Merge branch '2.3.x'
[catacomb] / pub / ed25519.c
1 /* -*-c-*-
2 *
3 * The Ed25519 signature scheme
4 *
5 * (c) 2017 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include <string.h>
31
32 #include "f25519.h"
33 #include "ed25519.h"
34 #include "scaf.h"
35 #include "sha512.h"
36
37 /*----- Key fetching ------------------------------------------------------*/
38
39 const key_fetchdef ed25519_pubfetch[] = {
40 { "pub", offsetof(ed25519_pub, pub), KENC_BINARY, 0 },
41 { 0, 0, 0, 0 }
42 };
43
44 static const key_fetchdef priv[] = {
45 { "priv", offsetof(ed25519_priv, priv), KENC_BINARY, 0 },
46 { 0, 0, 0, 0 }
47 };
48
49 const key_fetchdef ed25519_privfetch[] = {
50 { "pub", offsetof(ed25519_priv, pub), KENC_BINARY, 0 },
51 { "private", 0, KENC_STRUCT, priv },
52 { 0, 0, 0, 0 }
53 };
54
55 /*----- A number of magic numbers -----------------------------------------*/
56
57 #if SCAF_IMPL == 32
58 # define PIECEWD 24
59 static const scaf_piece l[] = {
60 0xf5d3ed, 0x631a5c, 0xd65812, 0xa2f79c, 0xdef9de, 0x000014,
61 0x000000, 0x000000, 0x000000, 0x000000, 0x001000
62 };
63 static const scaf_piece mu[] = {
64 0x1b3994, 0x0a2c13, 0x9ce5a3, 0x29a7ed, 0x5d0863, 0x210621,
65 0xffffeb, 0xffffff, 0xffffff, 0xffffff, 0xffffff, 0x000fff
66 };
67 #endif
68
69 #if SCAF_IMPL == 16
70 # define PIECEWD 12
71 static const scaf_piece l[] = {
72 0x3ed, 0xf5d, 0xa5c, 0x631, 0x812, 0xd65,
73 0x79c, 0xa2f, 0x9de, 0xdef, 0x014, 0x000,
74 0x000, 0x000, 0x000, 0x000, 0x000, 0x000,
75 0x000, 0x000, 0x000, 0x001
76 };
77 static const scaf_piece mu[] = {
78 0x994, 0x1b3, 0xc13, 0x0a2, 0x5a3, 0x9ce,
79 0x7ed, 0x29a, 0x863, 0x5d0, 0x621, 0x210,
80 0xfeb, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
81 0xfff, 0xfff, 0xfff, 0xfff, 0xfff
82 };
83 #endif
84
85 #define NPIECE SCAF_NPIECE(255, PIECEWD)
86
87 #if F25519_IMPL == 26
88 # define P p26
89 static const int32 bx_pieces[] = {
90 -14297830, -7645148, 16144683, -16471763, 27570974,
91 -2696100, -26142465, 8378389, 20764389, 8758491
92 }, by_pieces[] = {
93 -26843560, -6710886, 13421773, -13421773, 26843546,
94 6710886, -13421773, 13421773, -26843546, 26843546
95 }, d_pieces[] = {
96 -10913629, 13857413, -15372611, 6949391, 114729,
97 -8787816, -6275908, -3247719, -18696448, 21499316
98 };
99 #endif
100 #if F25519_IMPL == 10
101 # define P p10
102 static const int16 bx_pieces[] = {
103 282, 373, 242, 386, -467, 86, -423, 318, -437,
104 75, 236, -308, 421, 92, 439, -35, 400, 452,
105 82, -40, 160, 441, -51, 437, -365, 134
106 }, by_pieces[] = {
107 -424, 410, -410, 410, -410, -102, 205, -205, 205,
108 -205, 205, -410, 410, -410, 410, 102, -205, 205,
109 -205, 205, -205, 410, -410, 410, -410, 410
110 }, d_pieces[] = {
111 163, -418, 310, -216, -178, -133, 367, -315, -380,
112 -351, -182, -255, 2, 152, -390, -136, -52, -383,
113 -412, -398, -12, 448, -469, -196, 55, 328
114 };
115 #endif
116
117 static const scaf_piece bz_pieces[NPIECE] = { 1, 0, /* ... */ };
118 #define BX ((const f25519 *)bx_pieces)
119 #define BY ((const f25519 *)by_pieces)
120 #define BZ ((const f25519 *)bz_pieces)
121 #define D ((const f25519 *)d_pieces)
122
123 /*----- Point encoding and decoding ---------------------------------------*/
124
125 static void ptencode(octet q[32],
126 const f25519 *X, const f25519 *Y, const f25519 *Z)
127 {
128 f25519 x, y, t;
129 octet b[32];
130
131 f25519_inv(&t, Z); f25519_mul(&x, X, &t); f25519_mul(&y, Y, &t);
132 f25519_store(q, &y); f25519_store(b, &x); q[31] |= (b[0]&1u) << 7;
133 }
134
135 static int ptdecode(f25519 *X, f25519 *Y, f25519 *Z, const octet q[32])
136 {
137 octet b[32];
138 f25519 t, u;
139 uint32 m;
140 int rc;
141
142 memcpy(b, q, 32); b[31] &= 0x7fu; f25519_load(Y, b);
143 f25519_sqr(&t, Y); f25519_mul(&u, &t, D); t.P[0] -= 1; u.P[0] += 1;
144 rc = f25519_quosqrt(X, &t, &u);
145 f25519_store(b, X); m = -(((q[31] >> 7) ^ b[0])&0x1u);
146 f25519_condneg(X, X, m);
147 f25519_set(Z, 1);
148 return (rc);
149 }
150
151 /*----- Edwards curve arithmetic ------------------------------------------*/
152
153 static void ptadd(f25519 *X, f25519 *Y, f25519 *Z,
154 const f25519 *X0, const f25519 *Y0, const f25519 *Z0,
155 const f25519 *X1, const f25519 *Y1, const f25519 *Z1)
156 {
157 f25519 t0, t1, t2, t3, t4, t5;
158
159 /* Bernstein, Birkner, Joye, Lange, and Peters, `Twisted Edwards Curves',
160 * 2008-03-13, https://cr.yp.to/newelliptic/twisted-20080313.pdf shows the
161 * formulae as:
162 *
163 * A = Z1 Z2; B = A^2; C = X1 X2; D = Y1 Y2;
164 * E = d C D; F = B - E; G = B + E;
165 * X3 = A F ((X1 + Y1) (X2 + Y2) - C - D);
166 * Y3 = A G (D - a C); Z3 = F G.
167 *
168 * Note that a = -1, which things easier.
169 */
170
171 f25519_mul(&t0, Z0, Z1); /* t0 = A = Z0 Z1 */
172 f25519_sqr(&t1, &t0); /* t1 = B = A^2 */
173 f25519_mul(&t2, X0, X1); /* t2 = C = X0 X1 */
174 f25519_mul(&t3, Y0, Y1); /* t3 = D = Y0 Y1 */
175 f25519_mul(&t4, &t2, &t3); /* t4 = C D */
176 f25519_mul(&t4, &t4, D); /* t4 = E = d C D */
177 f25519_sub(&t5, &t1, &t4); /* t5 = F = B - E */
178 f25519_add(&t4, &t1, &t4); /* t4 = G = B + E */
179 f25519_add(&t1, &t2, &t3); /* t1 = C + D */
180 f25519_add(&t2, X0, Y0); /* t2 = X0 + Y0 */
181 f25519_add(&t3, X1, Y1); /* t3 = X1 + Y1 */
182 f25519_mul(X, &t0, &t5); /* X = A F */
183 f25519_mul(Y, &t0, &t4); /* Y = A G */
184 f25519_mul(Z, &t5, &t4); /* Z = F G */
185 f25519_mul(Y, Y, &t1); /* Y = A G (C + D) = A G (D - a C) */
186 f25519_mul(&t0, &t2, &t3); /* t0 = (X0 + Y0) (X1 + Y1) */
187 f25519_sub(&t0, &t0, &t1); /* t0 = (X0 + Y0) (X1 + Y1) - C - D */
188 f25519_mul(X, X, &t0); /* X = A F ((X0 + Y0) (X1 + Y1) - C - D) */
189 }
190
191 static void ptdbl(f25519 *X, f25519 *Y, f25519 *Z,
192 const f25519 *X0, const f25519 *Y0, const f25519 *Z0)
193 {
194 f25519 t0, t1, t2;
195
196 /* Bernstein, Birkner, Joye, Lange, and Peters, `Twisted Edwards Curves',
197 * 2008-03-13, https://cr.yp.to/newelliptic/twisted-20080313.pdf shows the
198 * formulae as:
199 *
200 * B = (X1 + Y1)^2; C = X1^2; D = Y1^2; E = a C;
201 * F = E + D; H = Z1^2; J = F - 2 H;
202 * X3 = (B - C - D) J; Y3 = F (E - D); Z3 = F J.
203 *
204 * Note that a = -1, which things easier.
205 */
206
207 f25519_add(&t0, X0, Y0); /* t0 = X0 + Y0 */
208 f25519_sqr(&t0, &t0); /* t0 = B = (X0 + Y0)^2 */
209 f25519_sqr(&t1, X0); /* t1 = C = X0^2 */
210 f25519_sqr(&t2, Y0); /* t2 = D = Y0^2 */
211 f25519_add(Y, &t1, &t2); /* Y = C + D = -(E - D) */
212 f25519_sub(X, &t0, Y); /* X = B - C - D */
213 /* (E = a C = -C) */
214 f25519_sub(&t0, &t2, &t1); /* t0 = F = D - C = E + D */
215 f25519_sqr(&t1, Z0); /* t1 = H = Z0^2 */
216 f25519_mulconst(&t1, &t1, 2); /* t1 = 2 H */
217 f25519_sub(&t1, &t0, &t1); /* t1 = J = F - 2 H */
218 f25519_mul(X, X, &t1); /* X = (B - C - D) J */
219 f25519_mul(Y, Y, &t0); /* Y = -F (E - D) */
220 f25519_neg(Y, Y); /* Y = F (E - D) */
221 f25519_mul(Z, &t0, &t1); /* Z = F J */
222 }
223
224 static void ptmul(f25519 *X, f25519 *Y, f25519 *Z,
225 const scaf_piece n[NPIECE],
226 const f25519 *X0, const f25519 *Y0, const f25519 *Z0)
227 {
228 /* We assume that the window width divides the scalar piece width. */
229 #define WINWD 4
230 #define WINLIM (1 << WINWD)
231 #define WINMASK (WINLIM - 1)
232 #define TABSZ (WINLIM/2 + 1)
233
234 f25519 VX[TABSZ], VY[TABSZ], VZ[TABSZ];
235 f25519 TX, TY, TZ, UX, UY, UZ;
236 unsigned i, j, k, w;
237 uint32 m_neg;
238 scaf_piece ni;
239
240 /* Build a table of small multiples. */
241 f25519_set(&VX[0], 0); f25519_set(&VY[0], 1); f25519_set(&VZ[0], 1);
242 VX[1] = *X0; VY[1] = *Y0; VZ[1] = *Z0;
243 ptdbl(&VX[2], &VY[2], &VZ[2], &VX[1], &VY[1], &VZ[1]);
244 for (i = 3; i < TABSZ; i += 2) {
245 ptadd(&VX[i], &VY[i], &VZ[i],
246 &VX[i - 1], &VY[i - 1], &VZ[i - 1], X0, Y0, Z0);
247 ptdbl(&VX[i + 1], &VY[i + 1], &VZ[i + 1],
248 &VX[(i + 1)/2], &VY[(i + 1)/2], &VZ[(i + 1)/2]);
249 }
250
251 /* Now do the multiplication. We lag a window behind the cursor position
252 * because of the scalar recoding we do.
253 */
254 f25519_set(&TX, 0); f25519_set(&TY, 1); f25519_set(&TZ, 1);
255 for (i = NPIECE, w = 0, m_neg = 0; i--; ) {
256 ni = n[i];
257
258 /* Work through each window in the scalar piece. */
259 for (j = 0; j < PIECEWD; j += WINWD) {
260
261 /* Shift along by a window. */
262 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
263
264 /* Peek at the next window of four bits. If the top bit is set we lend
265 * a bit leftwards, into w. It's too late for this to affect the sign
266 * now, but if we negated earlier then the addition would be wrong.
267 */
268 w += (ni >> (PIECEWD - 1))&0x1u;
269 w = ((WINLIM - w)&m_neg) | (w&~m_neg);
270
271 /* Collect the entry from the table, and add or subtract. */
272 f25519_pickn(&UX, VX, TABSZ, w);
273 f25519_pickn(&UY, VY, TABSZ, w);
274 f25519_pickn(&UZ, VZ, TABSZ, w);
275 f25519_condneg(&UX, &UX, m_neg);
276 ptadd(&TX, &TY, &TZ, &TX, &TY, &TZ, &UX, &UY, &UZ);
277
278 /* Move the next window into the delay slot. If its top bit is set,
279 * then negate it and set m_neg.
280 */
281 w = (ni >> (PIECEWD - WINWD))&WINMASK;
282 m_neg = -(uint32)((w >> (WINWD - 1))&0x1u);
283 ni <<= WINWD;
284 }
285 }
286
287 /* Do the final window. Just fix the sign and go. */
288 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
289 w = ((WINLIM - w)&m_neg) | (w&~m_neg);
290 f25519_pickn(&UX, VX, TABSZ, w);
291 f25519_pickn(&UY, VY, TABSZ, w);
292 f25519_pickn(&UZ, VZ, TABSZ, w);
293 f25519_condneg(&UX, &UX, m_neg);
294 ptadd(X, Y, Z, &TX, &TY, &TZ, &UX, &UY, &UZ);
295
296 #undef WINWD
297 #undef WINLIM
298 #undef WINMASK
299 #undef TABSZ
300 }
301
302 static void ptsimmul(f25519 *X, f25519 *Y, f25519 *Z,
303 const scaf_piece n0[NPIECE],
304 const f25519 *X0, const f25519 *Y0, const f25519 *Z0,
305 const scaf_piece n1[NPIECE],
306 const f25519 *X1, const f25519 *Y1, const f25519 *Z1)
307 {
308 /* We assume that the window width divides the scalar piece width. */
309 #define WINWD 2
310 #define WINLIM (1 << WINWD)
311 #define WINMASK (WINLIM - 1)
312 #define TABSZ (1 << 2*WINWD)
313
314 f25519 VX[TABSZ], VY[TABSZ], VZ[TABSZ];
315 f25519 TX, TY, TZ, UX, UY, UZ;
316 unsigned i, j, k, w, ni0, ni1;
317
318 /* Build a table of small linear combinations. */
319 f25519_set(&VX[0], 0); f25519_set(&VY[0], 1); f25519_set(&VZ[0], 1);
320 VX[1] = *X0; VX[WINLIM] = *X1;
321 VY[1] = *Y0; VY[WINLIM] = *Y1;
322 VZ[1] = *Z0; VZ[WINLIM] = *Z1;
323 for (i = 2; i < WINLIM; i <<= 1) {
324 ptdbl(&VX[i], &VY[i], &VZ[i],
325 &VX[i/2], &VY[i/2], &VZ[i/2]);
326 ptdbl(&VX[i*WINLIM], &VY[i*WINLIM], &VZ[i*WINLIM],
327 &VX[i*WINLIM/2], &VY[i*WINLIM/2], &VZ[i*WINLIM/2]);
328 }
329 for (i = 2; i < TABSZ; i <<= 1) {
330 for (j = 1; j < i; j++)
331 ptadd(&VX[i + j], &VY[i + j], &VZ[i + j],
332 &VX[i], &VY[i], &VZ[i], &VX[j], &VY[j], &VZ[j]);
333 }
334
335 /* Do the multiplication. */
336 f25519_set(&TX, 0); f25519_set(&TY, 1); f25519_set(&TZ, 1);
337 for (i = NPIECE; i--; ) {
338 ni0 = n0[i]; ni1 = n1[i];
339
340 /* Work through each window in the scalar pieces. */
341 for (j = 0; j < PIECEWD; j += WINWD) {
342
343 /* Shift along by a window. */
344 for (k = 0; k < WINWD; k++) ptdbl(&TX, &TY, &TZ, &TX, &TY, &TZ);
345
346 /* Collect the next window from the scalars. */
347 w = ((ni0 >> (PIECEWD - WINWD))&WINMASK) |
348 ((ni1 >> (PIECEWD - 2*WINWD))&(WINMASK << WINWD));
349 ni0 <<= WINWD; ni1 <<= WINWD;
350
351 /* Collect the entry from the table, and add. */
352 f25519_pickn(&UX, VX, TABSZ, w);
353 f25519_pickn(&UY, VY, TABSZ, w);
354 f25519_pickn(&UZ, VZ, TABSZ, w);
355 ptadd(&TX, &TY, &TZ, &TX, &TY, &TZ, &UX, &UY, &UZ);
356 }
357 }
358
359 /* Done. */
360 *X = TX; *Y = TY; *Z = TZ;
361 }
362
363 /*----- Key derivation utilities ------------------------------------------*/
364
365 static void unpack_key(scaf_piece a[NPIECE], octet h1[32],
366 const octet *k, size_t ksz)
367 {
368 sha512_ctx h;
369 octet b[SHA512_HASHSZ];
370
371 sha512_init(&h); sha512_hash(&h, k, ksz); sha512_done(&h, b);
372 b[0] &= 0xf8u; b[31] = (b[31]&0x3f) | 0x40;
373 scaf_load(a, b, 32, NPIECE, PIECEWD);
374 memcpy(h1, b + 32, 32);
375 }
376
377 /*----- Main code ---------------------------------------------------------*/
378
379 /* --- @ed25519_pubkey@ --- *
380 *
381 * Arguments: @octet K[ED25519_PUBSZ]@ = where to put the public key
382 * @const void *k@ = private key
383 * @size_t ksz@ = length of private key
384 *
385 * Returns: ---
386 *
387 * Use: Derives the public key from a private key.
388 */
389
390 void ed25519_pubkey(octet K[ED25519_PUBSZ], const void *k, size_t ksz)
391 {
392 scaf_piece a[NPIECE];
393 f25519 AX, AY, AZ;
394 octet h1[32];
395
396 unpack_key(a, h1, k, ksz);
397 ptmul(&AX, &AY, &AZ, a, BX, BY, BZ);
398 ptencode(K, &AX, &AY, &AZ);
399 }
400
401 /* --- @ed25519_sign@ --- *
402 *
403 * Arguments: @octet sig[ED25519_SIGSZ]@ = where to put the signature
404 * @const void *k@ = private key
405 * @size_t ksz@ = length of private key
406 * @const octet K[ED25519_PUBSZ]@ = public key
407 * @const void *m@ = message to sign
408 * @size_t msz@ = length of message
409 *
410 * Returns: ---
411 *
412 * Use: Signs a message.
413 */
414
415 void ed25519_sign(octet sig[ED25519_SIGSZ],
416 const void *k, size_t ksz,
417 const octet K[ED25519_PUBSZ],
418 const void *m, size_t msz)
419 {
420 sha512_ctx h;
421 scaf_piece a[NPIECE], r[NPIECE], t[NPIECE], scratch[3*NPIECE + 1];
422 scaf_dblpiece tt[2*NPIECE];
423 f25519 RX, RY, RZ;
424 octet h1[32], b[SHA512_HASHSZ];
425 unsigned i;
426
427 /* Get my private key. */
428 unpack_key(a, h1, k, ksz);
429
430 /* Select the nonce and the vector part. */
431 sha512_init(&h);
432 sha512_hash(&h, h1, 32);
433 sha512_hash(&h, m, msz);
434 sha512_done(&h, b);
435 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
436 scaf_reduce(r, tt, l, mu, NPIECE, PIECEWD, scratch);
437 ptmul(&RX, &RY, &RZ, r, BX, BY, BZ);
438 ptencode(sig, &RX, &RY, &RZ);
439
440 /* Calculate the scalar part. */
441 sha512_init(&h);
442 sha512_hash(&h, sig, 32);
443 sha512_hash(&h, K, 32);
444 sha512_hash(&h, m, msz);
445 sha512_done(&h, b);
446 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
447 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
448 scaf_mul(tt, t, a, NPIECE);
449 for (i = 0; i < NPIECE; i++) tt[i] += r[i];
450 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
451 scaf_store(sig + 32, 32, t, NPIECE, PIECEWD);
452 }
453
454 /* --- @ed25519_verify@ --- *
455 *
456 * Arguments: @const octet K[ED25519_PUBSZ]@ = public key
457 * @const void *m@ = message to sign
458 * @size_t msz@ = length of message
459 * @const octet sig[ED25519_SIGSZ]@ = signature
460 *
461 * Returns: Zero if OK, negative on failure.
462 *
463 * Use: Verify a signature.
464 */
465
466 int ed25519_verify(const octet K[ED25519_PUBSZ],
467 const void *m, size_t msz,
468 const octet sig[ED25519_SIGSZ])
469 {
470 sha512_ctx h;
471 scaf_piece s[NPIECE], t[NPIECE], scratch[3*NPIECE + 1];
472 scaf_dblpiece tt[2*NPIECE];
473 f25519 AX, AY, AZ, RX, RY, RZ;
474 octet b[SHA512_HASHSZ];
475
476 /* Unpack the public key. Negate it: we're meant to subtract the term
477 * involving the public key point, and this is easier than negating the
478 * scalar.
479 */
480 if (ptdecode(&AX, &AY, &AZ, K)) return (-1);
481 f25519_neg(&AX, &AX);
482
483 /* Check the signature. */
484 sha512_init(&h);
485 sha512_hash(&h, sig, 32);
486 sha512_hash(&h, K, 32);
487 sha512_hash(&h, m, msz);
488 sha512_done(&h, b);
489 scaf_load(s, sig + 32, 32, NPIECE, PIECEWD);
490 scaf_loaddbl(tt, b, 64, 2*NPIECE, PIECEWD);
491 scaf_reduce(t, tt, l, mu, NPIECE, PIECEWD, scratch);
492 ptsimmul(&RX, &RY, &RZ, s, BX, BY, BZ, t, &AX, &AY, &AZ);
493 ptencode(b, &RX, &RY, &RZ);
494 if (memcmp(b, sig, 32) != 0) return (-1);
495
496 /* All is good. */
497 return (0);
498 }
499
500 /*----- Test rig ----------------------------------------------------------*/
501
502 #ifdef TEST_RIG
503
504 #include <stdio.h>
505 #include <string.h>
506
507 #include <mLib/report.h>
508 #include <mLib/testrig.h>
509
510 static int vrf_pubkey(dstr dv[])
511 {
512 dstr dpub = DSTR_INIT;
513 int ok = 1;
514
515 if (dv[1].len != 32) die(1, "bad pub length");
516
517 dstr_ensure(&dpub, 32); dpub.len = 32;
518 ed25519_pubkey((octet *)dpub.buf, dv[0].buf, dv[0].len);
519 if (memcmp(dpub.buf, dv[1].buf, 64) != 0) {
520 ok = 0;
521 fprintf(stderr, "failed!");
522 fprintf(stderr, "\n\tpriv = "); type_hex.dump(&dv[0], stderr);
523 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&dpub, stderr);
524 fprintf(stderr, "\n\twant = "); type_hex.dump(&dv[1], stderr);
525 fprintf(stderr, "\n");
526 }
527
528 dstr_destroy(&dpub);
529 return (ok);
530 }
531
532 static int vrf_sign(dstr dv[])
533 {
534 octet K[ED25519_PUBSZ];
535 dstr dsig = DSTR_INIT;
536 int ok = 1;
537
538 if (dv[2].len != 64) die(1, "bad result length");
539
540 dstr_ensure(&dsig, 64); dsig.len = 64;
541 ed25519_pubkey(K, dv[0].buf, dv[0].len);
542 ed25519_sign((octet *)dsig.buf, dv[0].buf, dv[0].len, K,
543 dv[1].buf, dv[1].len);
544 if (memcmp(dsig.buf, dv[2].buf, 64) != 0) {
545 ok = 0;
546 fprintf(stderr, "failed!");
547 fprintf(stderr, "\n\tpriv = "); type_hex.dump(&dv[0], stderr);
548 fprintf(stderr, "\n\t msg = "); type_hex.dump(&dv[1], stderr);
549 fprintf(stderr, "\n\tcalc = "); type_hex.dump(&dsig, stderr);
550 fprintf(stderr, "\n\twant = "); type_hex.dump(&dv[2], stderr);
551 fprintf(stderr, "\n");
552 }
553
554 dstr_destroy(&dsig);
555 return (ok);
556 }
557
558 static int vrf_verify(dstr dv[])
559 {
560 int rc_want, rc_calc;
561 int ok = 1;
562
563 if (dv[0].len != 32) die(1, "bad pub length");
564 if (dv[2].len != 64) die(1, "bad sig length");
565 rc_want = *(int *)dv[3].buf;
566
567 rc_calc = ed25519_verify((const octet *)dv[0].buf,
568 dv[1].buf, dv[1].len,
569 (const octet *)dv[2].buf);
570 if (!rc_want != !rc_calc) {
571 ok = 0;
572 fprintf(stderr, "failed!");
573 fprintf(stderr, "\n\t pub = "); type_hex.dump(&dv[0], stderr);
574 fprintf(stderr, "\n\t msg = "); type_hex.dump(&dv[1], stderr);
575 fprintf(stderr, "\n\t sig = "); type_hex.dump(&dv[2], stderr);
576 fprintf(stderr, "\n\tcalc = %d", rc_calc);
577 fprintf(stderr, "\n\twant = %d", rc_want);
578 fprintf(stderr, "\n");
579 }
580
581 return (ok);
582 }
583
584 static test_chunk tests[] = {
585 { "pubkey", vrf_pubkey, { &type_hex, &type_hex } },
586 { "sign", vrf_sign, { &type_hex, &type_hex, &type_hex } },
587 { "verify", vrf_verify, { &type_hex, &type_hex, &type_hex, &type_int } },
588 { 0, 0, { 0 } }
589 };
590
591 int main(int argc, char *argv[])
592 {
593 test_run(argc, argv, tests, SRCDIR "/t/ed25519");
594 return (0);
595 }
596
597 #endif
598
599 /*----- That's all, folks -------------------------------------------------*/