Merge branch '2.5.x'
[catacomb] / rand / rand.c
1 /* -*-c-*-
2 *
3 * Secure random number generator
4 *
5 * (c) 1998 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33 #include <stdio.h>
34 #include <string.h>
35
36 #include <mLib/bits.h>
37 #include <mLib/sub.h>
38
39 #include "arena.h"
40 #include "dispatch.h"
41 #include "paranoia.h"
42
43 #define RAND__HACKS
44 #include "rand.h"
45
46 #include "noise.h"
47
48 #include "twofish-counter.h"
49 #include "sha256.h"
50
51 #define CIPHER_CTX twofish_counterctx
52 #define CIPHER_INIT twofish_counterinit
53 #define CIPHER_ENCRYPT twofish_counterencrypt
54 #define CIPHER_IVSZ TWOFISH_BLKSZ
55 #define CIPHER_KEYSZ TWOFISH_KEYSZ
56
57 #define HASH_CTX sha256_ctx
58 #define HASH_INIT sha256_init
59 #define HASH sha256_hash
60 #define HASH_DONE sha256_done
61 #define HASH_SZ SHA256_HASHSZ
62
63 /*----- Static variables --------------------------------------------------*/
64
65 static const grand_ops gops;
66
67 typedef struct rand__gctx {
68 grand r;
69 rand_pool p;
70 } gctx;
71
72 gctx rand_global = {
73 { &gops },
74 { { 0 }, 0, 0, 0, 0,
75 { 0 }, RAND_SECSZ, 0,
76 { "Catacomb global random byte pool" },
77 &noise_source }
78 };
79
80 /*----- Macros ------------------------------------------------------------*/
81
82 #define RAND_RESOLVE(r) \
83 do { if ((r) == RAND_GLOBAL) r = &rand_global.p; } while (0)
84
85 #define GENCHECK(r) do { \
86 unsigned gen = rand_generation(); \
87 if (r->gen != gen) { r->gen = gen; rand_gate(r); } \
88 } while (0)
89
90 static int quick(rand_pool *);
91 #define QUICK(r) do { \
92 quick(r); \
93 if ((r)->s && (r)->s->timer) (r)->s->timer(r); \
94 } while (0)
95
96 /*----- Main code ---------------------------------------------------------*/
97
98 /* --- @rand_init@ --- *
99 *
100 * Arguments: @rand_pool *r@ = pointer to a randomness pool
101 *
102 * Returns: ---
103 *
104 * Use: Initializes a randomness pool. The pool doesn't start out
105 * very random: that's your job to sort out. A good suggestion
106 * would be to attach an appropriate noise source and call
107 * @rand_seed@.
108 */
109
110 void rand_init(rand_pool *r)
111 {
112 RAND_RESOLVE(r);
113 memset(r->pool, 0, sizeof(r->pool));
114 memset(r->buf, 0, sizeof(r->buf));
115 r->gen = rand_generation();
116 r->i = 0;
117 r->irot = 0;
118 r->ibits = r->obits = 0;
119 r->o = RAND_SECSZ;
120 r->s = &noise_source;
121 rand_key(r, 0, 0);
122 rand_gate(r);
123 }
124
125 /* --- @rand_noisesrc@ --- *
126 *
127 * Arguments: @rand_pool *r@ = pointer to a randomness pool
128 * @const rand_source *s@ = pointer to source definition
129 *
130 * Returns: ---
131 *
132 * Use: Sets a noise source for a randomness pool. When the pool's
133 * estimate of good random bits falls to zero, the @getnoise@
134 * function is called, passing the pool handle as an argument.
135 * It is expected to increase the number of good bits by at
136 * least one, because it'll be called over and over again until
137 * there are enough bits to satisfy the caller. The @timer@
138 * function is called frequently throughout the generator's
139 * operation.
140 */
141
142 void rand_noisesrc(rand_pool *r, const rand_source *s)
143 {
144 RAND_RESOLVE(r);
145 r->s = s;
146 }
147
148 /* --- @rand_quick@ --- *
149 *
150 * Arguments: @rand_pool *r@ = pointer to a randomness pool
151 *
152 * Returns: Zero on success; @-1@ on failure.
153 *
154 * Use Attempts to use some machine-specific `quick' source of
155 * entropy to top up @r@. This may not do anything at all on
156 * many systems.
157 */
158
159 CPU_DISPATCH(static, return, int, quick, (rand_pool *r), (r),
160 pick_quick, trivial_quick);
161
162 static int trivial_quick(rand_pool *r) { return (-1); }
163
164 #if CPUFAM_X86 || CPUFAM_AMD64
165 extern int rand_quick_x86ish_rdrand(rand_pool */*r*/);
166 #endif
167
168 static quick__functype *pick_quick(void)
169 {
170 #if CPUFAM_X86 || CPUFAM_AMD64
171 DISPATCH_PICK_COND(rand_quick, rand_quick_x86ish_rdrand,
172 cpu_feature_p(CPUFEAT_X86_RDRAND));
173 #endif
174 DISPATCH_PICK_FALLBACK(rand_quick, trivial_quick);
175 }
176
177 int rand_quick(rand_pool *r) { RAND_RESOLVE(r); return (quick(r)); }
178
179 /* --- @rand_seed@ --- *
180 *
181 * Arguments: @rand_pool *r@ = pointer to a randomness pool
182 * @unsigned bits@ = number of bits to ensure
183 *
184 * Returns: ---
185 *
186 * Use: Ensures that there are at least @bits@ good bits of entropy
187 * in the pool. It is recommended that you call this after
188 * initializing a new pool. Requesting @bits > RAND_IBITS@ is
189 * doomed to failure (and is an error).
190 */
191
192 void rand_seed(rand_pool *r, unsigned bits)
193 {
194 RAND_RESOLVE(r);
195
196 assert(((void)"bits pointlessly large in rand_seed", bits <= RAND_IBITS));
197 assert(((void)"no noise source in rand_seed", r->s));
198
199 while (r->ibits < bits)
200 r->s->getnoise(r);
201 rand_gate(r);
202 }
203
204 /* --- @rand_key@ --- *
205 *
206 * Arguments: @rand_pool *r@ = pointer to a randomness pool
207 * @const void *k@ = pointer to key data
208 * @size_t sz@ = size of key data
209 *
210 * Returns: ---
211 *
212 * Use: Sets the secret key for a randomness pool. The key is used
213 * when mixing in new random bits.
214 */
215
216 void rand_key(rand_pool *r, const void *k, size_t sz)
217 {
218 HASH_CTX hc;
219 octet h[HASH_SZ];
220 static const char label[] = "Catacomb random pool key";
221
222 RAND_RESOLVE(r);
223
224 assert(HASH_SZ >= RAND_KEYSZ);
225 HASH_INIT(&hc);
226 HASH(&hc, label, sizeof(label));
227 if (sz) HASH(&hc, k, sz);
228 HASH_DONE(&hc, h);
229 memcpy(r->k.k, h, RAND_KEYSZ);
230 }
231
232 /* --- @rand_add@ --- *
233 *
234 * Arguments: @rand_pool *r@ = pointer to a randomness pool
235 * @const void *p@ = pointer a buffer of data to add
236 * @size_t sz@ = size of the data buffer
237 * @unsigned goodbits@ = number of good bits estimated in buffer
238 *
239 * Returns: ---
240 *
241 * Use: Mixes the data in the buffer with the contents of the
242 * pool. The estimate of the number of good bits is added to
243 * the pool's own count. The mixing operation is not
244 * cryptographically strong. However, data in the input pool
245 * isn't output directly, only through the one-way gating
246 * operation, so that shouldn't matter.
247 */
248
249 void rand_add(rand_pool *r, const void *p, size_t sz, unsigned goodbits)
250 {
251 const octet *c = p;
252 int i, rot;
253
254 STATIC_ASSERT(RAND_POOLSZ == 128, "Polynomial doesn't match pool size");
255
256 RAND_RESOLVE(r);
257
258 i = r->i; rot = r->irot;
259
260 while (sz) {
261 octet o = *c++;
262 r->pool[i] ^= (ROL8(o, rot) ^
263 r->pool[(i + 1) % RAND_POOLSZ] ^
264 r->pool[(i + 2) % RAND_POOLSZ] ^
265 r->pool[(i + 7) % RAND_POOLSZ]);
266 rot = (rot + 5) & 7;
267 i++; if (i >= RAND_POOLSZ) i -= RAND_POOLSZ;
268 sz--;
269 }
270
271 r->i = i;
272 r->irot = rot;
273 r->ibits += goodbits;
274 if (r->ibits > RAND_IBITS)
275 r->ibits = RAND_IBITS;
276 }
277
278 /* --- @rand_goodbits@ --- *
279 *
280 * Arguments: @rand_pool *r@ = pointer to a randomness pool
281 *
282 * Returns: Estimate of the number of good bits remaining in the pool.
283 */
284
285 unsigned rand_goodbits(rand_pool *r)
286 {
287 RAND_RESOLVE(r);
288 return (r->ibits + r->obits);
289 }
290
291 /* --- @rand_gate@ --- *
292 *
293 * Arguments: @rand_pool *r@ = pointer to a randomness pool
294 *
295 * Returns: ---
296 *
297 * Use: Mixes up the entire state of the generator in a nonreversible
298 * way.
299 */
300
301 void rand_gate(rand_pool *r)
302 {
303 octet h[HASH_SZ], g[4];
304 HASH_CTX hc;
305 CIPHER_CTX cc;
306
307 RAND_RESOLVE(r);
308 QUICK(r);
309
310 /* --- Hash up all the data in the pool --- */
311
312 HASH_INIT(&hc);
313 STORE32(g, r->gen); HASH(&hc, g, sizeof(g));
314 HASH(&hc, r->k.k, RAND_KEYSZ);
315 HASH(&hc, r->pool, RAND_POOLSZ);
316 HASH(&hc, r->buf, RAND_BUFSZ);
317 HASH_DONE(&hc, h);
318 BURN(hc);
319
320 /* --- Now mangle all of the data based on the hash --- */
321
322 assert(CIPHER_KEYSZ <= HASH_SZ);
323 CIPHER_INIT(&cc, h, CIPHER_KEYSZ, 0);
324 CIPHER_ENCRYPT(&cc, r->pool, r->pool, RAND_POOLSZ);
325 CIPHER_ENCRYPT(&cc, r->buf, r->buf, RAND_BUFSZ);
326 BURN(cc);
327
328 /* --- Reset the various state variables --- */
329
330 r->o = RAND_SECSZ;
331 r->obits += r->ibits;
332 if (r->obits > RAND_OBITS) {
333 r->ibits = r->obits - r->ibits;
334 r->obits = RAND_OBITS;
335 } else
336 r->ibits = 0;
337 QUICK(r);
338 }
339
340 /* --- @rand_stretch@ --- *
341 *
342 * Arguments: @rand_pool *r@ = pointer to a randomness pool
343 *
344 * Returns: ---
345 *
346 * Use: Stretches the contents of the output buffer by transforming
347 * it in a nonreversible way. This doesn't add any entropy
348 * worth speaking about, but it works well enough when the
349 * caller doesn't care about that sort of thing.
350 */
351
352 void rand_stretch(rand_pool *r)
353 {
354 octet h[HASH_SZ], g[4];
355 HASH_CTX hc;
356 CIPHER_CTX cc;
357
358 RAND_RESOLVE(r);
359 QUICK(r);
360
361 /* --- Hash up all the data in the buffer --- */
362
363 HASH_INIT(&hc);
364 STORE32(g, r->gen); HASH(&hc, g, sizeof(g));
365 HASH(&hc, r->k.k, RAND_KEYSZ);
366 HASH(&hc, r->pool, RAND_POOLSZ);
367 HASH(&hc, r->buf, RAND_BUFSZ);
368 HASH_DONE(&hc, h);
369 BURN(hc);
370
371 /* --- Now mangle the buffer based on the hash --- */
372
373 assert(CIPHER_KEYSZ <= HASH_SZ);
374 CIPHER_INIT(&cc, h, CIPHER_KEYSZ, 0);
375 CIPHER_ENCRYPT(&cc, r->buf, r->buf, RAND_BUFSZ);
376 BURN(cc);
377
378 /* --- Reset the various state variables --- */
379
380 r->o = RAND_SECSZ;
381 QUICK(r);
382 }
383
384 /* --- @rand_get@ --- *
385 *
386 * Arguments: @rand_pool *r@ = pointer to a randomness pool
387 * @void *p@ = pointer to output buffer
388 * @size_t sz@ = size of output buffer
389 *
390 * Returns: ---
391 *
392 * Use: Gets random data from the pool. The pool's contents can't be
393 * determined from the output of this function; nor can the
394 * output data be determined from a knowledge of the data input
395 * to the pool wihtout also having knowledge of the secret key.
396 * The good bits counter is decremented, although no special
397 * action is taken if it reaches zero.
398 */
399
400 void rand_get(rand_pool *r, void *p, size_t sz)
401 {
402 octet *o = p;
403
404 RAND_RESOLVE(r);
405 GENCHECK(r);
406 QUICK(r);
407
408 if (!sz)
409 return;
410 for (;;) {
411 if (r->o + sz <= RAND_BUFSZ) {
412 memcpy(o, r->buf + r->o, sz);
413 r->o += sz;
414 break;
415 } else {
416 size_t chunk = RAND_BUFSZ - r->o;
417 if (chunk) {
418 memcpy(o, r->buf + r->o, chunk);
419 sz -= chunk;
420 o += chunk;
421 }
422 rand_stretch(r);
423 }
424 }
425
426 if (r->obits > sz * 8)
427 r->obits -= sz * 8;
428 else
429 r->obits = 0;
430 }
431
432 /* --- @rand_getgood@ --- *
433 *
434 * Arguments: @rand_pool *r@ = pointer to a randomness pool
435 * @void *p@ = pointer to output buffer
436 * @size_t sz@ = size of output buffer
437 *
438 * Returns: ---
439 *
440 * Use: Gets random data from the pool, ensuring that there are
441 * enough good bits. This interface isn't recommended: it makes
442 * the generator slow, and doesn't provide much more security
443 * than @rand_get@, assuming you've previously done a
444 * @rand_seed@.
445 */
446
447 void rand_getgood(rand_pool *r, void *p, size_t sz)
448 {
449 octet *o = p;
450
451 RAND_RESOLVE(r);
452
453 if (!sz)
454 return;
455 if (!r->s || !r->s->getnoise) {
456 rand_get(r, p, sz);
457 return;
458 }
459 GENCHECK(r);
460 QUICK(r);
461
462 while (sz) {
463 size_t chunk = sz;
464
465 if (chunk * 8 > r->obits) {
466 if (chunk * 8 > r->ibits + r->obits)
467 do r->s->getnoise(r); while (r->ibits + r->obits < 256);
468 rand_gate(r);
469 if (chunk * 8 > r->obits)
470 chunk = r->obits / 8;
471 }
472
473 if (chunk + r->o > RAND_BUFSZ)
474 chunk = RAND_BUFSZ - r->o;
475
476 memcpy(o, r->buf + r->o, chunk);
477 r->o += chunk;
478 r->obits -= chunk * 8;
479 o += chunk;
480 sz -= chunk;
481 }
482 }
483
484 /*----- Generic random number generator interface -------------------------*/
485
486 static void gdestroy(grand *r)
487 {
488 gctx *g = (gctx *)r;
489 if (g != &rand_global) {
490 BURN(*g);
491 S_DESTROY(g);
492 }
493 }
494
495 static int gmisc(grand *r, unsigned op, ...)
496 {
497 gctx *g = (gctx *)r;
498 va_list ap;
499 int rc = 0;
500 va_start(ap, op);
501
502 switch (op) {
503 case GRAND_CHECK:
504 switch (va_arg(ap, unsigned)) {
505 case GRAND_CHECK:
506 case GRAND_SEEDINT:
507 case GRAND_SEEDUINT32:
508 case GRAND_SEEDBLOCK:
509 case GRAND_SEEDRAND:
510 case RAND_GATE:
511 case RAND_STRETCH:
512 case RAND_KEY:
513 case RAND_NOISESRC:
514 case RAND_SEED:
515 case RAND_TIMER:
516 case RAND_GOODBITS:
517 case RAND_ADD:
518 rc = 1;
519 break;
520 default:
521 rc = 0;
522 break;
523 }
524 break;
525 case GRAND_SEEDINT: {
526 unsigned u = va_arg(ap, unsigned);
527 rand_add(&g->p, &u, sizeof(u), sizeof(u));
528 } break;
529 case GRAND_SEEDUINT32: {
530 uint32 i = va_arg(ap, uint32);
531 rand_add(&g->p, &i, sizeof(i), 4);
532 } break;
533 case GRAND_SEEDBLOCK: {
534 const void *p = va_arg(ap, const void *);
535 size_t sz = va_arg(ap, size_t);
536 rand_add(&g->p, p, sz, sz);
537 } break;
538 case GRAND_SEEDRAND: {
539 grand *rr = va_arg(ap, grand *);
540 octet buf[16];
541 rr->ops->fill(rr, buf, sizeof(buf));
542 rand_add(&g->p, buf, sizeof(buf), 8);
543 } break;
544 case RAND_GATE:
545 rand_gate(&g->p);
546 break;
547 case RAND_STRETCH:
548 rand_stretch(&g->p);
549 break;
550 case RAND_KEY: {
551 const void *k = va_arg(ap, const void *);
552 size_t sz = va_arg(ap, size_t);
553 rand_key(&g->p, k, sz);
554 } break;
555 case RAND_NOISESRC:
556 rand_noisesrc(&g->p, va_arg(ap, const rand_source *));
557 break;
558 case RAND_SEED:
559 rand_seed(&g->p, va_arg(ap, unsigned));
560 break;
561 case RAND_TIMER:
562 QUICK(&g->p);
563 break;
564 case RAND_GOODBITS:
565 rc = rand_goodbits(&g->p);
566 break;
567 case RAND_ADD: {
568 const void *p = va_arg(ap, const void *);
569 size_t sz = va_arg(ap, size_t);
570 unsigned goodbits = va_arg(ap, unsigned);
571 rand_add(&g->p, p, sz, goodbits);
572 } break;
573 default:
574 GRAND_BADOP;
575 break;
576 }
577
578 va_end(ap);
579 return (rc);
580 }
581
582 static octet gbyte(grand *r)
583 {
584 gctx *g = (gctx *)r;
585 octet o;
586 rand_getgood(&g->p, &o, 1);
587 return (o);
588 }
589
590 static uint32 gword(grand *r)
591 {
592 gctx *g = (gctx *)r;
593 octet b[4];
594 rand_getgood(&g->p, &b, sizeof(b));
595 return (LOAD32(b));
596 }
597
598 static void gfill(grand *r, void *p, size_t sz)
599 {
600 gctx *g = (gctx *)r;
601 rand_get(&g->p, p, sz);
602 }
603
604 static const grand_ops gops = {
605 "rand",
606 GRAND_CRYPTO, 0,
607 gmisc, gdestroy,
608 gword, gbyte, gword, grand_defaultrange, gfill
609 };
610
611 /* --- @rand_create@ --- *
612 *
613 * Arguments: ---
614 *
615 * Returns: Pointer to a generic generator.
616 *
617 * Use: Constructs a generic generator interface over a Catacomb
618 * entropy pool generator.
619 */
620
621 grand *rand_create(void)
622 {
623 gctx *g = S_CREATE(gctx);
624 g->r.ops = &gops;
625 rand_init(&g->p);
626 return (&g->r);
627 }
628
629 /*----- That's all, folks -------------------------------------------------*/