Merge branch '2.2.x'
[catacomb] / symm / chacha-x86ish-sse2.S
1 /// -*- mode: asm; asm-comment-char: ?/ -*-
2 ///
3 /// Fancy SIMD implementation of ChaCha
4 ///
5 /// (c) 2015 Straylight/Edgeware
6 ///
7
8 ///----- Licensing notice ---------------------------------------------------
9 ///
10 /// This file is part of Catacomb.
11 ///
12 /// Catacomb is free software; you can redistribute it and/or modify
13 /// it under the terms of the GNU Library General Public License as
14 /// published by the Free Software Foundation; either version 2 of the
15 /// License, or (at your option) any later version.
16 ///
17 /// Catacomb is distributed in the hope that it will be useful,
18 /// but WITHOUT ANY WARRANTY; without even the implied warranty of
19 /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 /// GNU Library General Public License for more details.
21 ///
22 /// You should have received a copy of the GNU Library General Public
23 /// License along with Catacomb; if not, write to the Free
24 /// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 /// MA 02111-1307, USA.
26
27 ///--------------------------------------------------------------------------
28 /// External definitions.
29
30 #include "config.h"
31 #include "asm-common.h"
32
33 ///--------------------------------------------------------------------------
34 /// Local utilities.
35
36 // Magic constants for shuffling.
37 #define ROTL 0x93
38 #define ROT2 0x4e
39 #define ROTR 0x39
40
41 ///--------------------------------------------------------------------------
42 /// Main code.
43
44 .arch pentium4
45 .section .text
46
47 FUNC(chacha_core_x86ish_sse2)
48
49 // Initial setup.
50
51 #if CPUFAM_X86
52 // Arguments come in on the stack, and will need to be collected. We
53 // we can get away with just the scratch registers for integer work,
54 // but we'll run out of XMM registers and will need some properly
55 // aligned space which we'll steal from the stack. I don't trust the
56 // stack pointer's alignment, so I'll have to mask the stack pointer,
57 // which in turn means I'll need to keep track of the old value.
58 // Hence I'm making a full i386-style stack frame here.
59 //
60 // The Windows and SysV ABIs are sufficiently similar that we don't
61 // need to worry about the differences here.
62
63 # define NR ecx
64 # define IN eax
65 # define OUT edx
66 # define SAVE0 xmm5
67 # define SAVE1 xmm6
68 # define SAVE2 xmm7
69 # define SAVE3 [esp]
70
71 push ebp
72 mov ebp, esp
73 sub esp, 16
74 mov IN, [ebp + 12]
75 mov OUT, [ebp + 16]
76 and esp, ~15
77 mov NR, [ebp + 8]
78 #endif
79
80 #if CPUFAM_AMD64 && ABI_SYSV
81 // This is nice. We have plenty of XMM registers, and the arguments
82 // are in useful places. There's no need to spill anything and we
83 // can just get on with the code.
84
85 # define NR edi
86 # define IN rsi
87 # define OUT rdx
88 # define SAVE0 xmm5
89 # define SAVE1 xmm6
90 # define SAVE2 xmm7
91 # define SAVE3 xmm8
92 #endif
93
94 #if CPUFAM_AMD64 && ABI_WIN
95 // Arguments come in registers, but they're different between Windows
96 // and everyone else (and everyone else is saner).
97 //
98 // The Windows ABI insists that we preserve some of the XMM
99 // registers, but we want more than we can use as scratch space. We
100 // only need to save a copy of the input for the feedforward at the
101 // end, so we might as well use memory rather than spill extra
102 // registers. (We need an extra 8 bytes to align the stack.)
103
104 # define NR ecx
105 # define IN rdx
106 # define OUT r8
107 # define SAVE0 xmm5
108 # define SAVE1 [rsp + 0]
109 # define SAVE2 [rsp + 16]
110 # define SAVE3 [rsp + 32]
111
112 sub rsp, 48 + 8
113 #endif
114
115 // First job is to slurp the matrix into XMM registers. Be careful:
116 // the input matrix isn't likely to be properly aligned.
117 //
118 // [ 0 1 2 3] (a, xmm0)
119 // [ 4 5 6 7] (b, xmm1)
120 // [ 8 9 10 11] (c, xmm2)
121 // [12 13 14 15] (d, xmm3)
122 movdqu xmm0, [IN + 0]
123 movdqu xmm1, [IN + 16]
124 movdqu xmm2, [IN + 32]
125 movdqu xmm3, [IN + 48]
126
127 // Take a copy for later. This one is aligned properly, by
128 // construction.
129 movdqa SAVE0, xmm0
130 movdqa SAVE1, xmm1
131 movdqa SAVE2, xmm2
132 movdqa SAVE3, xmm3
133
134 0:
135 // Apply a column quarterround to each of the columns simultaneously.
136 // Alas, there doesn't seem to be a packed doubleword rotate, so we
137 // have to synthesize it.
138
139 // a += b; d ^= a; d <<<= 16
140 paddd xmm0, xmm1
141 pxor xmm3, xmm0
142 movdqa xmm4, xmm3
143 pslld xmm3, 16
144 psrld xmm4, 16
145 por xmm3, xmm4
146
147 // c += d; b ^= c; b <<<= 12
148 paddd xmm2, xmm3
149 pxor xmm1, xmm2
150 movdqa xmm4, xmm1
151 pslld xmm1, 12
152 psrld xmm4, 20
153 por xmm1, xmm4
154
155 // a += b; d ^= a; d <<<= 8
156 paddd xmm0, xmm1
157 pxor xmm3, xmm0
158 movdqa xmm4, xmm3
159 pslld xmm3, 8
160 psrld xmm4, 24
161 por xmm3, xmm4
162
163 // c += d; b ^= c; b <<<= 7
164 paddd xmm2, xmm3
165 pshufd xmm3, xmm3, ROTL
166 pxor xmm1, xmm2
167 pshufd xmm2, xmm2, ROT2
168 movdqa xmm4, xmm1
169 pslld xmm1, 7
170 psrld xmm4, 25
171 por xmm1, xmm4
172
173 // The not-quite-transpose conveniently only involves reordering
174 // elements of individual rows, which can be done quite easily. It
175 // doesn't involve any movement of elements between rows, or even
176 // renaming of the rows.
177 //
178 // [ 0 1 2 3] [ 0 1 2 3] (a, xmm0)
179 // [ 4 5 6 7] --> [ 5 6 7 4] (b, xmm1)
180 // [ 8 9 10 11] [10 11 8 9] (c, xmm2)
181 // [12 13 14 15] [15 12 13 14] (d, xmm3)
182 //
183 // The shuffles have quite high latency, so they've mostly been
184 // pushed upwards. The remaining one can't be moved, though.
185 pshufd xmm1, xmm1, ROTR
186
187 // Apply the diagonal quarterround to each of the columns
188 // simultaneously.
189
190 // a += b; d ^= a; d <<<= 16
191 paddd xmm0, xmm1
192 pxor xmm3, xmm0
193 movdqa xmm4, xmm3
194 pslld xmm3, 16
195 psrld xmm4, 16
196 por xmm3, xmm4
197
198 // c += d; b ^= c; b <<<= 12
199 paddd xmm2, xmm3
200 pxor xmm1, xmm2
201 movdqa xmm4, xmm1
202 pslld xmm1, 12
203 psrld xmm4, 20
204 por xmm1, xmm4
205
206 // a += b; d ^= a; d <<<= 8
207 paddd xmm0, xmm1
208 pxor xmm3, xmm0
209 movdqa xmm4, xmm3
210 pslld xmm3, 8
211 psrld xmm4, 24
212 por xmm3, xmm4
213
214 // c += d; b ^= c; b <<<= 7
215 paddd xmm2, xmm3
216 pshufd xmm3, xmm3, ROTR
217 pxor xmm1, xmm2
218 pshufd xmm2, xmm2, ROT2
219 movdqa xmm4, xmm1
220 pslld xmm1, 7
221 psrld xmm4, 25
222 por xmm1, xmm4
223
224 // Finally, finish off undoing the transpose, and we're done for this
225 // doubleround. Again, most of this was done above so we don't have
226 // to wait for the shuffles.
227 pshufd xmm1, xmm1, ROTL
228
229 // Decrement the loop counter and see if we should go round again.
230 sub NR, 2
231 ja 0b
232
233 // Almost there. Firstly, the feedforward addition.
234 paddd xmm0, SAVE0
235 paddd xmm1, SAVE1
236 paddd xmm2, SAVE2
237 paddd xmm3, SAVE3
238
239 // And now we write out the result. This one won't be aligned
240 // either.
241 movdqu [OUT + 0], xmm0
242 movdqu [OUT + 16], xmm1
243 movdqu [OUT + 32], xmm2
244 movdqu [OUT + 48], xmm3
245
246 // Tidy things up.
247 #if CPUFAM_X86
248 mov esp, ebp
249 pop ebp
250 #endif
251 #if CPUFAM_AMD64 && ABI_WIN
252 add rsp, 48 + 8
253 #endif
254
255 // And with that, we're done.
256 ret
257
258 ENDFUNC
259
260 ///----- That's all, folks --------------------------------------------------