Initialize the register dumping machinery while testing assembler code.
[catacomb] / math / mpx.c
1 /* -*-c-*-
2 *
3 * Low-level multiprecision arithmetic
4 *
5 * (c) 1999 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <assert.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36
37 #include <mLib/bits.h>
38 #include <mLib/macros.h>
39
40 #include "dispatch.h"
41 #include "mptypes.h"
42 #include "mpx.h"
43 #include "bitops.h"
44
45 /*----- Loading and storing -----------------------------------------------*/
46
47 /* --- These are all variations on a theme --- *
48 *
49 * Essentially we want to feed bits into a shift register, @ibits@ bits at a
50 * time, and extract them @obits@ bits at a time whenever there are enough.
51 * Of course, @i@ and @o@ will, in general, be different sizes, and we don't
52 * necessarily know which is larger.
53 *
54 * During an operation, we have a shift register @w@ and a most-recent input
55 * @t@. Together, these hold @bits@ significant bits of input. We arrange
56 * that @bits < ibits + obits <= 2*MPW_BITS@, so we can get away with using
57 * an @mpw@ for both of these quantitities.
58 */
59
60 /* --- @MPX_GETBITS@ --- *
61 *
62 * Arguments: @ibits@ = width of input units, in bits
63 * @obits@ = width of output units, in bits
64 * @iavail@ = condition expression: is input data available?
65 * @getbits@ = function or macro: set argument to next input
66 *
67 * Use: Read an input unit into @t@ and update the necessary
68 * variables.
69 *
70 * It is assumed on entry that @bits < obits@. On exit, we have
71 * @bits < ibits + obits@, and @t@ is live.
72 */
73
74 #define MPX_GETBITS(ibits, obits, iavail, getbits) do { \
75 if (!iavail) goto flush; \
76 if (bits >= ibits) w |= t << (bits - ibits); \
77 getbits(t); \
78 bits += ibits; \
79 } while (0)
80
81 /* --- @MPX_PUTBITS@ --- *
82 *
83 * Arguments: @ibits@ = width of input units, in bits
84 * @obits@ = width of output units, in bits
85 * @oavail@ = condition expression: is output space available?
86 * @putbits@ = function or macro: write its argument to output
87 *
88 * Use: Emit an output unit, and update the necessary variables. If
89 * the output buffer is full, then force an immediate return.
90 *
91 * We assume that @bits < ibits + obits@, and that @t@ is only
92 * relevant if @bits >= ibits@. (The @MPX_GETBITS@ macro
93 * ensures that this is true.)
94 */
95
96 #define SHRW(w, b) ((b) < MPW_BITS ? (w) >> (b) : 0)
97
98 #define MPX_PUTBITS(ibits, obits, oavail, putbits) do { \
99 if (!oavail) return; \
100 if (bits < ibits) { \
101 putbits(w); \
102 bits -= obits; \
103 w = SHRW(w, obits); \
104 } else { \
105 putbits(w | (t << (bits - ibits))); \
106 bits -= obits; \
107 if (bits >= ibits) w = SHRW(w, obits) | (t << (bits - ibits)); \
108 else w = SHRW(w, obits) | (t >> (ibits - bits)); \
109 t = 0; \
110 } \
111 } while (0)
112
113 /* --- @MPX_LOADSTORE@ --- *
114 *
115 * Arguments: @name@ = name of function to create, without @mpx_@ prefix
116 * @wconst@ = qualifiers for @mpw *@ arguments
117 * @oconst@ = qualifiers for octet pointers
118 * @decls@ = additional declarations needed
119 * @ibits@ = width of input units, in bits
120 * @iavail@ = condition expression: is input data available?
121 * @getbits@ = function or macro: set argument to next input
122 * @obits@ = width of output units, in bits
123 * @oavail@ = condition expression: is output space available?
124 * @putbits@ = function or macro: write its argument to output
125 * @fixfinal@ = statements to fix shift register at the end
126 * @clear@ = statements to clear remainder of output
127 *
128 * Use: Generates a function to convert between a sequence of
129 * multiprecision words and a vector of octets.
130 *
131 * The arguments @ibits@, @iavail@ and @getbits@ are passed on
132 * to @MPX_GETBITS@; similarly, @obits@, @oavail@, and @putbits@
133 * are passed on to @MPX_PUTBITS@.
134 *
135 * The following variables are in scope: @v@ and @vl are the
136 * current base and limit of the word vector; @p@ and @q@ are
137 * the base and limit of the octet vector; @w@ and @t@ form the
138 * shift register used during the conversion (see commentary
139 * above); and @bits@ tracks the number of live bits in the
140 * shift register.
141 */
142
143 #define MPX_LOADSTORE(name, wconst, oconst, decls, \
144 ibits, iavail, getbits, obits, oavail, putbits, \
145 fixfinal, clear) \
146 \
147 void mpx_##name(wconst mpw *v, wconst mpw *vl, \
148 oconst void *pp, size_t sz) \
149 { \
150 mpw t = 0, w = 0; \
151 oconst octet *p = pp, *q = p + sz; \
152 int bits = 0; \
153 decls \
154 \
155 for (;;) { \
156 while (bits < obits) MPX_GETBITS(ibits, obits, iavail, getbits); \
157 while (bits >= obits) MPX_PUTBITS(ibits, obits, oavail, putbits); \
158 } \
159 \
160 flush: \
161 if (bits) { \
162 fixfinal; \
163 while (bits > 0) MPX_PUTBITS(ibits, obits, oavail, putbits); \
164 } \
165 clear; \
166 }
167
168 #define EMPTY
169
170 /* --- Macros for @getbits@ and @putbits@ --- */
171
172 #define GETMPW(t) do { t = *v++; } while (0)
173 #define PUTMPW(x) do { *v++ = MPW(x); } while (0)
174
175 #define GETOCTETI(t) do { t = *p++; } while (0)
176 #define PUTOCTETD(x) do { *--q = U8(x); } while (0)
177
178 #define PUTOCTETI(x) do { *p++ = U8(x); } while (0)
179 #define GETOCTETD(t) do { t = *--q; } while (0)
180
181 /* --- Machinery for two's complement I/O --- */
182
183 #define DECL_2CN \
184 unsigned c = 1;
185
186 #define GETMPW_2CN(t) do { \
187 t = MPW(~*v++ + c); \
188 c = c && !t; \
189 } while (0)
190
191 #define PUTMPW_2CN(t) do { \
192 mpw _t = MPW(~(t) + c); \
193 c = c && !_t; \
194 *v++ = _t; \
195 } while (0)
196
197 #define FIXFINALW_2CN do { \
198 if (c && !w && !t); \
199 else if (bits == 8) t ^= ~(mpw)0xffu; \
200 else t ^= ((mpw)1 << (MPW_BITS - bits + 8)) - 256u; \
201 } while (0)
202
203 #define FLUSHO_2CN do { \
204 memset(p, c ? 0 : 0xff, q - p); \
205 } while (0)
206
207 /* --- @mpx_storel@ --- *
208 *
209 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
210 * @void *pp@ = pointer to octet array
211 * @size_t sz@ = size of octet array
212 *
213 * Returns: ---
214 *
215 * Use: Stores an MP in an octet array, least significant octet
216 * first. High-end octets are silently discarded if there
217 * isn't enough space for them.
218 */
219
220 MPX_LOADSTORE(storel, const, EMPTY, EMPTY,
221 MPW_BITS, (v < vl), GETMPW,
222 8, (p < q), PUTOCTETI,
223 EMPTY, { memset(p, 0, q - p); })
224
225 /* --- @mpx_loadl@ --- *
226 *
227 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
228 * @const void *pp@ = pointer to octet array
229 * @size_t sz@ = size of octet array
230 *
231 * Returns: ---
232 *
233 * Use: Loads an MP in an octet array, least significant octet
234 * first. High-end octets are ignored if there isn't enough
235 * space for them.
236 */
237
238 MPX_LOADSTORE(loadl, EMPTY, const, EMPTY,
239 8, (p < q), GETOCTETI,
240 MPW_BITS, (v < vl), PUTMPW,
241 EMPTY, { MPX_ZERO(v, vl); })
242
243
244 /* --- @mpx_storeb@ --- *
245 *
246 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
247 * @void *pp@ = pointer to octet array
248 * @size_t sz@ = size of octet array
249 *
250 * Returns: ---
251 *
252 * Use: Stores an MP in an octet array, most significant octet
253 * first. High-end octets are silently discarded if there
254 * isn't enough space for them.
255 */
256
257 MPX_LOADSTORE(storeb, const, EMPTY, EMPTY,
258 MPW_BITS, (v < vl), GETMPW,
259 8, (p < q), PUTOCTETD,
260 EMPTY, { memset(p, 0, q - p); })
261
262 /* --- @mpx_loadb@ --- *
263 *
264 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
265 * @const void *pp@ = pointer to octet array
266 * @size_t sz@ = size of octet array
267 *
268 * Returns: ---
269 *
270 * Use: Loads an MP in an octet array, most significant octet
271 * first. High-end octets are ignored if there isn't enough
272 * space for them.
273 */
274
275 MPX_LOADSTORE(loadb, EMPTY, const, EMPTY,
276 8, (p < q), GETOCTETD,
277 MPW_BITS, (v < vl), PUTMPW,
278 EMPTY, { MPX_ZERO(v, vl); })
279
280 /* --- @mpx_storel2cn@ --- *
281 *
282 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
283 * @void *pp@ = pointer to octet array
284 * @size_t sz@ = size of octet array
285 *
286 * Returns: ---
287 *
288 * Use: Stores a negative MP in an octet array, least significant
289 * octet first, as two's complement. High-end octets are
290 * silently discarded if there isn't enough space for them.
291 * This obviously makes the output bad.
292 */
293
294 MPX_LOADSTORE(storel2cn, const, EMPTY, DECL_2CN,
295 MPW_BITS, (v < vl), GETMPW_2CN,
296 8, (p < q), PUTOCTETI,
297 EMPTY, { FLUSHO_2CN; })
298
299 /* --- @mpx_loadl2cn@ --- *
300 *
301 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
302 * @const void *pp@ = pointer to octet array
303 * @size_t sz@ = size of octet array
304 *
305 * Returns: ---
306 *
307 * Use: Loads a negative MP in an octet array, least significant
308 * octet first, as two's complement. High-end octets are
309 * ignored if there isn't enough space for them. This probably
310 * means you made the wrong choice coming here.
311 */
312
313 MPX_LOADSTORE(loadl2cn, EMPTY, const, DECL_2CN,
314 8, (p < q), GETOCTETI,
315 MPW_BITS, (v < vl), PUTMPW_2CN,
316 { FIXFINALW_2CN; }, { MPX_ZERO(v, vl); })
317
318 /* --- @mpx_storeb2cn@ --- *
319 *
320 * Arguments: @const mpw *v, *vl@ = base and limit of source vector
321 * @void *pp@ = pointer to octet array
322 * @size_t sz@ = size of octet array
323 *
324 * Returns: ---
325 *
326 * Use: Stores a negative MP in an octet array, most significant
327 * octet first, as two's complement. High-end octets are
328 * silently discarded if there isn't enough space for them,
329 * which probably isn't what you meant.
330 */
331
332 MPX_LOADSTORE(storeb2cn, const, EMPTY, DECL_2CN,
333 MPW_BITS, (v < vl), GETMPW_2CN,
334 8, (p < q), PUTOCTETD,
335 EMPTY, { FLUSHO_2CN; })
336
337 /* --- @mpx_loadb2cn@ --- *
338 *
339 * Arguments: @mpw *v, *vl@ = base and limit of destination vector
340 * @const void *pp@ = pointer to octet array
341 * @size_t sz@ = size of octet array
342 *
343 * Returns: ---
344 *
345 * Use: Loads a negative MP in an octet array, most significant octet
346 * first as two's complement. High-end octets are ignored if
347 * there isn't enough space for them. This probably means you
348 * chose this function wrongly.
349 */
350
351 MPX_LOADSTORE(loadb2cn, EMPTY, const, DECL_2CN,
352 8, (p < q), GETOCTETD,
353 MPW_BITS, (v < vl), PUTMPW_2CN,
354 { FIXFINALW_2CN; }, { MPX_ZERO(v, vl); })
355
356 /*----- Logical shifting --------------------------------------------------*/
357
358 /* --- @MPX_SHIFT1@ --- *
359 *
360 * Arguments: @init@ = initial accumulator value
361 * @out@ = expression to store in each output word
362 * @next@ = expression for next accumulator value
363 *
364 * Use: Performs a single-position shift. The input is scanned
365 * right-to-left. In the expressions @out@ and @next@, the
366 * accumulator is available in @w@ and the current input word is
367 * in @t@.
368 *
369 * This macro is intended to be used in the @shift1@ argument of
370 * @MPX_SHIFTOP@, and expects variables describing the operation
371 * to be set up accordingly.
372 */
373
374 #define MPX_SHIFT1(init, out, next) do { \
375 mpw t, w = (init); \
376 while (av < avl) { \
377 if (dv >= dvl) break; \
378 t = MPW(*av++); \
379 *dv++ = (out); \
380 w = (next); \
381 } \
382 if (dv < dvl) { *dv++ = MPW(w); MPX_ZERO(dv, dvl); } \
383 } while (0)
384
385 /* --- @MPX_SHIFTW@ --- *
386 *
387 * Arguments: @max@ = the maximum shift (in words) which is nontrivial
388 * @clear@ = function (or macro) to clear low-order output words
389 * @copy@ = statement to copy words from input to output
390 *
391 * Use: Performs a shift by a whole number of words. If the shift
392 * amount is @max@ or more words, then the destination is
393 * @clear@ed entirely; otherwise, @copy@ is executed.
394 *
395 * This macro is intended to be used in the @shiftw@ argument of
396 * @MPX_SHIFTOP@, and expects variables describing the operation
397 * to be set up accordingly.
398 */
399
400 #define MPX_SHIFTW(max, clear, copy) do { \
401 if (nw >= (max)) clear(dv, dvl); \
402 else copy \
403 } while (0)
404
405 /* --- @MPX_SHIFTOP@ --- *
406 *
407 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
408 * @shift1@ = statement to shift by a single bit
409 * @shiftw@ = statement to shift by a whole number of words
410 * @shift@ = statement to perform a general shift
411 *
412 * Use: Emits a shift operation. The input is @av@..@avl@; the
413 * output is @dv@..@dvl@; and the shift amount (in bits) is
414 * @n@. In @shiftw@ and @shift@, @nw@ and @nb@ are set up such
415 * that @n = nw*MPW_BITS + nb@ and @nb < MPW_BITS@.
416 */
417
418 #define MPX_SHIFTOP(name, shift1, shiftw, shift) \
419 \
420 void mpx_##name(mpw *dv, mpw *dvl, \
421 const mpw *av, const mpw *avl, \
422 size_t n) \
423 { \
424 \
425 if (n == 0) \
426 MPX_COPY(dv, dvl, av, avl); \
427 else if (n == 1) \
428 do shift1 while (0); \
429 else { \
430 size_t nw = n/MPW_BITS; \
431 unsigned nb = n%MPW_BITS; \
432 if (!nb) do shiftw while (0); \
433 else do shift while (0); \
434 } \
435 }
436
437 /* --- @MPX_SHIFT_LEFT@ --- *
438 *
439 * Arguments: @name@ = name of function to define (without `@mpx_@' prefix)
440 * @init1@ = initializer for single-bit shift accumulator
441 * @clear@ = function (or macro) to clear low-order output words
442 * @flush@ = expression for low-order nontrivial output word
443 *
444 * Use: Emits a left-shift operation. This expands to a call on
445 * @MPX_SHIFTOP@, but implements the complicated @shift@
446 * statement.
447 *
448 * The @init1@ argument is as for @MPX_SHIFT1@, and @clear@ is
449 * as for @MPX_SHIFTW@ (though is used elsewhere). In a general
450 * shift, @nw@ whole low-order output words are set using
451 * @clear@; high-order words are zeroed; and the remaining words
452 * set with a left-to-right pass across the input; at the end of
453 * the operation, the least significant output word above those
454 * @clear@ed is set using @flush@, which may use the accumulator
455 * @w@ = @av[0] << nb@.
456 */
457
458 #define MPX_SHIFT_LEFT(name, init1, clear, flush) \
459 MPX_SHIFTOP(name, { \
460 MPX_SHIFT1(init1, \
461 w | (t << 1), \
462 t >> (MPW_BITS - 1)); \
463 }, { \
464 MPX_SHIFTW(dvl - dv, clear, { \
465 MPX_COPY(dv + nw, dvl, av, avl); \
466 clear(dv, dv + nw); \
467 }); \
468 }, { \
469 size_t nr = MPW_BITS - nb; \
470 size_t dvn = dvl - dv; \
471 size_t avn = avl - av; \
472 mpw w; \
473 \
474 if (dvn <= nw) { \
475 clear(dv, dvl); \
476 break; \
477 } \
478 \
479 if (dvn <= avn + nw) { \
480 avl = av + dvn - nw; \
481 w = *--avl << nb; \
482 } else { \
483 size_t off = avn + nw + 1; \
484 MPX_ZERO(dv + off, dvl); \
485 dvl = dv + off; \
486 w = 0; \
487 } \
488 \
489 while (avl > av) { \
490 mpw t = *--avl; \
491 *--dvl = MPW(w | (t >> nr)); \
492 w = t << nb; \
493 } \
494 \
495 *--dvl = MPW(flush); \
496 clear(dv, dvl); \
497 })
498
499 /* --- @mpx_lsl@ --- *
500 *
501 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
502 * @const mpw *av, *avl@ = source vector base and limit
503 * @size_t n@ = number of bit positions to shift by
504 *
505 * Returns: ---
506 *
507 * Use: Performs a logical shift left operation on an integer.
508 */
509
510 MPX_SHIFT_LEFT(lsl, 0, MPX_ZERO, w)
511
512 /* --- @mpx_lslc@ --- *
513 *
514 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
515 * @const mpw *av, *avl@ = source vector base and limit
516 * @size_t n@ = number of bit positions to shift by
517 *
518 * Returns: ---
519 *
520 * Use: Performs a logical shift left operation on an integer, only
521 * it fills in the bits with ones instead of zeroes.
522 */
523
524 MPX_SHIFT_LEFT(lslc, 1, MPX_ONE, w | (MPW_MAX >> nr))
525
526 /* --- @mpx_lsr@ --- *
527 *
528 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
529 * @const mpw *av, *avl@ = source vector base and limit
530 * @size_t n@ = number of bit positions to shift by
531 *
532 * Returns: ---
533 *
534 * Use: Performs a logical shift right operation on an integer.
535 */
536
537 MPX_SHIFTOP(lsr, {
538 MPX_SHIFT1(av < avl ? *av++ >> 1 : 0,
539 w | (t << (MPW_BITS - 1)),
540 t >> 1);
541 }, {
542 MPX_SHIFTW(avl - av, MPX_ZERO,
543 { MPX_COPY(dv, dvl, av + nw, avl); });
544 }, {
545 size_t nr = MPW_BITS - nb;
546 mpw w;
547
548 if (nw >= avl - av)
549 w = 0;
550 else {
551 av += nw;
552 w = *av++;
553
554 while (av < avl) {
555 mpw t;
556 if (dv >= dvl) goto done;
557 t = *av++;
558 *dv++ = MPW((w >> nb) | (t << nr));
559 w = t;
560 }
561 }
562
563 if (dv < dvl) {
564 *dv++ = MPW(w >> nb);
565 MPX_ZERO(dv, dvl);
566 }
567 done:;
568 })
569
570 /*----- Bitwise operations ------------------------------------------------*/
571
572 /* --- @mpx_bitop@ --- *
573 *
574 * Arguments: @mpw *dv, *dvl@ = destination vector
575 * @const mpw *av, *avl@ = first source vector
576 * @const mpw *bv, *bvl@ = second source vector
577 *
578 * Returns: ---
579 *
580 * Use; Provides the dyadic boolean functions.
581 */
582
583 #define MPX_BITBINOP(string) \
584 \
585 void mpx_bit##string(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, \
586 const mpw *bv, const mpw *bvl) \
587 { \
588 MPX_SHRINK(av, avl); \
589 MPX_SHRINK(bv, bvl); \
590 \
591 while (dv < dvl) { \
592 mpw a, b; \
593 a = (av < avl) ? *av++ : 0; \
594 b = (bv < bvl) ? *bv++ : 0; \
595 *dv++ = B##string(a, b); \
596 IGNORE(a); IGNORE(b); \
597 } \
598 }
599
600 MPX_DOBIN(MPX_BITBINOP)
601
602 void mpx_not(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
603 {
604 MPX_SHRINK(av, avl);
605
606 while (dv < dvl) {
607 mpw a;
608 a = (av < avl) ? *av++ : 0;
609 *dv++ = ~a;
610 }
611 }
612
613 /*----- Unsigned arithmetic -----------------------------------------------*/
614
615 /* --- @mpx_2c@ --- *
616 *
617 * Arguments: @mpw *dv, *dvl@ = destination vector
618 * @const mpw *v, *vl@ = source vector
619 *
620 * Returns: ---
621 *
622 * Use: Calculates the two's complement of @v@.
623 */
624
625 void mpx_2c(mpw *dv, mpw *dvl, const mpw *v, const mpw *vl)
626 {
627 mpw c = 0;
628 while (dv < dvl && v < vl)
629 *dv++ = c = MPW(~*v++);
630 if (dv < dvl) {
631 if (c > MPW_MAX / 2)
632 c = MPW(~0);
633 while (dv < dvl)
634 *dv++ = c;
635 }
636 MPX_UADDN(dv, dvl, 1);
637 }
638
639 /* --- @mpx_ueq@ --- *
640 *
641 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
642 * @const mpw *bv, *bvl@ = second argument vector base and limit
643 *
644 * Returns: Nonzero if the two vectors are equal.
645 *
646 * Use: Performs an unsigned integer test for equality.
647 */
648
649 int mpx_ueq(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
650 {
651 MPX_SHRINK(av, avl);
652 MPX_SHRINK(bv, bvl);
653 if (avl - av != bvl - bv)
654 return (0);
655 while (av < avl) {
656 if (*av++ != *bv++)
657 return (0);
658 }
659 return (1);
660 }
661
662 /* --- @mpx_ucmp@ --- *
663 *
664 * Arguments: @const mpw *av, *avl@ = first argument vector base and limit
665 * @const mpw *bv, *bvl@ = second argument vector base and limit
666 *
667 * Returns: Less than, equal to, or greater than zero depending on
668 * whether @a@ is less than, equal to or greater than @b@,
669 * respectively.
670 *
671 * Use: Performs an unsigned integer comparison.
672 */
673
674 int mpx_ucmp(const mpw *av, const mpw *avl, const mpw *bv, const mpw *bvl)
675 {
676 MPX_SHRINK(av, avl);
677 MPX_SHRINK(bv, bvl);
678
679 if (avl - av > bvl - bv)
680 return (+1);
681 else if (avl - av < bvl - bv)
682 return (-1);
683 else while (avl > av) {
684 mpw a = *--avl, b = *--bvl;
685 if (a > b)
686 return (+1);
687 else if (a < b)
688 return (-1);
689 }
690 return (0);
691 }
692
693 /* --- @mpx_uadd@ --- *
694 *
695 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
696 * @const mpw *av, *avl@ = first addend vector base and limit
697 * @const mpw *bv, *bvl@ = second addend vector base and limit
698 *
699 * Returns: ---
700 *
701 * Use: Performs unsigned integer addition. If the result overflows
702 * the destination vector, high-order bits are discarded. This
703 * means that two's complement addition happens more or less for
704 * free, although that's more a side-effect than anything else.
705 * The result vector may be equal to either or both source
706 * vectors, but may not otherwise overlap them.
707 */
708
709 void mpx_uadd(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
710 const mpw *bv, const mpw *bvl)
711 {
712 mpw c = 0;
713
714 while (av < avl || bv < bvl) {
715 mpw a, b;
716 mpd x;
717 if (dv >= dvl)
718 return;
719 a = (av < avl) ? *av++ : 0;
720 b = (bv < bvl) ? *bv++ : 0;
721 x = (mpd)a + (mpd)b + c;
722 *dv++ = MPW(x);
723 c = x >> MPW_BITS;
724 }
725 if (dv < dvl) {
726 *dv++ = c;
727 MPX_ZERO(dv, dvl);
728 }
729 }
730
731 /* --- @mpx_uaddn@ --- *
732 *
733 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
734 * @mpw n@ = other addend
735 *
736 * Returns: ---
737 *
738 * Use: Adds a small integer to a multiprecision number.
739 */
740
741 void mpx_uaddn(mpw *dv, mpw *dvl, mpw n) { MPX_UADDN(dv, dvl, n); }
742
743 /* --- @mpx_uaddnlsl@ --- *
744 *
745 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
746 * @mpw a@ = second argument
747 * @unsigned o@ = offset in bits
748 *
749 * Returns: ---
750 *
751 * Use: Computes %$d + 2^o a$%. If the result overflows then
752 * high-order bits are discarded, as usual. We must have
753 * @0 < o < MPW_BITS@.
754 */
755
756 void mpx_uaddnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
757 {
758 mpd x = (mpd)a << o;
759
760 while (x && dv < dvl) {
761 x += *dv;
762 *dv++ = MPW(x);
763 x >>= MPW_BITS;
764 }
765 }
766
767 /* --- @mpx_usub@ --- *
768 *
769 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
770 * @const mpw *av, *avl@ = first argument vector base and limit
771 * @const mpw *bv, *bvl@ = second argument vector base and limit
772 *
773 * Returns: ---
774 *
775 * Use: Performs unsigned integer subtraction. If the result
776 * overflows the destination vector, high-order bits are
777 * discarded. This means that two's complement subtraction
778 * happens more or less for free, althuogh that's more a side-
779 * effect than anything else. The result vector may be equal to
780 * either or both source vectors, but may not otherwise overlap
781 * them.
782 */
783
784 void mpx_usub(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
785 const mpw *bv, const mpw *bvl)
786 {
787 mpw c = 0;
788
789 while (av < avl || bv < bvl) {
790 mpw a, b;
791 mpd x;
792 if (dv >= dvl)
793 return;
794 a = (av < avl) ? *av++ : 0;
795 b = (bv < bvl) ? *bv++ : 0;
796 x = (mpd)a - (mpd)b - c;
797 *dv++ = MPW(x);
798 if (x >> MPW_BITS)
799 c = 1;
800 else
801 c = 0;
802 }
803 if (c)
804 c = MPW_MAX;
805 while (dv < dvl)
806 *dv++ = c;
807 }
808
809 /* --- @mpx_usubn@ --- *
810 *
811 * Arguments: @mpw *dv, *dvl@ = source and destination base and limit
812 * @n@ = subtrahend
813 *
814 * Returns: ---
815 *
816 * Use: Subtracts a small integer from a multiprecision number.
817 */
818
819 void mpx_usubn(mpw *dv, mpw *dvl, mpw n) { MPX_USUBN(dv, dvl, n); }
820
821 /* --- @mpx_usubnlsl@ --- *
822 *
823 * Arguments: @mpw *dv, *dvl@ = destination and first argument vector
824 * @mpw a@ = second argument
825 * @unsigned o@ = offset in bits
826 *
827 * Returns: ---
828 *
829 * Use: Computes %$d + 2^o a$%. If the result overflows then
830 * high-order bits are discarded, as usual. We must have
831 * @0 < o < MPW_BITS@.
832 */
833
834 void mpx_usubnlsl(mpw *dv, mpw *dvl, mpw a, unsigned o)
835 {
836 mpw b = a >> (MPW_BITS - o);
837 a <<= o;
838
839 if (dv < dvl) {
840 mpd x = (mpd)*dv - MPW(a);
841 *dv++ = MPW(x);
842 if (x >> MPW_BITS)
843 b++;
844 MPX_USUBN(dv, dvl, b);
845 }
846 }
847
848 /* --- @mpx_umul@ --- *
849 *
850 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
851 * @const mpw *av, *avl@ = multiplicand vector base and limit
852 * @const mpw *bv, *bvl@ = multiplier vector base and limit
853 *
854 * Returns: ---
855 *
856 * Use: Performs unsigned integer multiplication. If the result
857 * overflows the desination vector, high-order bits are
858 * discarded. The result vector may not overlap the argument
859 * vectors in any way.
860 */
861
862 CPU_DISPATCH(EMPTY, (void), void, mpx_umul,
863 (mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
864 const mpw *bv, const mpw *bvl),
865 (dv, dvl, av, avl, bv, bvl), pick_umul, simple_umul);
866
867 static void simple_umul(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl,
868 const mpw *bv, const mpw *bvl)
869 {
870 /* --- This is probably worthwhile on a multiply --- */
871
872 MPX_SHRINK(av, avl);
873 MPX_SHRINK(bv, bvl);
874
875 /* --- Deal with a multiply by zero --- */
876
877 if (bv == bvl) {
878 MPX_ZERO(dv, dvl);
879 return;
880 }
881
882 /* --- Do the initial multiply and initialize the accumulator --- */
883
884 MPX_UMULN(dv, dvl, av, avl, *bv++);
885
886 /* --- Do the remaining multiply/accumulates --- */
887
888 while (dv < dvl && bv < bvl) {
889 mpw m = *bv++;
890 mpw c = 0;
891 const mpw *avv = av;
892 mpw *dvv = ++dv;
893
894 while (avv < avl) {
895 mpd x;
896 if (dvv >= dvl)
897 goto next;
898 x = (mpd)*dvv + (mpd)m * (mpd)*avv++ + c;
899 *dvv++ = MPW(x);
900 c = x >> MPW_BITS;
901 }
902 MPX_UADDN(dvv, dvl, c);
903 next:;
904 }
905 }
906
907 #define MAYBE_UMUL4(impl) \
908 extern void mpx_umul4_##impl(mpw */*dv*/, \
909 const mpw */*av*/, const mpw */*avl*/, \
910 const mpw */*bv*/, const mpw */*bvl*/); \
911 static void maybe_umul4_##impl(mpw *dv, mpw *dvl, \
912 const mpw *av, const mpw *avl, \
913 const mpw *bv, const mpw *bvl) \
914 { \
915 size_t an = avl - av, bn = bvl - bv, dn = dvl - dv; \
916 if (!an || an%4 != 0 || !bn || bn%4 != 0 || dn < an + bn) \
917 simple_umul(dv, dvl, av, avl, bv, bvl); \
918 else { \
919 mpx_umul4_##impl(dv, av, avl, bv, bvl); \
920 MPX_ZERO(dv + an + bn, dvl); \
921 } \
922 }
923
924 #if CPUFAM_X86
925 MAYBE_UMUL4(x86_sse2)
926 MAYBE_UMUL4(x86_avx)
927 #endif
928
929 #if CPUFAM_AMD64
930 MAYBE_UMUL4(amd64_sse2)
931 MAYBE_UMUL4(amd64_avx)
932 #endif
933
934 static mpx_umul__functype *pick_umul(void)
935 {
936 #if CPUFAM_X86
937 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_x86_avx,
938 cpu_feature_p(CPUFEAT_X86_AVX));
939 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_x86_sse2,
940 cpu_feature_p(CPUFEAT_X86_SSE2));
941 #endif
942 #if CPUFAM_AMD64
943 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_amd64_avx,
944 cpu_feature_p(CPUFEAT_X86_AVX));
945 DISPATCH_PICK_COND(mpx_umul, maybe_umul4_amd64_sse2,
946 cpu_feature_p(CPUFEAT_X86_SSE2));
947 #endif
948 DISPATCH_PICK_FALLBACK(mpx_umul, simple_umul);
949 }
950
951 /* --- @mpx_umuln@ --- *
952 *
953 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
954 * @const mpw *av, *avl@ = multiplicand vector base and limit
955 * @mpw m@ = multiplier
956 *
957 * Returns: ---
958 *
959 * Use: Multiplies a multiprecision integer by a single-word value.
960 * The destination and source may be equal. The destination
961 * is completely cleared after use.
962 */
963
964 void mpx_umuln(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
965 { MPX_UMULN(dv, dvl, av, avl, m); }
966
967 /* --- @mpx_umlan@ --- *
968 *
969 * Arguments: @mpw *dv, *dvl@ = destination/accumulator base and limit
970 * @const mpw *av, *avl@ = multiplicand vector base and limit
971 * @mpw m@ = multiplier
972 *
973 * Returns: ---
974 *
975 * Use: Multiplies a multiprecision integer by a single-word value
976 * and adds the result to an accumulator.
977 */
978
979 void mpx_umlan(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl, mpw m)
980 { MPX_UMLAN(dv, dvl, av, avl, m); }
981
982 /* --- @mpx_usqr@ --- *
983 *
984 * Arguments: @mpw *dv, *dvl@ = destination vector base and limit
985 * @const mpw *av, *av@ = source vector base and limit
986 *
987 * Returns: ---
988 *
989 * Use: Performs unsigned integer squaring. The result vector must
990 * not overlap the source vector in any way.
991 */
992
993 void mpx_usqr(mpw *dv, mpw *dvl, const mpw *av, const mpw *avl)
994 {
995 MPX_ZERO(dv, dvl);
996
997 /* --- Main loop --- */
998
999 while (av < avl) {
1000 const mpw *avv = av;
1001 mpw *dvv = dv;
1002 mpw a = *av;
1003 mpd c;
1004
1005 /* --- Stop if I've run out of destination --- */
1006
1007 if (dvv >= dvl)
1008 break;
1009
1010 /* --- Work out the square at this point in the proceedings --- */
1011
1012 {
1013 mpd x = (mpd)a * (mpd)a + *dvv;
1014 *dvv++ = MPW(x);
1015 c = MPW(x >> MPW_BITS);
1016 }
1017
1018 /* --- Now fix up the rest of the vector upwards --- */
1019
1020 avv++;
1021 while (dvv < dvl && avv < avl) {
1022 mpd x = (mpd)a * (mpd)*avv++;
1023 mpd y = ((x << 1) & MPW_MAX) + c + *dvv;
1024 c = (x >> (MPW_BITS - 1)) + (y >> MPW_BITS);
1025 *dvv++ = MPW(y);
1026 }
1027 while (dvv < dvl && c) {
1028 mpd x = c + *dvv;
1029 *dvv++ = MPW(x);
1030 c = x >> MPW_BITS;
1031 }
1032
1033 /* --- Get ready for the next round --- */
1034
1035 av++;
1036 dv += 2;
1037 }
1038 }
1039
1040 /* --- @mpx_udiv@ --- *
1041 *
1042 * Arguments: @mpw *qv, *qvl@ = quotient vector base and limit
1043 * @mpw *rv, *rvl@ = dividend/remainder vector base and limit
1044 * @const mpw *dv, *dvl@ = divisor vector base and limit
1045 * @mpw *sv, *svl@ = scratch workspace
1046 *
1047 * Returns: ---
1048 *
1049 * Use: Performs unsigned integer division. If the result overflows
1050 * the quotient vector, high-order bits are discarded. (Clearly
1051 * the remainder vector can't overflow.) The various vectors
1052 * may not overlap in any way. Yes, I know it's a bit odd
1053 * requiring the dividend to be in the result position but it
1054 * does make some sense really. The remainder must have
1055 * headroom for at least two extra words. The scratch space
1056 * must be at least one word larger than the divisor.
1057 */
1058
1059 void mpx_udiv(mpw *qv, mpw *qvl, mpw *rv, mpw *rvl,
1060 const mpw *dv, const mpw *dvl,
1061 mpw *sv, mpw *svl)
1062 {
1063 unsigned norm = 0;
1064 size_t scale;
1065 mpw d, dd;
1066
1067 /* --- Initialize the quotient --- */
1068
1069 MPX_ZERO(qv, qvl);
1070
1071 /* --- Perform some sanity checks --- */
1072
1073 MPX_SHRINK(dv, dvl);
1074 assert(((void)"division by zero in mpx_udiv", dv < dvl));
1075
1076 /* --- Normalize the divisor --- *
1077 *
1078 * The algorithm requires that the divisor be at least two digits long.
1079 * This is easy to fix.
1080 */
1081
1082 {
1083 unsigned b;
1084
1085 d = dvl[-1];
1086 for (b = MPW_P2; b; b >>= 1) {
1087 if (d <= (MPW_MAX >> b)) {
1088 d <<= b;
1089 norm += b;
1090 }
1091 }
1092 if (dv + 1 == dvl)
1093 norm += MPW_BITS;
1094 }
1095
1096 /* --- Normalize the dividend/remainder to match --- */
1097
1098 if (norm) {
1099 mpx_lsl(rv, rvl, rv, rvl, norm);
1100 mpx_lsl(sv, svl, dv, dvl, norm);
1101 dv = sv;
1102 dvl = svl;
1103 MPX_SHRINK(dv, dvl);
1104 }
1105
1106 MPX_SHRINK(rv, rvl);
1107 d = dvl[-1];
1108 dd = dvl[-2];
1109
1110 /* --- Work out the relative scales --- */
1111
1112 {
1113 size_t rvn = rvl - rv;
1114 size_t dvn = dvl - dv;
1115
1116 /* --- If the divisor is clearly larger, notice this --- */
1117
1118 if (dvn > rvn) {
1119 mpx_lsr(rv, rvl, rv, rvl, norm);
1120 return;
1121 }
1122
1123 scale = rvn - dvn;
1124 }
1125
1126 /* --- Calculate the most significant quotient digit --- *
1127 *
1128 * Because the divisor has its top bit set, this can only happen once. The
1129 * pointer arithmetic is a little contorted, to make sure that the
1130 * behaviour is defined.
1131 */
1132
1133 if (MPX_UCMP(rv + scale, rvl, >=, dv, dvl)) {
1134 mpx_usub(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1135 if (qvl - qv > scale)
1136 qv[scale] = 1;
1137 }
1138
1139 /* --- Now for the main loop --- */
1140
1141 {
1142 mpw *rvv = rvl - 2;
1143
1144 while (scale) {
1145 mpw q;
1146 mpd rh;
1147
1148 /* --- Get an estimate for the next quotient digit --- */
1149
1150 mpw r = rvv[1];
1151 mpw rr = rvv[0];
1152 mpw rrr = *--rvv;
1153
1154 scale--;
1155 rh = ((mpd)r << MPW_BITS) | rr;
1156 if (r == d)
1157 q = MPW_MAX;
1158 else
1159 q = MPW(rh / d);
1160
1161 /* --- Refine the estimate --- */
1162
1163 {
1164 mpd yh = (mpd)d * q;
1165 mpd yy = (mpd)dd * q;
1166 mpw yl;
1167
1168 if (yy > MPW_MAX)
1169 yh += yy >> MPW_BITS;
1170 yl = MPW(yy);
1171
1172 while (yh > rh || (yh == rh && yl > rrr)) {
1173 q--;
1174 yh -= d;
1175 if (yl < dd)
1176 yh--;
1177 yl = MPW(yl - dd);
1178 }
1179 }
1180
1181 /* --- Remove a chunk from the dividend --- */
1182
1183 {
1184 mpw *svv;
1185 const mpw *dvv;
1186 mpw mc = 0, sc = 0;
1187
1188 /* --- Calculate the size of the chunk --- *
1189 *
1190 * This does the whole job of calculating @r >> scale - qd@.
1191 */
1192
1193 for (svv = rv + scale, dvv = dv;
1194 dvv < dvl && svv < rvl;
1195 svv++, dvv++) {
1196 mpd x = (mpd)*dvv * (mpd)q + mc;
1197 mc = x >> MPW_BITS;
1198 x = (mpd)*svv - MPW(x) - sc;
1199 *svv = MPW(x);
1200 if (x >> MPW_BITS)
1201 sc = 1;
1202 else
1203 sc = 0;
1204 }
1205
1206 if (svv < rvl) {
1207 mpd x = (mpd)*svv - mc - sc;
1208 *svv++ = MPW(x);
1209 if (x >> MPW_BITS)
1210 sc = MPW_MAX;
1211 else
1212 sc = 0;
1213 while (svv < rvl)
1214 *svv++ = sc;
1215 }
1216
1217 /* --- Fix if the quotient was too large --- *
1218 *
1219 * This doesn't seem to happen very often.
1220 */
1221
1222 if (rvl[-1] > MPW_MAX / 2) {
1223 mpx_uadd(rv + scale, rvl, rv + scale, rvl, dv, dvl);
1224 q--;
1225 }
1226 }
1227
1228 /* --- Done for another iteration --- */
1229
1230 if (qvl - qv > scale)
1231 qv[scale] = q;
1232 r = rr;
1233 rr = rrr;
1234 }
1235 }
1236
1237 /* --- Now fiddle with unnormalizing and things --- */
1238
1239 mpx_lsr(rv, rvl, rv, rvl, norm);
1240 }
1241
1242 /* --- @mpx_udivn@ --- *
1243 *
1244 * Arguments: @mpw *qv, *qvl@ = storage for the quotient (may overlap
1245 * dividend)
1246 * @const mpw *rv, *rvl@ = dividend
1247 * @mpw d@ = single-precision divisor
1248 *
1249 * Returns: Remainder after divison.
1250 *
1251 * Use: Performs a single-precision division operation.
1252 */
1253
1254 mpw mpx_udivn(mpw *qv, mpw *qvl, const mpw *rv, const mpw *rvl, mpw d)
1255 {
1256 size_t i;
1257 size_t ql = qvl - qv;
1258 mpd r = 0;
1259
1260 i = rvl - rv;
1261 while (i > 0) {
1262 i--;
1263 r = (r << MPW_BITS) | rv[i];
1264 if (i < ql)
1265 qv[i] = r / d;
1266 r %= d;
1267 }
1268 return (MPW(r));
1269 }
1270
1271 /*----- Test rig ----------------------------------------------------------*/
1272
1273 #ifdef TEST_RIG
1274
1275 #include <mLib/alloc.h>
1276 #include <mLib/dstr.h>
1277 #include <mLib/macros.h>
1278 #include <mLib/quis.h>
1279 #include <mLib/testrig.h>
1280
1281 #ifdef ENABLE_ASM_DEBUG
1282 # include "regdump.h"
1283 #endif
1284
1285 #include "mpscan.h"
1286
1287 #define ALLOC(v, vl, sz) do { \
1288 size_t _sz = (sz); \
1289 mpw *_vv = xmalloc(MPWS(_sz)); \
1290 mpw *_vvl = _vv + _sz; \
1291 memset(_vv, 0xa5, MPWS(_sz)); \
1292 (v) = _vv; \
1293 (vl) = _vvl; \
1294 } while (0)
1295
1296 #define LOAD(v, vl, d) do { \
1297 const dstr *_d = (d); \
1298 mpw *_v, *_vl; \
1299 ALLOC(_v, _vl, MPW_RQ(_d->len)); \
1300 mpx_loadb(_v, _vl, _d->buf, _d->len); \
1301 (v) = _v; \
1302 (vl) = _vl; \
1303 } while (0)
1304
1305 #define MAX(x, y) ((x) > (y) ? (x) : (y))
1306
1307 static void dumpbits(const char *msg, const void *pp, size_t sz)
1308 {
1309 const octet *p = pp;
1310 fputs(msg, stderr);
1311 for (; sz; sz--)
1312 fprintf(stderr, " %02x", *p++);
1313 fputc('\n', stderr);
1314 }
1315
1316 static void dumpmp(const char *msg, const mpw *v, const mpw *vl)
1317 {
1318 fputs(msg, stderr);
1319 MPX_SHRINK(v, vl);
1320 while (v < vl)
1321 fprintf(stderr, " %08lx", (unsigned long)*--vl);
1322 fputc('\n', stderr);
1323 }
1324
1325 static int chkscan(const mpw *v, const mpw *vl,
1326 const void *pp, size_t sz, int step)
1327 {
1328 mpscan mps;
1329 const octet *p = pp;
1330 unsigned bit = 0;
1331 int ok = 1;
1332
1333 mpscan_initx(&mps, v, vl);
1334 while (sz) {
1335 unsigned x = *p;
1336 int i;
1337 p += step;
1338 for (i = 0; i < 8 && MPSCAN_STEP(&mps); i++) {
1339 if (MPSCAN_BIT(&mps) != (x & 1)) {
1340 fprintf(stderr,
1341 "\n*** error, step %i, bit %u, expected %u, found %u\n",
1342 step, bit, x & 1, MPSCAN_BIT(&mps));
1343 ok = 0;
1344 }
1345 x >>= 1;
1346 bit++;
1347 }
1348 sz--;
1349 }
1350
1351 return (ok);
1352 }
1353
1354 static int loadstore(dstr *v)
1355 {
1356 dstr d = DSTR_INIT;
1357 size_t sz = MPW_RQ(v->len) * 2, diff;
1358 mpw *m, *ml;
1359 int ok = 1;
1360
1361 dstr_ensure(&d, v->len);
1362 m = xmalloc(MPWS(sz));
1363
1364 for (diff = 0; diff < sz; diff += 5) {
1365 size_t oct;
1366
1367 ml = m + sz - diff;
1368
1369 mpx_loadl(m, ml, v->buf, v->len);
1370 if (!chkscan(m, ml, v->buf, v->len, +1))
1371 ok = 0;
1372 MPX_OCTETS(oct, m, ml);
1373 mpx_storel(m, ml, d.buf, d.sz);
1374 if (MEMCMP(d.buf, !=, v->buf, oct)) {
1375 dumpbits("\n*** storel failed", d.buf, d.sz);
1376 ok = 0;
1377 }
1378
1379 mpx_loadb(m, ml, v->buf, v->len);
1380 if (!chkscan(m, ml, v->buf + v->len - 1, v->len, -1))
1381 ok = 0;
1382 MPX_OCTETS(oct, m, ml);
1383 mpx_storeb(m, ml, d.buf, d.sz);
1384 if (MEMCMP(d.buf + d.sz - oct, !=, v->buf + v->len - oct, oct)) {
1385 dumpbits("\n*** storeb failed", d.buf, d.sz);
1386 ok = 0;
1387 }
1388 }
1389
1390 if (!ok)
1391 dumpbits("input data", v->buf, v->len);
1392
1393 xfree(m);
1394 dstr_destroy(&d);
1395 return (ok);
1396 }
1397
1398 static int twocl(dstr *v)
1399 {
1400 dstr d = DSTR_INIT;
1401 mpw *m, *ml0, *ml1;
1402 size_t sz0, sz1, szmax;
1403 int ok = 1;
1404 int i;
1405
1406 sz0 = MPW_RQ(v[0].len); sz1 = MPW_RQ(v[1].len);
1407 dstr_ensure(&d, v[0].len > v[1].len ? v[0].len : v[1].len);
1408
1409 szmax = sz0 > sz1 ? sz0 : sz1;
1410 m = xmalloc(MPWS(szmax));
1411 ml0 = m + sz0; ml1 = m + sz1;
1412
1413 for (i = 0; i < 2; i++) {
1414 if (i) ml0 = ml1 = m + szmax;
1415
1416 mpx_loadl(m, ml0, v[0].buf, v[0].len);
1417 mpx_storel2cn(m, ml0, d.buf, v[1].len);
1418 if (MEMCMP(d.buf, !=, v[1].buf, v[1].len)) {
1419 dumpbits("\n*** storel2cn failed", d.buf, v[1].len);
1420 ok = 0;
1421 }
1422
1423 mpx_loadl2cn(m, ml1, v[1].buf, v[1].len);
1424 mpx_storel(m, ml1, d.buf, v[0].len);
1425 if (MEMCMP(d.buf, !=, v[0].buf, v[0].len)) {
1426 dumpbits("\n*** loadl2cn failed", d.buf, v[0].len);
1427 ok = 0;
1428 }
1429 }
1430
1431 if (!ok) {
1432 dumpbits("pos", v[0].buf, v[0].len);
1433 dumpbits("neg", v[1].buf, v[1].len);
1434 }
1435
1436 xfree(m);
1437 dstr_destroy(&d);
1438
1439 return (ok);
1440 }
1441
1442 static int twocb(dstr *v)
1443 {
1444 dstr d = DSTR_INIT;
1445 mpw *m, *ml0, *ml1;
1446 size_t sz0, sz1, szmax;
1447 int ok = 1;
1448 int i;
1449
1450 sz0 = MPW_RQ(v[0].len); sz1 = MPW_RQ(v[1].len);
1451 dstr_ensure(&d, v[0].len > v[1].len ? v[0].len : v[1].len);
1452
1453 szmax = sz0 > sz1 ? sz0 : sz1;
1454 m = xmalloc(MPWS(szmax));
1455 ml0 = m + sz0; ml1 = m + sz1;
1456
1457 for (i = 0; i < 2; i++) {
1458 if (i) ml0 = ml1 = m + szmax;
1459
1460 mpx_loadb(m, ml0, v[0].buf, v[0].len);
1461 mpx_storeb2cn(m, ml0, d.buf, v[1].len);
1462 if (MEMCMP(d.buf, !=, v[1].buf, v[1].len)) {
1463 dumpbits("\n*** storeb2cn failed", d.buf, v[1].len);
1464 ok = 0;
1465 }
1466
1467 mpx_loadb2cn(m, ml1, v[1].buf, v[1].len);
1468 mpx_storeb(m, ml1, d.buf, v[0].len);
1469 if (MEMCMP(d.buf, !=, v[0].buf, v[0].len)) {
1470 dumpbits("\n*** loadb2cn failed", d.buf, v[0].len);
1471 ok = 0;
1472 }
1473 }
1474
1475 if (!ok) {
1476 dumpbits("pos", v[0].buf, v[0].len);
1477 dumpbits("neg", v[1].buf, v[1].len);
1478 }
1479
1480 xfree(m);
1481 dstr_destroy(&d);
1482
1483 return (ok);
1484 }
1485
1486 static int lsl(dstr *v)
1487 {
1488 mpw *a, *al;
1489 int n = *(int *)v[1].buf;
1490 mpw *c, *cl;
1491 mpw *d, *dl;
1492 int ok = 1;
1493
1494 LOAD(a, al, &v[0]);
1495 LOAD(c, cl, &v[2]);
1496 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1497
1498 mpx_lsl(d, dl, a, al, n);
1499 if (!mpx_ueq(d, dl, c, cl)) {
1500 fprintf(stderr, "\n*** lsl(%i) failed\n", n);
1501 dumpmp(" a", a, al);
1502 dumpmp("expected", c, cl);
1503 dumpmp(" result", d, dl);
1504 ok = 0;
1505 }
1506
1507 xfree(a); xfree(c); xfree(d);
1508 return (ok);
1509 }
1510
1511 static int lslc(dstr *v)
1512 {
1513 mpw *a, *al;
1514 int n = *(int *)v[1].buf;
1515 mpw *c, *cl;
1516 mpw *d, *dl;
1517 int ok = 1;
1518
1519 LOAD(a, al, &v[0]);
1520 LOAD(c, cl, &v[2]);
1521 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS);
1522
1523 mpx_lslc(d, dl, a, al, n);
1524 if (!mpx_ueq(d, dl, c, cl)) {
1525 fprintf(stderr, "\n*** lslc(%i) failed\n", n);
1526 dumpmp(" a", a, al);
1527 dumpmp("expected", c, cl);
1528 dumpmp(" result", d, dl);
1529 ok = 0;
1530 }
1531
1532 xfree(a); xfree(c); xfree(d);
1533 return (ok);
1534 }
1535
1536 static int lsr(dstr *v)
1537 {
1538 mpw *a, *al;
1539 int n = *(int *)v[1].buf;
1540 mpw *c, *cl;
1541 mpw *d, *dl;
1542 int ok = 1;
1543
1544 LOAD(a, al, &v[0]);
1545 LOAD(c, cl, &v[2]);
1546 ALLOC(d, dl, al - a + (n + MPW_BITS - 1) / MPW_BITS + 1);
1547
1548 mpx_lsr(d, dl, a, al, n);
1549 if (!mpx_ueq(d, dl, c, cl)) {
1550 fprintf(stderr, "\n*** lsr(%i) failed\n", n);
1551 dumpmp(" a", a, al);
1552 dumpmp("expected", c, cl);
1553 dumpmp(" result", d, dl);
1554 ok = 0;
1555 }
1556
1557 xfree(a); xfree(c); xfree(d);
1558 return (ok);
1559 }
1560
1561 static int uadd(dstr *v)
1562 {
1563 mpw *a, *al;
1564 mpw *b, *bl;
1565 mpw *c, *cl;
1566 mpw *d, *dl;
1567 int ok = 1;
1568
1569 LOAD(a, al, &v[0]);
1570 LOAD(b, bl, &v[1]);
1571 LOAD(c, cl, &v[2]);
1572 ALLOC(d, dl, MAX(al - a, bl - b) + 1);
1573
1574 mpx_uadd(d, dl, a, al, b, bl);
1575 if (!mpx_ueq(d, dl, c, cl)) {
1576 fprintf(stderr, "\n*** uadd failed\n");
1577 dumpmp(" a", a, al);
1578 dumpmp(" b", b, bl);
1579 dumpmp("expected", c, cl);
1580 dumpmp(" result", d, dl);
1581 ok = 0;
1582 }
1583
1584 xfree(a); xfree(b); xfree(c); xfree(d);
1585 return (ok);
1586 }
1587
1588 static int usub(dstr *v)
1589 {
1590 mpw *a, *al;
1591 mpw *b, *bl;
1592 mpw *c, *cl;
1593 mpw *d, *dl;
1594 int ok = 1;
1595
1596 LOAD(a, al, &v[0]);
1597 LOAD(b, bl, &v[1]);
1598 LOAD(c, cl, &v[2]);
1599 ALLOC(d, dl, al - a);
1600
1601 mpx_usub(d, dl, a, al, b, bl);
1602 if (!mpx_ueq(d, dl, c, cl)) {
1603 fprintf(stderr, "\n*** usub failed\n");
1604 dumpmp(" a", a, al);
1605 dumpmp(" b", b, bl);
1606 dumpmp("expected", c, cl);
1607 dumpmp(" result", d, dl);
1608 ok = 0;
1609 }
1610
1611 xfree(a); xfree(b); xfree(c); xfree(d);
1612 return (ok);
1613 }
1614
1615 static int umul(dstr *v)
1616 {
1617 mpw *a, *al;
1618 mpw *b, *bl;
1619 mpw *c, *cl;
1620 mpw *d, *dl;
1621 int ok = 1;
1622
1623 LOAD(a, al, &v[0]);
1624 LOAD(b, bl, &v[1]);
1625 LOAD(c, cl, &v[2]);
1626 ALLOC(d, dl, (al - a) + (bl - b));
1627
1628 mpx_umul(d, dl, a, al, b, bl);
1629 if (!mpx_ueq(d, dl, c, cl)) {
1630 fprintf(stderr, "\n*** umul failed\n");
1631 dumpmp(" a", a, al);
1632 dumpmp(" b", b, bl);
1633 dumpmp("expected", c, cl);
1634 dumpmp(" result", d, dl);
1635 ok = 0;
1636 }
1637
1638 xfree(a); xfree(b); xfree(c); xfree(d);
1639 return (ok);
1640 }
1641
1642 static int usqr(dstr *v)
1643 {
1644 mpw *a, *al;
1645 mpw *c, *cl;
1646 mpw *d, *dl;
1647 int ok = 1;
1648
1649 LOAD(a, al, &v[0]);
1650 LOAD(c, cl, &v[1]);
1651 ALLOC(d, dl, 2 * (al - a));
1652
1653 mpx_usqr(d, dl, a, al);
1654 if (!mpx_ueq(d, dl, c, cl)) {
1655 fprintf(stderr, "\n*** usqr failed\n");
1656 dumpmp(" a", a, al);
1657 dumpmp("expected", c, cl);
1658 dumpmp(" result", d, dl);
1659 ok = 0;
1660 }
1661
1662 xfree(a); xfree(c); xfree(d);
1663 return (ok);
1664 }
1665
1666 static int udiv(dstr *v)
1667 {
1668 mpw *a, *al;
1669 mpw *b, *bl;
1670 mpw *q, *ql;
1671 mpw *r, *rl;
1672 mpw *qq, *qql;
1673 mpw *s, *sl;
1674 int ok = 1;
1675
1676 ALLOC(a, al, MPW_RQ(v[0].len) + 2); mpx_loadb(a, al, v[0].buf, v[0].len);
1677 LOAD(b, bl, &v[1]);
1678 LOAD(q, ql, &v[2]);
1679 LOAD(r, rl, &v[3]);
1680 ALLOC(qq, qql, al - a);
1681 ALLOC(s, sl, (bl - b) + 1);
1682
1683 mpx_udiv(qq, qql, a, al, b, bl, s, sl);
1684 if (!mpx_ueq(qq, qql, q, ql) ||
1685 !mpx_ueq(a, al, r, rl)) {
1686 fprintf(stderr, "\n*** udiv failed\n");
1687 dumpmp(" divisor", b, bl);
1688 dumpmp("expect r", r, rl);
1689 dumpmp("result r", a, al);
1690 dumpmp("expect q", q, ql);
1691 dumpmp("result q", qq, qql);
1692 ok = 0;
1693 }
1694
1695 xfree(a); xfree(b); xfree(r); xfree(q); xfree(s); xfree(qq);
1696 return (ok);
1697 }
1698
1699 static test_chunk defs[] = {
1700 { "load-store", loadstore, { &type_hex, 0 } },
1701 { "2cl", twocl, { &type_hex, &type_hex, } },
1702 { "2cb", twocb, { &type_hex, &type_hex, } },
1703 { "lsl", lsl, { &type_hex, &type_int, &type_hex, 0 } },
1704 { "lslc", lslc, { &type_hex, &type_int, &type_hex, 0 } },
1705 { "lsr", lsr, { &type_hex, &type_int, &type_hex, 0 } },
1706 { "uadd", uadd, { &type_hex, &type_hex, &type_hex, 0 } },
1707 { "usub", usub, { &type_hex, &type_hex, &type_hex, 0 } },
1708 { "umul", umul, { &type_hex, &type_hex, &type_hex, 0 } },
1709 { "usqr", usqr, { &type_hex, &type_hex, 0 } },
1710 { "udiv", udiv, { &type_hex, &type_hex, &type_hex, &type_hex, 0 } },
1711 { 0, 0, { 0 } }
1712 };
1713
1714 int main(int argc, char *argv[])
1715 {
1716 #ifdef ENABLE_ASM_DEBUG
1717 regdump_init();
1718 #endif
1719 test_run(argc, argv, defs, SRCDIR"/t/mpx");
1720 return (0);
1721 }
1722
1723 #endif
1724
1725 /*----- That's all, folks -------------------------------------------------*/