd x = (mpd)*dv - MPW(a);
855 *dv++ = MPW(x);
856 if (x >> MPW_BITS)
857 b++;
858 MPX_USUBN(dv, dvl, b);
859 }
860 }
861
862 /* --- @mpx_umul@ --- *
863 *
864 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
865 * @const mpw *av, *avl@ = multiplicand vector base and limit
866 * @const mpw *bv, *bvl@ = multiplier vector base and limit
867 *
868 * Returns: ---
869 *
870 * Use: Performs unsigned integer multiplication. If the result
871 * overflows the desination vector, high-order bits are
872 * discarded. The result vector may not overlap the argument
873 * vectors in any way.
874 */
875
876 void mpx_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
877 const mpw *bv, const mpw *bvl)
878 {
879 /* --- This is probably worthwhile on a multiply --- */
880
881 MPX_SHRINK(av, avl);
882 MPX_SHRINK(bv, bvl);
883
884 /* --- Deal with a multiply by zero --- */
885
886 if (bv == bvl) {
887 MPX_ZERO(dv, dvl);
888 return;
889 }
890
891 /* --- Do the initial multiply and initialize the accumulator --- */
892
893 MPX_UMULN(dv, dvl, av, avl, *bv++);
894
895 /* --- Do the remaining multiply/accumulates --- */
896
897 while (dv < dvl && bv < bvl) {
898 mpw m = *bv++;
899 mpw c = 0;
900 const mpw *avv = av;
901 mpw *dvv = ++dv;
902
903 while (avv < avl) {
904 mpd x;
905 if (dvv >= dvl)
906 goto next;
907 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
908 *dvv++ = MPW(x);
909 c = x >> MPW_BITS;
910 }
911 MPX_UADDN(dvv, dvl, c);
912 next:;
913 }
914 }
915
916 /* --- @mpx_umuln@ --- *
917 *
918 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
919 * @const mpw *av, *avl@ = multiplicand vector base and limit
920 * @mpw m@ = multiplier
921 *
922 * Returns: ---
923 *
924 * Use: Multiplies a multiprecision integer by a single-word value.
925 * The destination and source may be equal. The destination
926 * is completely cleared after use.
927 */
928
929 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
930 { MPX_UMULN(dv, dvl, av, avl, m); }
931
932 /* --- @mpx_umlan@ --- *
933 *
934 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
935 * @const mpw *av, *avl@ = multiplicand vector base and limit
936 * @mpw m@ = multiplier
937 *
938 * Returns: ---
939 *
940 * Use: Multiplies a multiprecision integer by a single-word value
941 * and adds the result to an accumulator.
942 */
943
944 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
945 { MPX_UMLAN(dv, dvl, av, avl, m); }
946
947 /* --- @mpx_usqr@ --- *
948 *
949 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
950 * @const mpw *av, *av@ = source vector base and limit
951 *
952 * Returns: ---
953 *
954 * Use: Performs unsigned integer squaring. The result vector must
955 * not overlap the source vector in any way.
956 */
957
958 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
959 {
960 MPX_ZERO(dv, dvl);
961
962 /* --- Main loop --- */
963
964 while (av < avl) {
965 const mpw *avv = av;
966 mpw *dvv = dv;
967 mpw a = *av;
968 mpd c;
969
970 /* --- Stop if I've run out of destination --- */
971
972 if (dvv >= dvl)
973 break;
974
975 /* --- Work out the square at this point in the proceedings --- */
976
977 {
978 mpd x = (mpd)a * (mpd)a + *dvv;
979 *dvv++ = MPW(x);
980 c = MPW(x >> MPW_BITS);
981 }
982
983 /* --- Now fix up the rest of the vector upwards --- */
984
985 avv++;
986 while (dvv < dvl && avv < avl) {
987 mpd x = (mpd)a * (mpd)*avv++;
988 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
989 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
990 *dvv++ = MPW(y);
991 }
992 while (dvv < dvl && c) {
993 mpd x = c + *dvv;
994 *dvv++ = MPW(x);
995 c = x >> MPW_BITS;
996 }
997
998 /* --- Get ready for the next round --- */
999
1000 av++;
1001 dv += 2;
1002 }
1003 }
1004
1005 /* --- @mpx_udiv@ --- *
1006 *
1007 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1008 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1009 * @const mpw *dv, *dvl@ = divisor vector base and limit
1010 * @mpw *sv, *svl@ = scratch workspace
1011 *
1012 * Returns: ---
1013 *
1014 * Use: Performs unsigned integer division. If the result overflows
1015 * the quotient vector, high-order bits are discarded. (Clearly
1016 * the remainder vector can't overflow.) The various vectors
1017 * may not overlap in any way. Yes, I know it's a bit odd
1018 * requiring the dividend to be in the result position but it
1019 * does make some sense really. The remainder must have
1020 * headroom for at least two extra words. The scratch space
1021 * must be at least one word larger than the divisor.
1022 */
1023
1024 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1025 const mpw *dv, const mpw *dvl,
1026 mpw *sv, mpw *svl)
1027 {
1028 unsigned norm = 0;
1029 size_t scale;
1030 mpw d, dd;
1031
1032 /* --- Initialize the quotient --- */
1033
1034 MPX_ZERO(qv, qvl);
1035
1036 /* --- Perform some sanity checks --- */
1037
1038 MPX_SHRINK(dv, dvl);
1039 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1040
1041 /* --- Normalize the divisor --- *
1042 *
1043 * The algorithm requires that the divisor be at least two digits long.
1044 * This is easy to fix.
1045 */
1046
1047 {
1048 unsigned b;
1049
1050 d = dvl[-1];
1051 for (b = MPW_P2; b; b >>= 1) {
1052 if (d <= (MPW_MAX >> b)) {
1053 d <<= b;
1054 norm += b;
1055 }
1056 }
1057 if (dv + 1 == dvl)
1058 norm += MPW_BITS;
1059 }
1060
1061 /* --- Normalize the dividend/remainder to match --- */
1062
1063 if (norm) {
1064 mpx_lsl(rv, rvl, rv, rvl, norm);
1065 mpx_lsl(sv, svl, dv, dvl, norm);
1066 dv = sv;
1067 dvl = svl;
1068 MPX_SHRINK(dv, dvl);
1069 }
1070
1071 MPX_SHRINK(rv, rvl);
1072 d = dvl[-1];
1073 dd = dvl[-2];
1074
1075 /* --- Work out the relative scales --- */
1076
1077 {
1078 size_t rvn = rvl - rv;
1079 size_t dvn = dvl - dv;
1080
1081 /* --- If the divisor is clearly larger, notice this --- */
1082
1083 if (dvn > rvn) {
1084 mpx_lsr(rv, rvl, rv, rvl, norm);
1085 return;
1086 }
1087
1088 scale = rvn - dvn;
1089 }
1090
1091 /* --- Calculate the most significant quotient digit --- *
1092 *
1093 * Because the divisor has its top bit set, this can only happen once. The
1094 * pointer arithmetic is a little contorted, to make sure that the
1095 * behaviour is defined.
1096 */
1097
1098 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1099 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1100 if (qvl - qv > scale)
1101 qv[scale] = 1;
1102 }
1103
1104 /* --- Now for the main loop --- */
1105
1106 {
1107 mpw *rvv = rvl - 2;
1108
1109 while (scale) {
1110 mpw q;
1111 mpd rh;
1112
1113 /* --- Get an estimate for the next quotient digit --- */
1114
1115 mpw r = rvv[1];
1116 mpw rr = rvv[0];
1117 mpw rrr = *--rvv;
1118
1119 scale--;
1120 rh = ((mpd)r << MPW_BITS) | rr;
1121 if (r == d)
1122 q = MPW_MAX;
1123 else
1124 q = MPW(rh / d);
1125
1126 /* --- Refine the estimate --- */
1127
1128 {
1129 mpd yh = (mpd)d * q;
1130 mpd yy = (mpd)dd * q;
1131 mpw yl;
1132
1133 if (yy > MPW_MAX)
1134 yh += yy >> MPW_BITS;
1135 yl = MPW(yy);
1136
1137 while (yh > rh || (yh == rh && yl > rrr)) {
1138 q--;
1139 yh -= d;
1140 if (yl < dd)
1141 yh--;
1142 yl = MPW(yl - dd);
1143 }
1144 }
1145
1146 /* --- Remove a chunk from the dividend --- */
1147
1148 {
1149 mpw *svv;
1150 const mpw *dvv;
1151 mpw mc = 0, sc = 0;
1152
1153 /* --- Calculate the size of the chunk --- *
1154 *
1155 * This does the whole job of calculating @r >> scale - qd@.
1156 */
1157
1158 for (svv = rv + scale, dvv = dv;
1159 dvv < dvl && svv < rvl;
1160 svv++, dvv++) {
1161 mpd x = (mpd)*dvv * (mpd)q + mc;
1162 mc = x >> MPW_BITS;
1163 x = (mpd)*svv - MPW(x) - sc;
1164 *svv = MPW(x);
1165 if (x >> MPW_BITS)
1166 sc = 1;
1167 else
1168 sc = 0;
1169 }
1170
1171 if (svv < rvl) {
1172 mpd x = (mpd)*svv - mc - sc;
1173 *svv++ = MPW(x);
1174 if (x >> MPW_BITS)
1175 sc = MPW_MAX;
1176 else
1177 sc = 0;
1178 while (svv < rvl)
1179 *svv++ = sc;
1180 }
1181
1182 /* --- Fix if the quotient was too large --- *
1183 *
1184 * This doesn't seem to happen very often.
1185 */
1186
1187 if (rvl[-1] > MPW_MAX / 2) {
1188 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1189 q--;
1190 }
1191 }
1192
1193 /* --- Done for another iteration --- */
1194
1195 if (qvl - qv > scale)
1196 qv[scale] = q;
1197 r = rr;
1198 rr = rrr;
1199 }
1200 }
1201
1202 /* --- Now fiddle with unnormalizing and things --- */
1203
1204 mpx_lsr(rv, rvl, rv, rvl, norm);
1205 }
1206
1207 /* --- @mpx_udivn@ --- *
1208 *
1209 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1210 * dividend)
1211 * @const mpw *rv, *rvl@ = dividend
1212 * @mpw d@ = single-precision divisor
1213 *
1214 * Returns: Remainder after divison.
1215 *
1216 * Use: Performs a single-precision division operation.
1217 */
1218
1219 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1220 {
1221 size_t i;
1222 size_t ql = qvl - qv;
1223 mpd r = 0;
1224
1225 i = rvl - rv;
1226 while (i > 0) {
1227 i--;
1228 r = (r << MPW_BITS) | rv[i];
1229 if (i < ql)
1230 qv[i] = r / d;
1231 r %= d;
1232 }
1233 return (MPW(r));
1234 }
1235
1236 /*----- Test rig ----------------------------------------------------------*/
1237
1238 #ifdef TEST_RIG
1239
1240 #include <mLib/alloc.h>
1241 #include <mLib/dstr.h>
1242 #include <mLib/quis.h>
1243 #include <mLib/testrig.h>
1244
1245 #include "mpscan.h"
1246
1247 #define ALLOC(v, vl, sz) do { \
1248 size_t _sz = (sz); \
1249 mpw *_vv = xmalloc(MPWS(_sz)); \
1250 mpw *_vvl = _vv + _sz; \
1251 (v) = _vv; \
1252 (vl) = _vvl; \
1253 } while (0)
1254
1255 #define LOAD(v, vl, d) do { \
1256 const dstr *_d = (d); \
1257 mpw *_v, *_vl; \
1258 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1259 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1260 (v) = _v; \
1261 (vl) = _vl; \
1262 } while (0)
1263
1264 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1265
1266 static void dumpbits(const char *msg, const void *pp, size_t sz)
1267 {
1268 const octet *p = pp;
1269 fputs(msg, stderr);
1270 for (; sz; sz--)
1271 fprintf(stderr, " %02x", *p++);
1272 fputc('\n', stderr);
1273 }
1274
1275 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1276 {
1277 fputs(msg, stderr);
1278 MPX_SHRINK(v, vl);
1279 while (v < vl)
1280 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1281 fputc('\n', stderr);
1282 }
1283
1284 static int chkscan(const mpw *v, const mpw *vl,
1285 const void *pp, size_t sz, int step)
1286 {
1287 mpscan mps;
1288 const octet *p = pp;
1289 unsigned bit = 0;
1290 int ok = 1;
1291
1292 mpscan_initx(&mps, v, vl);
1293 while (sz) {
1294 unsigned x = *p;
1295 int i;
1296 p += step;
1297 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1298 if (MPSCAN_BIT(&mps) != (x & 1)) {
1299 fprintf(stderr,
1300 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1301 step, bit, x & 1, MPSCAN_BIT(&mps));
1302 ok = 0;
1303 }
1304 x >>= 1;
1305 bit++;
1306 }
1307 sz--;
1308 }
1309
1310 return (ok);
1311 }
1312
1313 static int loadstore(dstr *v)
1314 {
1315 dstr d = DSTR_INIT;
1316 size_t sz = MPW_RQ(v->len) * 2, diff;
1317 mpw *m, *ml;
1318 int ok = 1;
1319
1320 dstr_ensure(&d, v->len);
1321 m = xmalloc(MPWS(sz));
1322
1323 for (diff = 0; diff < sz; diff += 5) {
1324 size_t oct;
1325
1326 ml = m + sz - diff;
1327
1328 mpx_loadl(m, ml, v->buf, v->len);
1329 if (!chkscan(m, ml, v->buf, v->len, +1))
1330 ok = 0;
1331 MPX_OCTETS(oct, m, ml);
1332 mpx_storel(m, ml, d.buf, d.sz);
1333 if (memcmp(d.buf, v->buf, oct) != 0) {
1334 dumpbits("\n*** storel failed", d.buf, d.sz);
1335 ok = 0;
1336 }
1337
1338 mpx_loadb(m, ml, v->buf, v->len);
1339 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1340 ok = 0;
1341 MPX_OCTETS(oct, m, ml);
1342 mpx_storeb(m, ml, d.buf, d.sz);
1343 if (memcmp(d.buf + d.sz - oct, v->buf + v->len - oct, oct) != 0) {
1344 dumpbits("\n*** storeb failed", d.buf, d.sz);
1345 ok = 0;
1346 }
1347 }
1348
1349 if (!ok)
1350 dumpbits("input data", v->buf, v->len);
1351
1352 xfree(m);
1353 dstr_destroy(&d);
1354 return (ok);
1355 }
1356
1357 static int twocl(dstr *v)
1358 {
1359 dstr d = DSTR_INIT;
1360 mpw *m, *ml;
1361 size_t sz;
1362 int ok = 1;
1363
1364 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1365 dstr_ensure(&d, sz);
1366
1367 sz = MPW_RQ(sz);
1368 m = xmalloc(MPWS(sz));
1369 ml = m + sz;
1370
1371 mpx_loadl(m, ml, v[0].buf, v[0].len);
1372 mpx_storel2cn(m, ml, d.buf, v[1].len);
1373 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1374 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1375 ok = 0;
1376 }
1377
1378 mpx_loadl2cn(m, ml, v[1].buf, v[1].len);
1379 mpx_storel(m, ml, d.buf, v[0].len);
1380 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1381 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1382 ok = 0;
1383 }
1384
1385 if (!ok) {
1386 dumpbits("pos", v[0].buf, v[0].len);
1387 dumpbits("neg", v[1].buf, v[1].len);
1388 }
1389
1390 xfree(m);
1391 dstr_destroy(&d);
1392
1393 return (ok);
1394 }
1395
1396 static int twocb(dstr *v)
1397 {
1398 dstr d = DSTR_INIT;
1399 mpw *m, *ml;
1400 size_t sz;
1401 int ok = 1;
1402
1403 sz = v[0].len; if (v[1].len > sz) sz = v[1].len;
1404 dstr_ensure(&d, sz);
1405
1406 sz = MPW_RQ(sz);
1407 m = xmalloc(MPWS(sz));
1408 ml = m + sz;
1409
1410 mpx_loadb(m, ml, v[0].buf, v[0].len);
1411 mpx_storeb2cn(m, ml, d.buf, v[1].len);
1412 if (memcmp(d.buf, v[1].buf, v[1].len)) {
1413 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1414 ok = 0;
1415 }
1416
1417 mpx_loadb2cn(m, ml, v[1].buf, v[1].len);
1418 mpx_storeb(m, ml, d.buf, v[0].len);
1419 if (memcmp(d.buf, v[0].buf, v[0].len)) {
1420 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1421 ok = 0;
1422 }
1423
1424 if (!ok) {
1425 dumpbits("pos", v[0].buf, v[0].len);
1426 dumpbits("neg", v[1].buf, v[1].len);
1427 }
1428
1429 xfree(m);
1430 dstr_destroy(&d);
1431
1432 return (ok);
1433 }
1434
1435 static int lsl(dstr *v)
1436 {
1437 mpw *a, *al;
1438 int n = *(int *)v[1].buf;
1439 mpw *c, *cl;
1440 mpw *d, *dl;
1441 int ok = 1;
1442
1443 LOAD(a, al, &v[0]);
1444 LOAD(c, cl, &v[2]);
1445 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1446
1447 mpx_lsl(d, dl, a, al, n);
1448 if (!mpx_ueq(d, dl, c, cl)) {
1449 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1450 dumpmp(" a", a, al);
1451 dumpmp("expected", c, cl);
1452 dumpmp(" result", d, dl);
1453 ok = 0;
1454 }
1455
1456 xfree(a); xfree(c); xfree(d);
1457 return (ok);
1458 }
1459
1460 static int lslc(dstr *v)
1461 {
1462 mpw *a, *al;
1463 int n = *(int *)v[1].buf;
1464 mpw *c, *cl;
1465 mpw *d, *dl;
1466 int ok = 1;
1467
1468 LOAD(a, al, &v[0]);
1469 LOAD(c, cl, &v[2]);
1470 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1471
1472 mpx_lslc(d, dl, a, al, n);
1473 if (!mpx_ueq(d, dl, c, cl)) {
1474 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1475 dumpmp(" a", a, al);
1476 dumpmp("expected", c, cl);
1477 dumpmp(" result", d, dl);
1478 ok = 0;
1479 }
1480
1481 xfree(a); xfree(c); xfree(d);
1482 return (ok);
1483 }
1484
1485 static int lsr(dstr *v)
1486 {
1487 mpw *a, *al;
1488 int n = *(int *)v[1].buf;
1489 mpw *c, *cl;
1490 mpw *d, *dl;
1491 int ok = 1;
1492
1493 LOAD(a, al, &v[0]);
1494 LOAD(c, cl, &v[2]);
1495 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1496
1497 mpx_lsr(d, dl, a, al, n);
1498 if (!mpx_ueq(d, dl, c, cl)) {
1499 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1500 dumpmp(" a", a, al);
1501 dumpmp("expected", c, cl);
1502 dumpmp(" result", d, dl);
1503 ok = 0;
1504 }
1505
1506 xfree(a); xfree(c); xfree(d);
1507 return (ok);
1508 }
1509
1510 static int uadd(dstr *v)
1511 {
1512 mpw *a, *al;
1513 mpw *b, *bl;
1514 mpw *c, *cl;
1515 mpw *d, *dl;
1516 int ok = 1;
1517
1518 LOAD(a, al, &v[0]);
1519 LOAD(b, bl, &v[1]);
1520 LOAD(c, cl, &v[2]);
1521 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1522
1523 mpx_uadd(d, dl, a, al, b, bl);
1524 if (!mpx_ueq(d, dl, c, cl)) {
1525 fprintf(stderr, "\n*** uadd failed\n");
1526 dumpmp(" a", a, al);
1527 dumpmp(" b", b, bl);
1528 dumpmp("expected", c, cl);
1529 dumpmp(" result", d, dl);
1530 ok = 0;
1531 }
1532
1533 xfree(a); xfree(b); xfree(c); xfree(d);
1534 return (ok);
1535 }
1536
1537 static int usub(dstr *v)
1538 {
1539 mpw *a, *al;
1540 mpw *b, *bl;
1541 mpw *c, *cl;
1542 mpw *d, *dl;
1543 int ok = 1;
1544
1545 LOAD(a, al, &v[0]);
1546 LOAD(b, bl, &v[1]);
1547 LOAD(c, cl, &v[2]);
1548 ALLOC(d, dl, al - a);
1549
1550 mpx_usub(d, dl, a, al, b, bl);
1551 if (!mpx_ueq(d, dl, c, cl)) {
1552 fprintf(stderr, "\n*** usub failed\n");
1553 dumpmp(" a", a, al);
1554 dumpmp(" b", b, bl);
1555 dumpmp("expected", c, cl);
1556 dumpmp(" result", d, dl);
1557 ok = 0;
1558 }
1559
1560 xfree(a); xfree(b); xfree(c); xfree(d);
1561 return (ok);
1562 }
1563
1564 static int umul(dstr *v)
1565 {
1566 mpw *a, *al;
1567 mpw *b, *bl;
1568 mpw *c, *cl;
1569 mpw *d, *dl;
1570 int ok = 1;
1571
1572 LOAD(a, al, &v[0]);
1573 LOAD(b, bl, &v[1]);
1574 LOAD(c, cl, &v[2]);
1575 ALLOC(d, dl, (al - a) + (bl - b));
1576
1577 mpx_umul(d, dl, a, al, b, bl);
1578 if (!mpx_ueq(d, dl, c, cl)) {
1579 fprintf(stderr, "\n*** umul failed\n");
1580 dumpmp(" a", a, al);
1581 dumpmp(" b", b, bl);
1582 dumpmp("expected", c, cl);
1583 dumpmp(" result", d, dl);
1584 ok = 0;
1585 }
1586
1587 xfree(a); xfree(b); xfree(c); xfree(d);
1588 return (ok);
1589 }
1590
1591 static int usqr(dstr *v)
1592 {
1593 mpw *a, *al;
1594 mpw *c, *cl;
1595 mpw *d, *dl;
1596 int ok = 1;
1597
1598 LOAD(a, al, &v[0]);
1599 LOAD(c, cl, &v[1]);
1600 ALLOC(d, dl, 2 * (al - a));
1601
1602 mpx_usqr(d, dl, a, al);
1603 if (!mpx_ueq(d, dl, c, cl)) {
1604 fprintf(stderr, "\n*** usqr failed\n");
1605 dumpmp(" a", a, al);
1606 dumpmp("expected", c, cl);
1607 dumpmp(" result", d, dl);
1608 ok = 0;
1609 }
1610
1611 xfree(a); xfree(c); xfree(d);
1612 return (ok);
1613 }
1614
1615 static int udiv(dstr *v)
1616 {
1617 mpw *a, *al;
1618 mpw *b, *bl;
1619 mpw *q, *ql;
1620 mpw *r, *rl;
1621 mpw *qq, *qql;
1622 mpw *s, *sl;
1623 int ok = 1;
1624
1625 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1626 LOAD(b, bl, &v[1]);
1627 LOAD(q, ql, &v[2]);
1628 LOAD(r, rl, &v[3]);
1629 ALLOC(qq, qql, al - a);
1630 ALLOC(s, sl, (bl - b) + 1);
1631
1632 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1633 if (!mpx_ueq(qq, qql, q, ql) ||
1634 !mpx_ueq(a, al, r, rl)) {
1635 fprintf(stderr, "\n*** udiv failed\n");
1636 dumpmp(" divisor", b, bl);
1637 dumpmp("expect r", r, rl);
1638 dumpmp("result r", a, al);
1639 dumpmp("expect q", q, ql);
1640 dumpmp("result q", qq, qql);
1641 ok = 0;
1642 }
1643
1644 xfree(a); xfree(b); xfree(r); xfree(q); xfree(s); xfree(qq);
1645 return (ok);
1646 }
1647
1648 static test_chunk defs[] = {
1649 { "load-store", loadstore, { &type_hex, 0 } },
1650 { "2cl", twocl, { &type_hex, &type_hex, } },
1651 { "2cb", twocb, { &type_hex, &type_hex, } },
1652 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1653 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1654 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1655 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1656 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1657 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1658 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1659 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1660 { 0, 0, { 0 } }
1661 };
1662
1663 int main(int argc, char *argv[])
1664 {
1665 test_run(argc, argv, defs, SRCDIR"/t/mpx");
1666 return (0);
1667 }
1668
1669 #endif
1670
1671 /*----- That's all, folks -------------------------------------------------*/