Shore up the `grand' protocol.
[catacomb] / symm / chacha.c
1 /* -*-c-*-
2 *
3 * ChaCha stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <stdarg.h>
31
32 #include <mLib/bits.h>
33
34 #include "arena.h"
35 #include "chacha.h"
36 #include "chacha-core.h"
37 #include "gcipher.h"
38 #include "grand.h"
39 #include "keysz.h"
40 #include "paranoia.h"
41
42 /*----- Global variables --------------------------------------------------*/
43
44 const octet chacha_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
45
46 /*----- The ChaCha core function and utilities ----------------------------*/
47
48 /* --- @core@ --- *
49 *
50 * Arguments: @unsigned r@ = number of rounds
51 * @const chacha_matrix src@ = input matrix
52 * @chacha_matrix dest@ = where to put the output
53 *
54 * Returns: ---
55 *
56 *
57 * Use: Apply the ChaCha/r core function to @src@, writing the
58 * result to @dest@. This consists of @r@ rounds followed by
59 * the feedforward step.
60 */
61
62 static void core(unsigned r, const chacha_matrix src, chacha_matrix dest)
63 { CHACHA_nR(dest, src, r); CHACHA_FFWD(dest, src); }
64
65 /* --- @populate@ --- *
66 *
67 * Arguments: @chacha_matrix a@ = a matrix to fill in
68 * @const void *key@ = pointer to key material
69 * @size_t ksz@ = size of key
70 *
71 * Returns: ---
72 *
73 * Use: Fills in a ChaCha matrix from the key, setting the
74 * appropriate constants according to the key length. The nonce
75 * and position words are left uninitialized.
76 */
77
78 static void populate(chacha_matrix a, const void *key, size_t ksz)
79 {
80 const octet *k = key;
81
82 KSZ_ASSERT(chacha, ksz);
83
84 a[ 4] = LOAD32_L(k + 0);
85 a[ 5] = LOAD32_L(k + 4);
86 if (ksz == 10) {
87 a[ 6] = LOAD16_L(k + 8);
88 a[ 7] = 0;
89 } else {
90 a[ 6] = LOAD32_L(k + 8);
91 a[ 7] = LOAD32_L(k + 12);
92 }
93 if (ksz <= 16) {
94 a[ 8] = a[ 4];
95 a[ 9] = a[ 5];
96 a[10] = a[ 6];
97 a[11] = a[ 7];
98 a[ 0] = CHACHA_A128;
99 a[ 1] = CHACHA_B128;
100 a[ 2] = ksz == 10 ? CHACHA_C80 : CHACHA_C128;
101 a[ 3] = CHACHA_D128;
102 } else {
103 a[ 8] = LOAD32_L(k + 16);
104 a[ 9] = LOAD32_L(k + 20);
105 a[10] = LOAD32_L(k + 24);
106 a[11] = LOAD32_L(k + 28);
107 a[ 0] = CHACHA_A256;
108 a[ 1] = CHACHA_B256;
109 a[ 2] = CHACHA_C256;
110 a[ 3] = CHACHA_D256;
111 }
112 }
113
114 /*----- ChaCha implementation ---------------------------------------------*/
115
116 /* --- @chacha_init@ --- *
117 *
118 * Arguments: @chacha_ctx *ctx@ = context to fill in
119 * @const void *key@ = pointer to key material
120 * @size_t ksz@ = size of key (either 32 or 16)
121 * @const void *nonce@ = initial nonce, or null
122 *
123 * Returns: ---
124 *
125 * Use: Initializes a ChaCha context ready for use.
126 */
127
128 void chacha_init(chacha_ctx *ctx, const void *key, size_t ksz,
129 const void *nonce)
130 {
131 static const octet zerononce[CHACHA_NONCESZ];
132
133 populate(ctx->a, key, ksz);
134 chacha_setnonce(ctx, nonce ? nonce : zerononce);
135 }
136
137 /* --- @chacha_setnonce@ --- *
138 *
139 * Arguments: @chacha_ctx *ctx@ = pointer to context
140 * @const void *nonce@ = the nonce (@CHACHA_NONCESZ@ bytes)
141 *
142 * Returns: ---
143 *
144 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
145 * different message. The stream position is reset to zero (see
146 * @chacha_seek@ etc.).
147 */
148
149 void chacha_setnonce(chacha_ctx *ctx, const void *nonce)
150 {
151 const octet *n = nonce;
152
153 ctx->a[14] = LOAD32_L(n + 0);
154 ctx->a[15] = LOAD32_L(n + 4);
155 chacha_seek(ctx, 0);
156 }
157
158 /* --- @chacha_seek@, @chacha_seeku64@ --- *
159 *
160 * Arguments: @chacha_ctx *ctx@ = pointer to context
161 * @unsigned long i@, @kludge64 i@ = new position to set
162 *
163 * Returns: ---
164 *
165 * Use: Sets a new stream position, in units of Chacha output
166 * blocks, which are @CHACHA_OUTSZ@ bytes each. Byte
167 * granularity can be achieved by calling @chachaR_encrypt@
168 * appropriately.
169 */
170
171 void chacha_seek(chacha_ctx *ctx, unsigned long i)
172 { kludge64 ii; ASSIGN64(ii, i); chacha_seeku64(ctx, ii); }
173
174 void chacha_seeku64(chacha_ctx *ctx, kludge64 i)
175 {
176 ctx->a[12] = LO64(i); ctx->a[13] = HI64(i);
177 ctx->bufi = CHACHA_OUTSZ;
178 }
179
180 /* --- @chacha_tell@, @chacha_tellu64@ --- *
181 *
182 * Arguments: @chacha_ctx *ctx@ = pointer to context
183 *
184 * Returns: The current position in the output stream, in blocks,
185 * rounding upwards.
186 */
187
188 unsigned long chacha_tell(chacha_ctx *ctx)
189 { kludge64 i = chacha_tellu64(ctx); return (GET64(unsigned long, i)); }
190
191 kludge64 chacha_tellu64(chacha_ctx *ctx)
192 { kludge64 i; SET64(i, ctx->a[9], ctx->a[8]); return (i); }
193
194 /* --- @chacha{,12,8}_encrypt@ --- *
195 *
196 * Arguments: @chacha_ctx *ctx@ = pointer to context
197 * @const void *src@ = source buffer (or null)
198 * @void *dest@ = destination buffer (or null)
199 * @size_t sz@ = size of the buffers
200 *
201 * Returns: ---
202 *
203 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
204 * ChaCha works by XORing plaintext with a keystream, so
205 * encryption and decryption are the same operation. If @dest@
206 * is null then ignore @src@ and skip @sz@ bytes of the
207 * keystream. If @src@ is null, then just write the keystream
208 * to @dest@.
209 */
210
211 #define CHACHA_ENCRYPT(r, ctx, src, dest, sz) \
212 chacha##r##_encrypt(ctx, src, dest, sz)
213 #define DEFENCRYPT(r) \
214 void CHACHA_ENCRYPT(r, chacha_ctx *ctx, const void *src, \
215 void *dest, size_t sz) \
216 { \
217 chacha_matrix b; \
218 const octet *s = src; \
219 octet *d = dest; \
220 size_t n; \
221 kludge64 pos, delta; \
222 \
223 SALSA20_OUTBUF(ctx, d, s, sz); \
224 if (!sz) return; \
225 \
226 if (!dest) { \
227 n = sz/CHACHA_OUTSZ; \
228 pos = chacha_tellu64(ctx); \
229 ASSIGN64(delta, n); \
230 ADD64(pos, pos, delta); \
231 chacha_seeku64(ctx, pos); \
232 sz = sz%CHACHA_OUTSZ; \
233 } else if (!src) { \
234 while (sz >= CHACHA_OUTSZ) { \
235 core(r, ctx->a, b); \
236 CHACHA_STEP(ctx->a); \
237 SALSA20_GENFULL(b, d); \
238 sz -= CHACHA_OUTSZ; \
239 } \
240 } else { \
241 while (sz >= CHACHA_OUTSZ) { \
242 core(r, ctx->a, b); \
243 CHACHA_STEP(ctx->a); \
244 SALSA20_MIXFULL(b, d, s); \
245 sz -= CHACHA_OUTSZ; \
246 } \
247 } \
248 \
249 if (sz) { \
250 core(r, ctx->a, b); \
251 CHACHA_STEP(ctx->a); \
252 SALSA20_PREPBUF(ctx, b); \
253 SALSA20_OUTBUF(ctx, d, s, sz); \
254 assert(!sz); \
255 } \
256 }
257 CHACHA_VARS(DEFENCRYPT)
258
259 /*----- HChaCha implementation --------------------------------------------*/
260
261 #define HCHACHA_RAW(r, ctx, src, dest) hchacha##r##_raw(ctx, src, dest)
262 #define HCHACHA_PRF(r, ctx, src, dest) hchacha##r##_prf(ctx, src, dest)
263
264 /* --- @hchacha{20,12,8}_prf@ --- *
265 *
266 * Arguments: @chacha_ctx *ctx@ = pointer to context
267 * @const void *src@ = the input (@HCHACHA_INSZ@ bytes)
268 * @void *dest@ = the output (@HCHACHA_OUTSZ@ bytes)
269 *
270 * Returns: ---
271 *
272 * Use: Apply the HChacha/r pseudorandom function to @src@, writing
273 * the result to @out@.
274 */
275
276 #define DEFHCHACHA(r) \
277 static void HCHACHA_RAW(r, chacha_matrix k, \
278 const uint32 *src, uint32 *dest) \
279 { \
280 chacha_matrix a; \
281 int i; \
282 \
283 /* --- HChaCha, computed from full ChaCha --- * \
284 * \
285 * The security proof makes use of the fact that HChaCha (i.e., \
286 * without the final feedforward step) can be computed from full \
287 * ChaCha using only knowledge of the non-secret input. I don't \
288 * want to compromise the performance of the main function by \
289 * making the feedforward step separate, but this operation is less \
290 * speed critical, so we do it the harder way. \
291 */ \
292 \
293 for (i = 0; i < 4; i++) k[12 + i] = src[i]; \
294 core(r, k, a); \
295 for (i = 0; i < 8; i++) dest[i] = a[(i + 4)^4] - k[(i + 4)^4]; \
296 } \
297 \
298 void HCHACHA_PRF(r, chacha_ctx *ctx, const void *src, void *dest) \
299 { \
300 const octet *s = src; \
301 octet *d = dest; \
302 uint32 in[4], out[8]; \
303 int i; \
304 \
305 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
306 HCHACHA_RAW(r, ctx->a, in, out); \
307 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
308 }
309 CHACHA_VARS(DEFHCHACHA)
310
311 /*----- XChaCha implementation -------------------------------------------*/
312
313 /* --- Some convenient macros for naming functions --- *
314 *
315 * Because the crypto core is involved in XChaCha/r's per-nonce setup, we
316 * need to take an interest in the number of rounds in most of the various
317 * functions, and it will probably help if we distinguish the context
318 * structures for the various versions.
319 */
320
321 #define XCHACHA_CTX(r) xchacha##r##_ctx
322 #define XCHACHA_INIT(r, ctx, k, ksz, n) xchacha##r##_init(ctx, k, ksz, n)
323 #define XCHACHA_SETNONCE(r, ctx, n) xchacha##r##_setnonce(ctx, n)
324 #define XCHACHA_SEEK(r, ctx, i) xchacha##r##_seek(ctx, i)
325 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
326 #define XCHACHA_TELL(r, ctx) xchacha##r##_tell(ctx)
327 #define XCHACHA_TELLU64(r, ctx) xchacha##r##_tellu64(ctx)
328 #define XCHACHA_ENCRYPT(r, ctx, src, dest, sz) \
329 xchacha##r##_encrypt(ctx, src, dest, sz)
330
331 /* --- @xchacha{20,12,8}_init@ --- *
332 *
333 * Arguments: @xchachaR_ctx *ctx@ = the context to fill in
334 * @const void *key@ = pointer to key material
335 * @size_t ksz@ = size of key (either 32 or 16)
336 * @const void *nonce@ = initial nonce, or null
337 *
338 * Returns: ---
339 *
340 * Use: Initializes an XChaCha/r context ready for use.
341 *
342 * There is a different function for each number of rounds,
343 * unlike for plain ChaCha.
344 */
345
346 #define DEFXINIT(r) \
347 void XCHACHA_INIT(r, XCHACHA_CTX(r) *ctx, \
348 const void *key, size_t ksz, const void *nonce) \
349 { \
350 static const octet zerononce[XCHACHA_NONCESZ]; \
351 \
352 populate(ctx->k, key, ksz); \
353 ctx->s.a[ 0] = CHACHA_A256; \
354 ctx->s.a[ 1] = CHACHA_B256; \
355 ctx->s.a[ 2] = CHACHA_C256; \
356 ctx->s.a[ 3] = CHACHA_D256; \
357 XCHACHA_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
358 }
359 CHACHA_VARS(DEFXINIT)
360
361 /* --- @xchacha{20,12,8}_setnonce@ --- *
362 *
363 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
364 * @const void *nonce@ = the nonce (@XCHACHA_NONCESZ@ bytes)
365 *
366 * Returns: ---
367 *
368 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
369 * different message. The stream position is reset to zero (see
370 * @chacha_seek@ etc.).
371 *
372 * There is a different function for each number of rounds,
373 * unlike for plain ChaCha.
374 */
375
376 #define DEFXNONCE(r) \
377 void XCHACHA_SETNONCE(r, XCHACHA_CTX(r) *ctx, const void *nonce) \
378 { \
379 const octet *n = nonce; \
380 uint32 in[4]; \
381 int i; \
382 \
383 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
384 HCHACHA_RAW(r, ctx->k, in, ctx->s.a + 4); \
385 chacha_setnonce(&ctx->s, n + 16); \
386 }
387 CHACHA_VARS(DEFXNONCE)
388
389 /* --- @xchacha{20,12,8}_seek@, @xchacha{20,12,8}_seeku64@ --- *
390 *
391 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
392 * @unsigned long i@, @kludge64 i@ = new position to set
393 *
394 * Returns: ---
395 *
396 * Use: Sets a new stream position, in units of ChaCha output
397 * blocks, which are @XCHACHA_OUTSZ@ bytes each. Byte
398 * granularity can be achieved by calling @xchachaR_encrypt@
399 * appropriately.
400 *
401 * There is a different function for each number of rounds,
402 * unlike for plain ChaCha, because the context structures are
403 * different.
404 */
405
406 /* --- @xchacha{20,12,8}_tell@, @xchacha{20,12,8}_tellu64@ --- *
407 *
408 * Arguments: @chacha_ctx *ctx@ = pointer to context
409 *
410 * Returns: The current position in the output stream, in blocks,
411 * rounding upwards.
412 *
413 * There is a different function for each number of rounds,
414 * unlike for plain ChaCha, because the context structures are
415 * different.
416 */
417
418 /* --- @xchacha{,12,8}_encrypt@ --- *
419 *
420 * Arguments: @xchachaR_ctx *ctx@ = pointer to context
421 * @const void *src@ = source buffer (or null)
422 * @void *dest@ = destination buffer (or null)
423 * @size_t sz@ = size of the buffers
424 *
425 * Returns: ---
426 *
427 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
428 * XChaCha works by XORing plaintext with a keystream, so
429 * encryption and decryption are the same operation. If @dest@
430 * is null then ignore @src@ and skip @sz@ bytes of the
431 * keystream. If @src@ is null, then just write the keystream
432 * to @dest@.
433 */
434
435 #define DEFXPASSTHRU(r) \
436 void XCHACHA_SEEK(r, XCHACHA_CTX(r) *ctx, unsigned long i) \
437 { chacha_seek(&ctx->s, i); } \
438 void XCHACHA_SEEKU64(r, XCHACHA_CTX(r) *ctx, kludge64 i) \
439 { chacha_seeku64(&ctx->s, i); } \
440 unsigned long XCHACHA_TELL(r, XCHACHA_CTX(r) *ctx) \
441 { return chacha_tell(&ctx->s); } \
442 kludge64 XCHACHA_TELLU64(r, XCHACHA_CTX(r) *ctx) \
443 { return chacha_tellu64(&ctx->s); } \
444 void XCHACHA_ENCRYPT(r, XCHACHA_CTX(r) *ctx, \
445 const void *src, void *dest, size_t sz) \
446 { CHACHA_ENCRYPT(r, &ctx->s, src, dest, sz); }
447 CHACHA_VARS(DEFXPASSTHRU)
448
449 /*----- Generic cipher interface ------------------------------------------*/
450
451 typedef struct gctx { gcipher c; chacha_ctx ctx; } gctx;
452
453 static void gsetiv(gcipher *c, const void *iv)
454 { gctx *g = (gctx *)c; chacha_setnonce(&g->ctx, iv); }
455
456 static void gdestroy(gcipher *c)
457 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
458
459 #define DEFGCIPHER(r) \
460 \
461 static const gcipher_ops gops_##r; \
462 \
463 static gcipher *ginit_##r(const void *k, size_t sz) \
464 { \
465 gctx *g = S_CREATE(gctx); \
466 g->c.ops = &gops_##r; \
467 chacha_init(&g->ctx, k, sz, 0); \
468 return (&g->c); \
469 } \
470 \
471 static void gencrypt_##r(gcipher *c, const void *s, \
472 void *t, size_t sz) \
473 { gctx *g = (gctx *)c; CHACHA_ENCRYPT(r, &g->ctx, s, t, sz); } \
474 \
475 static const gcipher_ops gops_##r = { \
476 &chacha##r, \
477 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
478 }; \
479 \
480 const gccipher chacha##r = { \
481 "chacha" #r, chacha_keysz, \
482 CHACHA_NONCESZ, ginit_##r \
483 };
484
485 CHACHA_VARS(DEFGCIPHER)
486
487 #define DEFGXCIPHER(r) \
488 \
489 typedef struct { gcipher c; XCHACHA_CTX(r) ctx; } gxctx_##r; \
490 \
491 static void gxsetiv_##r(gcipher *c, const void *iv) \
492 { gxctx_##r *g = (gxctx_##r *)c; XCHACHA_SETNONCE(r, &g->ctx, iv); } \
493 \
494 static void gxdestroy_##r(gcipher *c) \
495 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
496 \
497 static const gcipher_ops gxops_##r; \
498 \
499 static gcipher *gxinit_##r(const void *k, size_t sz) \
500 { \
501 gxctx_##r *g = S_CREATE(gxctx_##r); \
502 g->c.ops = &gxops_##r; \
503 XCHACHA_INIT(r, &g->ctx, k, sz, 0); \
504 return (&g->c); \
505 } \
506 \
507 static void gxencrypt_##r(gcipher *c, const void *s, \
508 void *t, size_t sz) \
509 { \
510 gxctx_##r *g = (gxctx_##r *)c; \
511 XCHACHA_ENCRYPT(r, &g->ctx, s, t, sz); \
512 } \
513 \
514 static const gcipher_ops gxops_##r = { \
515 &xchacha##r, \
516 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
517 }; \
518 \
519 const gccipher xchacha##r = { \
520 "xchacha" #r, chacha_keysz, \
521 CHACHA_NONCESZ, gxinit_##r \
522 };
523
524 CHACHA_VARS(DEFGXCIPHER)
525
526 /*----- Generic random number generator interface -------------------------*/
527
528 typedef struct grops {
529 size_t noncesz;
530 void (*seek)(void *, kludge64);
531 kludge64 (*tell)(void *);
532 void (*setnonce)(void *, const void *);
533 void (*generate)(void *, void *, size_t);
534 } grops;
535
536 typedef struct grbasectx {
537 grand r;
538 const grops *ops;
539 } grbasectx;
540
541 static int grmisc(grand *r, unsigned op, ...)
542 {
543 octet buf[XCHACHA_NONCESZ];
544 grbasectx *g = (grbasectx *)r;
545 grand *rr;
546 const octet *p;
547 size_t sz;
548 uint32 i;
549 unsigned long ul;
550 kludge64 pos;
551 va_list ap;
552 int rc = 0;
553
554 va_start(ap, op);
555
556 switch (op) {
557 case GRAND_CHECK:
558 switch (va_arg(ap, unsigned)) {
559 case GRAND_CHECK:
560 case GRAND_SEEDINT:
561 case GRAND_SEEDUINT32:
562 case GRAND_SEEDBLOCK:
563 case GRAND_SEEDRAND:
564 case CHACHA_SEEK:
565 case CHACHA_SEEKU64:
566 case CHACHA_TELL:
567 case CHACHA_TELLU64:
568 rc = 1;
569 break;
570 default:
571 rc = 0;
572 break;
573 }
574 break;
575
576 case GRAND_SEEDINT:
577 i = va_arg(ap, unsigned); STORE32_L(buf, i);
578 memset(buf + 4, 0, g->ops->noncesz - 4);
579 g->ops->setnonce(g, buf);
580 break;
581 case GRAND_SEEDUINT32:
582 i = va_arg(ap, uint32); STORE32_L(buf, i);
583 memset(buf + 4, 0, g->ops->noncesz - 4);
584 g->ops->setnonce(g, buf);
585 break;
586 case GRAND_SEEDBLOCK:
587 p = va_arg(ap, const void *);
588 sz = va_arg(ap, size_t);
589 if (sz < g->ops->noncesz) {
590 memcpy(buf, p, sz);
591 memset(buf + sz, 0, g->ops->noncesz - sz);
592 p = buf;
593 }
594 g->ops->setnonce(g, p);
595 break;
596 case GRAND_SEEDRAND:
597 rr = va_arg(ap, grand *);
598 rr->ops->fill(rr, buf, g->ops->noncesz);
599 g->ops->setnonce(g, buf);
600 break;
601 case CHACHA_SEEK:
602 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
603 g->ops->seek(g, pos);
604 break;
605 case CHACHA_SEEKU64:
606 pos = va_arg(ap, kludge64);
607 g->ops->seek(g, pos);
608 break;
609 case CHACHA_TELL:
610 pos = g->ops->tell(g);
611 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
612 break;
613 case CHACHA_TELLU64:
614 *va_arg(ap, kludge64 *) = g->ops->tell(g);
615 break;
616 default:
617 GRAND_BADOP;
618 break;
619 }
620
621 return (rc);
622 }
623
624 static octet grbyte(grand *r)
625 {
626 grbasectx *g = (grbasectx *)r;
627 octet o;
628 g->ops->generate(g, &o, 1);
629 return (o);
630 }
631
632 static uint32 grword(grand *r)
633 {
634 grbasectx *g = (grbasectx *)r;
635 octet b[4];
636 g->ops->generate(g, b, sizeof(b));
637 return (LOAD32_L(b));
638 }
639
640 static void grfill(grand *r, void *p, size_t sz)
641 {
642 grbasectx *g = (grbasectx *)r;
643 g->ops->generate(r, p, sz);
644 }
645
646 typedef struct grctx {
647 grbasectx r;
648 chacha_ctx ctx;
649 } grctx;
650
651 static void gr_seek(void *r, kludge64 pos)
652 { grctx *g = r; chacha_seeku64(&g->ctx, pos); }
653
654 static kludge64 gr_tell(void *r)
655 { grctx *g = r; return (chacha_tellu64(&g->ctx)); }
656
657 static void gr_setnonce(void *r, const void *n)
658 { grctx *g = r; chacha_setnonce(&g->ctx, n); }
659
660 static void grdestroy(grand *r)
661 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
662
663 #define DEFGRAND(rr) \
664 \
665 static void gr_generate_##rr(void *r, void *b, size_t sz) \
666 { grctx *g = r; CHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
667 \
668 static const grops grops_##rr = \
669 { CHACHA_NONCESZ, gr_seek, gr_tell, \
670 gr_setnonce, gr_generate_##rr }; \
671 \
672 static const grand_ops grops_rand_##rr = { \
673 "chacha" #rr, GRAND_CRYPTO, 0, \
674 grmisc, grdestroy, grword, \
675 grbyte, grword, grand_defaultrange, grfill \
676 }; \
677 \
678 grand *chacha##rr##_rand(const void *k, size_t ksz, const void *n) \
679 { \
680 grctx *g = S_CREATE(g); \
681 g->r.r.ops = &grops_rand_##rr; \
682 g->r.ops = &grops_##rr; \
683 chacha_init(&g->ctx, k, ksz, n); \
684 return (&g->r.r); \
685 }
686 CHACHA_VARS(DEFGRAND)
687
688 #define DEFXGRAND(rr) \
689 \
690 typedef struct grxctx_##rr { \
691 grbasectx r; \
692 XCHACHA_CTX(rr) ctx; \
693 } grxctx_##rr; \
694 \
695 static void grx_seek_##rr(void *r, kludge64 pos) \
696 { grxctx_##rr *g = r; XCHACHA_SEEKU64(rr, &g->ctx, pos); } \
697 \
698 static kludge64 grx_tell_##rr(void *r) \
699 { grxctx_##rr *g = r; return (XCHACHA_TELLU64(rr, &g->ctx)); } \
700 \
701 static void grx_setnonce_##rr(void *r, const void *n) \
702 { grxctx_##rr *g = r; XCHACHA_SETNONCE(rr, &g->ctx, n); } \
703 \
704 static void grxdestroy_##rr(grand *r) \
705 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
706 \
707 static void grx_generate_##rr(void *r, void *b, size_t sz) \
708 { grxctx_##rr *g = r; XCHACHA_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
709 \
710 static const grops grxops_##rr = \
711 { XCHACHA_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
712 grx_setnonce_##rr, grx_generate_##rr }; \
713 \
714 static const grand_ops grxops_rand_##rr = { \
715 "xchacha" #rr, GRAND_CRYPTO, 0, \
716 grmisc, grxdestroy_##rr, grword, \
717 grbyte, grword, grand_defaultrange, grfill \
718 }; \
719 \
720 grand *xchacha##rr##_rand(const void *k, size_t ksz, const void *n) \
721 { \
722 grxctx_##rr *g = S_CREATE(g); \
723 g->r.r.ops = &grxops_rand_##rr; \
724 g->r.ops = &grxops_##rr; \
725 XCHACHA_INIT(rr, &g->ctx, k, ksz, n); \
726 return (&g->r.r); \
727 }
728 CHACHA_VARS(DEFXGRAND)
729
730 /*----- Test rig ----------------------------------------------------------*/
731
732 #ifdef TEST_RIG
733
734 #include <stdio.h>
735 #include <string.h>
736
737 #include <mLib/quis.h>
738 #include <mLib/testrig.h>
739
740 #define DEFVCORE(r) \
741 static int v_core_##r(dstr *v) \
742 { \
743 chacha_matrix a, b; \
744 dstr d = DSTR_INIT; \
745 int i, n; \
746 int ok = 1; \
747 \
748 DENSURE(&d, CHACHA_OUTSZ); d.len = CHACHA_OUTSZ; \
749 n = *(int *)v[0].buf; \
750 for (i = 0; i < CHACHA_OUTSZ/4; i++) \
751 a[i] = LOAD32_L(v[1].buf + 4*i); \
752 for (i = 0; i < n; i++) { \
753 core(r, a, b); \
754 memcpy(a, b, sizeof(a)); \
755 } \
756 for (i = 0; i < CHACHA_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, a[i]); \
757 \
758 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
759 ok = 0; \
760 printf("\nfail core:" \
761 "\n\titerations = %d" \
762 "\n\tin = ", n); \
763 type_hex.dump(&v[1], stdout); \
764 printf("\n\texpected = "); \
765 type_hex.dump(&v[2], stdout); \
766 printf("\n\tcalculated = "); \
767 type_hex.dump(&d, stdout); \
768 putchar('\n'); \
769 } \
770 \
771 dstr_destroy(&d); \
772 return (ok); \
773 }
774 CHACHA_VARS(DEFVCORE)
775
776 #define CHACHA_CTX(r) chacha_ctx
777 #define CHACHA_INIT(r, ctx, k, ksz, n) chacha_init(ctx, k, ksz, n)
778 #define CHACHA_SEEKU64(r, ctx, i) chacha_seeku64(ctx, i)
779 #define XCHACHA_SEEKU64(r, ctx, i) xchacha##r##_seeku64(ctx, i)
780
781 #define DEFxVENC(base, BASE, r) \
782 static int v_encrypt_##base##_##r(dstr *v) \
783 { \
784 BASE##_CTX(r) ctx; \
785 dstr d = DSTR_INIT; \
786 kludge64 pos; \
787 const octet *p, *p0; \
788 octet *q; \
789 size_t sz, sz0, step; \
790 unsigned long skip; \
791 int ok = 1; \
792 \
793 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
794 else { p0 = 0; sz0 = v[5].len; } \
795 DENSURE(&d, sz0); d.len = sz0; \
796 skip = *(unsigned long *)v[3].buf; \
797 \
798 step = 0; \
799 while (step < sz0 + skip) { \
800 step = step ? 3*step + 4 : 1; \
801 if (step > sz0 + skip) step = sz0 + skip; \
802 BASE##_INIT(r, &ctx, v[0].buf, v[0].len, v[1].buf); \
803 if (v[2].len) { \
804 LOAD64_(pos, v[2].buf); \
805 BASE##_SEEKU64(r, &ctx, pos); \
806 } \
807 \
808 for (sz = skip; sz >= step; sz -= step) \
809 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
810 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
811 for (p = p0, q = (octet *)d.buf, sz = sz0; \
812 sz >= step; \
813 sz -= step, q += step) { \
814 BASE##_ENCRYPT(r, &ctx, p, q, step); \
815 if (p) p += step; \
816 } \
817 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
818 \
819 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
820 ok = 0; \
821 printf("\nfail encrypt:" \
822 "\n\tstep = %lu" \
823 "\n\tkey = ", (unsigned long)step); \
824 type_hex.dump(&v[0], stdout); \
825 printf("\n\tnonce = "); \
826 type_hex.dump(&v[1], stdout); \
827 printf("\n\tposition = "); \
828 type_hex.dump(&v[2], stdout); \
829 printf("\n\tskip = %lu", skip); \
830 printf("\n\tmessage = "); \
831 type_hex.dump(&v[4], stdout); \
832 printf("\n\texpected = "); \
833 type_hex.dump(&v[5], stdout); \
834 printf("\n\tcalculated = "); \
835 type_hex.dump(&d, stdout); \
836 putchar('\n'); \
837 } \
838 } \
839 \
840 dstr_destroy(&d); \
841 return (ok); \
842 }
843 #define DEFVENC(r) DEFxVENC(chacha, CHACHA, r)
844 #define DEFXVENC(r) DEFxVENC(xchacha, XCHACHA, r)
845 CHACHA_VARS(DEFVENC)
846 CHACHA_VARS(DEFXVENC)
847
848 static test_chunk defs[] = {
849 #define DEFxTAB(base, r) \
850 { #base #r, v_encrypt_##base##_##r, \
851 { &type_hex, &type_hex, &type_hex, &type_ulong, \
852 &type_hex, &type_hex, 0 } },
853 #define DEFTAB(r) \
854 { "chacha" #r "-core", v_core_##r, \
855 { &type_int, &type_hex, &type_hex, 0 } }, \
856 DEFxTAB(chacha, r)
857 #define DEFXTAB(r) DEFxTAB(xchacha, r)
858 CHACHA_VARS(DEFTAB)
859 CHACHA_VARS(DEFXTAB)
860 { 0, 0, { 0 } }
861 };
862
863 int main(int argc, char *argv[])
864 {
865 test_run(argc, argv, defs, SRCDIR"/t/chacha");
866 return (0);
867 }
868
869 #endif
870
871 /*----- That's all, folks -------------------------------------------------*/