symm/...: Reformat encryption mode loops and related code.
[catacomb] / symm / salsa20.c
1 /* -*-c-*-
2 *
3 * Salsa20 stream cipher
4 *
5 * (c) 2015 Straylight/Edgeware
6 */
7
8 /*----- Licensing notice --------------------------------------------------*
9 *
10 * This file is part of Catacomb.
11 *
12 * Catacomb is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU Library General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * Catacomb is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU Library General Public License for more details.
21 *
22 * You should have received a copy of the GNU Library General Public
23 * License along with Catacomb; if not, write to the Free
24 * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
25 * MA 02111-1307, USA.
26 */
27
28 /*----- Header files ------------------------------------------------------*/
29
30 #include "config.h"
31
32 #include <stdarg.h>
33
34 #include <mLib/bits.h>
35
36 #include "arena.h"
37 #include "dispatch.h"
38 #include "gcipher.h"
39 #include "grand.h"
40 #include "keysz.h"
41 #include "paranoia.h"
42 #include "salsa20.h"
43 #include "salsa20-core.h"
44
45 /*----- Global variables --------------------------------------------------*/
46
47 const octet salsa20_keysz[] = { KSZ_SET, 32, 16, 10, 0 };
48
49 /*----- The Salsa20 core function and utilities ---------------------------*/
50
51 /* --- @core@ --- *
52 *
53 * Arguments: @unsigned r@ = number of rounds
54 * @const salsa20_matrix src@ = input matrix
55 * @salsa20_matrix dest@ = where to put the output
56 *
57 * Returns: ---
58 *
59 *
60 * Use: Apply the Salsa20/r core function to @src@, writing the
61 * result to @dest@. This consists of @r@ rounds followed by
62 * the feedforward step.
63 */
64
65 CPU_DISPATCH(static, (void), void, core,
66 (unsigned r, const salsa20_matrix src, salsa20_matrix dest),
67 (r, src, dest), pick_core, simple_core);
68
69 static void simple_core(unsigned r, const salsa20_matrix src,
70 salsa20_matrix dest)
71 { SALSA20_nR(dest, src, r); SALSA20_FFWD(dest, src); }
72
73 #if CPUFAM_X86 || CPUFAM_AMD64
74 extern core__functype salsa20_core_x86ish_sse2;
75 extern core__functype salsa20_core_x86ish_avx;
76 #endif
77
78 #if CPUFAM_ARMEL
79 extern core__functype salsa20_core_arm_neon;
80 #endif
81
82 #if CPUFAM_ARM64
83 extern core__functype salsa20_core_arm64;
84 #endif
85
86 static core__functype *pick_core(void)
87 {
88 #if CPUFAM_X86 || CPUFAM_AMD64
89 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_avx,
90 cpu_feature_p(CPUFEAT_X86_AVX));
91 DISPATCH_PICK_COND(salsa20_core, salsa20_core_x86ish_sse2,
92 cpu_feature_p(CPUFEAT_X86_SSE2));
93 #endif
94 #if CPUFAM_ARMEL
95 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm_neon,
96 cpu_feature_p(CPUFEAT_ARM_NEON));
97 #endif
98 #if CPUFAM_ARM64
99 DISPATCH_PICK_COND(salsa20_core, salsa20_core_arm64, 1);
100 #endif
101 DISPATCH_PICK_FALLBACK(salsa20_core, simple_core);
102 }
103
104 /* --- @populate@ --- *
105 *
106 * Arguments: @salsa20_matrix a@ = a matrix to fill in
107 * @const void *key@ = pointer to key material
108 * @size_t ksz@ = size of key
109 *
110 * Returns: ---
111 *
112 * Use: Fills in a Salsa20 matrix from the key, setting the
113 * appropriate constants according to the key length. The nonce
114 * and position words are left uninitialized.
115 */
116
117 static void populate(salsa20_matrix a, const void *key, size_t ksz)
118 {
119 const octet *k = key;
120
121 KSZ_ASSERT(salsa20, ksz);
122
123 /* Here's the pattern of key, constant, nonce, and counter pieces in the
124 * matrix, before and after our permutation.
125 *
126 * [ C0 K0 K1 K2 ] [ C0 C1 C2 C3 ]
127 * [ K3 C1 N0 N1 ] --> [ K3 T1 K7 K2 ]
128 * [ T0 T1 C2 K4 ] [ T0 K6 K1 N1 ]
129 * [ K5 K6 K7 C3 ] [ K5 K0 N0 K4 ]
130 */
131
132 a[13] = LOAD32_L(k + 0);
133 a[10] = LOAD32_L(k + 4);
134 if (ksz == 10) {
135 a[ 7] = LOAD16_L(k + 8);
136 a[ 4] = 0;
137 } else {
138 a[ 7] = LOAD32_L(k + 8);
139 a[ 4] = LOAD32_L(k + 12);
140 }
141 if (ksz <= 16) {
142 a[15] = a[13];
143 a[12] = a[10];
144 a[ 9] = a[ 7];
145 a[ 6] = a[ 4];
146 a[ 0] = SALSA20_A128;
147 a[ 1] = SALSA20_B128;
148 a[ 2] = ksz == 10 ? SALSA20_C80 : SALSA20_C128;
149 a[ 3] = SALSA20_D128;
150 } else {
151 a[15] = LOAD32_L(k + 16);
152 a[12] = LOAD32_L(k + 20);
153 a[ 9] = LOAD32_L(k + 24);
154 a[ 6] = LOAD32_L(k + 28);
155 a[ 0] = SALSA20_A256;
156 a[ 1] = SALSA20_B256;
157 a[ 2] = SALSA20_C256;
158 a[ 3] = SALSA20_D256;
159 }
160 }
161
162 /*----- Salsa20 implementation --------------------------------------------*/
163
164 /* --- @salsa20_init@ --- *
165 *
166 * Arguments: @salsa20_ctx *ctx@ = context to fill in
167 * @const void *key@ = pointer to key material
168 * @size_t ksz@ = size of key (either 32 or 16)
169 * @const void *nonce@ = initial nonce, or null
170 *
171 * Returns: ---
172 *
173 * Use: Initializes a Salsa20 context ready for use.
174 */
175
176 void salsa20_init(salsa20_ctx *ctx, const void *key, size_t ksz,
177 const void *nonce)
178 {
179 static const octet zerononce[SALSA20_NONCESZ];
180
181 populate(ctx->a, key, ksz);
182 salsa20_setnonce(ctx, nonce ? nonce : zerononce);
183 }
184
185 /* --- @salsa20_setnonce{,_ietf}@ --- *
186 *
187 * Arguments: @salsa20_ctx *ctx@ = pointer to context
188 * @const void *nonce@ = the nonce (@SALSA20_NONCESZ@ or
189 * @SALSA20_IETF_NONCESZ@ bytes)
190 *
191 * Returns: ---
192 *
193 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
194 * different message. The stream position is reset to zero (see
195 * @salsa20_seek@ etc.).
196 */
197
198 void salsa20_setnonce(salsa20_ctx *ctx, const void *nonce)
199 {
200 const octet *n = nonce;
201
202 ctx->a[14] = LOAD32_L(n + 0);
203 ctx->a[11] = LOAD32_L(n + 4);
204 salsa20_seek(ctx, 0);
205 }
206
207 void salsa20_setnonce_ietf(salsa20_ctx *ctx, const void *nonce)
208 {
209 const octet *n = nonce;
210
211 ctx->a[ 5] = LOAD32_L(n + 0);
212 ctx->a[14] = LOAD32_L(n + 4);
213 ctx->a[11] = LOAD32_L(n + 8);
214 salsa20_seek_ietf(ctx, 0);
215 }
216
217 /* --- @salsa20_seek{,u64,_ietf}@ --- *
218 *
219 * Arguments: @salsa20_ctx *ctx@ = pointer to context
220 * @unsigned long i@, @kludge64 i@, @uint32@ = new position
221 *
222 * Returns: ---
223 *
224 * Use: Sets a new stream position, in units of Salsa20 output
225 * blocks, which are @SALSA20_OUTSZ@ bytes each. Byte
226 * granularity can be achieved by calling @salsa20R_encrypt@
227 * appropriately.
228 */
229
230 void salsa20_seek(salsa20_ctx *ctx, unsigned long i)
231 { kludge64 ii; ASSIGN64(ii, i); salsa20_seeku64(ctx, ii); }
232
233 void salsa20_seeku64(salsa20_ctx *ctx, kludge64 i)
234 {
235 ctx->a[8] = LO64(i); ctx->a[5] = HI64(i);
236 ctx->off = SALSA20_OUTSZ;
237 }
238
239 void salsa20_seek_ietf(salsa20_ctx *ctx, uint32 i)
240 { ctx->a[8] = i; }
241
242 /* --- @salsa20_tell{,u64,_ietf}@ --- *
243 *
244 * Arguments: @salsa20_ctx *ctx@ = pointer to context
245 *
246 * Returns: The current position in the output stream, in blocks,
247 * rounding upwards.
248 */
249
250 unsigned long salsa20_tell(salsa20_ctx *ctx)
251 { kludge64 i = salsa20_tellu64(ctx); return (GET64(unsigned long, i)); }
252
253 kludge64 salsa20_tellu64(salsa20_ctx *ctx)
254 { kludge64 i; SET64(i, ctx->a[5], ctx->a[8]); return (i); }
255
256 uint32 salsa20_tell_ietf(salsa20_ctx *ctx)
257 { return (ctx->a[5]); }
258
259 /* --- @salsa20{,12,8}_encrypt@ --- *
260 *
261 * Arguments: @salsa20_ctx *ctx@ = pointer to context
262 * @const void *src@ = source buffer (or null)
263 * @void *dest@ = destination buffer (or null)
264 * @size_t sz@ = size of the buffers
265 *
266 * Returns: ---
267 *
268 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
269 * Salsa20 works by XORing plaintext with a keystream, so
270 * encryption and decryption are the same operation. If @dest@
271 * is null then ignore @src@ and skip @sz@ bytes of the
272 * keystream. If @src@ is null, then just write the keystream
273 * to @dest@.
274 */
275
276 #define SALSA20_ENCRYPT(r, ctx, src, dest, sz) \
277 SALSA20_DECOR(salsa20, r, _encrypt)(ctx, src, dest, sz)
278 #define DEFENCRYPT(r) \
279 void SALSA20_ENCRYPT(r, salsa20_ctx *ctx, const void *src, \
280 void *dest, size_t sz) \
281 { \
282 salsa20_matrix b; \
283 const octet *s = src; \
284 octet *d = dest; \
285 size_t n; \
286 kludge64 pos, delta; \
287 \
288 SALSA20_OUTBUF(ctx, d, s, sz); \
289 if (!sz) return; \
290 \
291 if (!dest) { \
292 n = sz/SALSA20_OUTSZ; \
293 pos = salsa20_tellu64(ctx); \
294 ASSIGN64(delta, n); \
295 ADD64(pos, pos, delta); \
296 salsa20_seeku64(ctx, pos); \
297 sz = sz%SALSA20_OUTSZ; \
298 } else if (!src) { \
299 while (sz >= SALSA20_OUTSZ) { \
300 core(r, ctx->a, b); \
301 SALSA20_STEP(ctx->a); \
302 SALSA20_GENFULL(b, d); \
303 sz -= SALSA20_OUTSZ; \
304 } \
305 } else { \
306 while (sz >= SALSA20_OUTSZ) { \
307 core(r, ctx->a, b); \
308 SALSA20_STEP(ctx->a); \
309 SALSA20_MIXFULL(b, d, s); \
310 sz -= SALSA20_OUTSZ; \
311 } \
312 } \
313 \
314 if (sz) { \
315 core(r, ctx->a, b); \
316 SALSA20_STEP(ctx->a); \
317 SALSA20_PREPBUF(ctx, b); \
318 SALSA20_OUTBUF(ctx, d, s, sz); \
319 assert(!sz); \
320 } \
321 }
322 SALSA20_VARS(DEFENCRYPT)
323
324 /*----- HSalsa20 implementation -------------------------------------------*/
325
326 #define HSALSA20_RAW(r, ctx, src, dest) \
327 SALSA20_DECOR(hsalsa20, r, _raw)(ctx, src, dest)
328 #define HSALSA20_PRF(r, ctx, src, dest) \
329 SALSA20_DECOR(hsalsa20, r, _prf)(ctx, src, dest)
330
331 /* --- @hsalsa20{,12,8}_prf@ --- *
332 *
333 * Arguments: @salsa20_ctx *ctx@ = pointer to context
334 * @const void *src@ = the input (@HSALSA20_INSZ@ bytes)
335 * @void *dest@ = the output (@HSALSA20_OUTSZ@ bytes)
336 *
337 * Returns: ---
338 *
339 * Use: Apply the HSalsa20/r pseudorandom function to @src@, writing
340 * the result to @out@.
341 */
342
343 #define DEFHSALSA20(r) \
344 static void HSALSA20_RAW(r, salsa20_matrix k, \
345 const uint32 *src, uint32 *dest) \
346 { \
347 salsa20_matrix a; \
348 int i; \
349 \
350 /* --- HSalsa20, computed from full Salsa20 --- * \
351 * \
352 * The security proof makes use of the fact that HSalsa20 (i.e., \
353 * without the final feedforward step) can be computed from full \
354 * Salsa20 using only knowledge of the non-secret input. I don't \
355 * want to compromise the performance of the main function by \
356 * making the feedforward step separate, but this operation is less \
357 * speed critical, so we do it the harder way. \
358 */ \
359 \
360 for (i = 0; i < 4; i++) k[14 - 3*i] = src[i]; \
361 core(r, k, a); \
362 for (i = 0; i < 4; i++) dest[i] = a[5*i] - k[i]; \
363 for (i = 4; i < 8; i++) dest[i] = a[i + 2] - k[26 - 3*i]; \
364 } \
365 \
366 void HSALSA20_PRF(r, salsa20_ctx *ctx, const void *src, void *dest) \
367 { \
368 const octet *s = src; \
369 octet *d = dest; \
370 uint32 in[4], out[8]; \
371 int i; \
372 \
373 for (i = 0; i < 4; i++) in[i] = LOAD32_L(s + 4*i); \
374 HSALSA20_RAW(r, ctx->a, in, out); \
375 for (i = 0; i < 8; i++) STORE32_L(d + 4*i, out[i]); \
376 }
377 SALSA20_VARS(DEFHSALSA20)
378
379 /*----- XSalsa20 implementation -------------------------------------------*/
380
381 /* --- Some convenient macros for naming functions --- *
382 *
383 * Because the crypto core is involved in XSalsa20/r's per-nonce setup, we
384 * need to take an interest in the number of rounds in most of the various
385 * functions, and it will probably help if we distinguish the context
386 * structures for the various versions.
387 */
388
389 #define XSALSA20_CTX(r) SALSA20_DECOR(xsalsa20, r, _ctx)
390 #define XSALSA20_INIT(r, ctx, k, ksz, n) \
391 SALSA20_DECOR(xsalsa20, r, _init)(ctx, k, ksz, n)
392 #define XSALSA20_SETNONCE(r, ctx, n) \
393 SALSA20_DECOR(xsalsa20, r, _setnonce)(ctx, n)
394 #define XSALSA20_SEEK(r, ctx, i) \
395 SALSA20_DECOR(xsalsa20, r, _seek)(ctx, i)
396 #define XSALSA20_SEEKU64(r, ctx, i) \
397 SALSA20_DECOR(xsalsa20, r, _seeku64)(ctx, i)
398 #define XSALSA20_TELL(r, ctx) \
399 SALSA20_DECOR(xsalsa20, r, _tell)(ctx)
400 #define XSALSA20_TELLU64(r, ctx) \
401 SALSA20_DECOR(xsalsa20, r, _tellu64)(ctx)
402 #define XSALSA20_ENCRYPT(r, ctx, src, dest, sz) \
403 SALSA20_DECOR(xsalsa20, r, _encrypt)(ctx, src, dest, sz)
404
405 /* --- @xsalsa20{,12,8}_init@ --- *
406 *
407 * Arguments: @xsalsa20R_ctx *ctx@ = the context to fill in
408 * @const void *key@ = pointer to key material
409 * @size_t ksz@ = size of key (either 32 or 16)
410 * @const void *nonce@ = initial nonce, or null
411 *
412 * Returns: ---
413 *
414 * Use: Initializes an XSalsa20/r context ready for use.
415 *
416 * There is a different function for each number of rounds,
417 * unlike for plain Salsa20.
418 */
419
420 #define DEFXINIT(r) \
421 void XSALSA20_INIT(r, XSALSA20_CTX(r) *ctx, \
422 const void *key, size_t ksz, const void *nonce) \
423 { \
424 static const octet zerononce[XSALSA20_NONCESZ]; \
425 \
426 populate(ctx->k, key, ksz); \
427 ctx->s.a[ 0] = SALSA20_A256; \
428 ctx->s.a[ 1] = SALSA20_B256; \
429 ctx->s.a[ 2] = SALSA20_C256; \
430 ctx->s.a[ 3] = SALSA20_D256; \
431 XSALSA20_SETNONCE(r, ctx, nonce ? nonce : zerononce); \
432 }
433 SALSA20_VARS(DEFXINIT)
434
435 /* --- @xsalsa20{,12,8}_setnonce@ --- *
436 *
437 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
438 * @const void *nonce@ = the nonce (@XSALSA20_NONCESZ@ bytes)
439 *
440 * Returns: ---
441 *
442 * Use: Set a new nonce in the context @ctx@, e.g., for processing a
443 * different message. The stream position is reset to zero (see
444 * @salsa20_seek@ etc.).
445 *
446 * There is a different function for each number of rounds,
447 * unlike for plain Salsa20.
448 */
449
450 #define DEFXNONCE(r) \
451 void XSALSA20_SETNONCE(r, XSALSA20_CTX(r) *ctx, const void *nonce) \
452 { \
453 const octet *n = nonce; \
454 uint32 in[4], out[8]; \
455 int i; \
456 \
457 for (i = 0; i < 4; i++) in[i] = LOAD32_L(n + 4*i); \
458 HSALSA20_RAW(r, ctx->k, in, out); \
459 for (i = 0; i < 4; i++) ctx->s.a[13 - 3*i] = out[i]; \
460 for (i = 4; i < 8; i++) ctx->s.a[27 - 3*i] = out[i]; \
461 salsa20_setnonce(&ctx->s, n + 16); \
462 }
463 SALSA20_VARS(DEFXNONCE)
464
465 /* --- @xsalsa20{,12,8}_seek{,u64}@ --- *
466 *
467 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
468 * @unsigned long i@, @kludge64 i@ = new position to set
469 *
470 * Returns: ---
471 *
472 * Use: Sets a new stream position, in units of Salsa20 output
473 * blocks, which are @XSALSA20_OUTSZ@ bytes each. Byte
474 * granularity can be achieved by calling @xsalsa20R_encrypt@
475 * appropriately.
476 *
477 * There is a different function for each number of rounds,
478 * unlike for plain Salsa20, because the context structures are
479 * different.
480 */
481
482 /* --- @xsalsa20{,12,8}_tell{,u64}@ --- *
483 *
484 * Arguments: @salsa20_ctx *ctx@ = pointer to context
485 *
486 * Returns: The current position in the output stream, in blocks,
487 * rounding upwards.
488 *
489 * There is a different function for each number of rounds,
490 * unlike for plain Salsa20, because the context structures are
491 * different.
492 */
493
494 /* --- @xsalsa20{,12,8}_encrypt@ --- *
495 *
496 * Arguments: @xsalsa20R_ctx *ctx@ = pointer to context
497 * @const void *src@ = source buffer (or null)
498 * @void *dest@ = destination buffer (or null)
499 * @size_t sz@ = size of the buffers
500 *
501 * Returns: ---
502 *
503 * Use: Encrypts or decrypts @sz@ bytes of data from @src@ to @dest@.
504 * XSalsa20 works by XORing plaintext with a keystream, so
505 * encryption and decryption are the same operation. If @dest@
506 * is null then ignore @src@ and skip @sz@ bytes of the
507 * keystream. If @src@ is null, then just write the keystream
508 * to @dest@.
509 */
510
511 #define DEFXPASSTHRU(r) \
512 void XSALSA20_SEEK(r, XSALSA20_CTX(r) *ctx, unsigned long i) \
513 { salsa20_seek(&ctx->s, i); } \
514 void XSALSA20_SEEKU64(r, XSALSA20_CTX(r) *ctx, kludge64 i) \
515 { salsa20_seeku64(&ctx->s, i); } \
516 unsigned long XSALSA20_TELL(r, XSALSA20_CTX(r) *ctx) \
517 { return salsa20_tell(&ctx->s); } \
518 kludge64 XSALSA20_TELLU64(r, XSALSA20_CTX(r) *ctx) \
519 { return salsa20_tellu64(&ctx->s); } \
520 void XSALSA20_ENCRYPT(r, XSALSA20_CTX(r) *ctx, \
521 const void *src, void *dest, size_t sz) \
522 { SALSA20_ENCRYPT(r, &ctx->s, src, dest, sz); }
523 SALSA20_VARS(DEFXPASSTHRU)
524
525 /*----- Generic cipher interface ------------------------------------------*/
526
527 typedef struct gctx { gcipher c; salsa20_ctx ctx; } gctx;
528
529 static void gsetiv(gcipher *c, const void *iv)
530 { gctx *g = (gctx *)c; salsa20_setnonce(&g->ctx, iv); }
531
532 static void gsetiv_ietf(gcipher *c, const void *iv)
533 { gctx *g = (gctx *)c; salsa20_setnonce_ietf(&g->ctx, iv); }
534
535 static void gdestroy(gcipher *c)
536 { gctx *g = (gctx *)c; BURN(*g); S_DESTROY(g); }
537
538 static gcipher *ginit(const void *k, size_t sz, const gcipher_ops *ops)
539 {
540 gctx *g = S_CREATE(gctx);
541 g->c.ops = ops;
542 salsa20_init(&g->ctx, k, sz, 0);
543 return (&g->c);
544 }
545
546 #define DEFGCIPHER(r) \
547 \
548 static const gcipher_ops gops_##r, gops_##r##_ietf; \
549 \
550 static gcipher *ginit_##r(const void *k, size_t sz) \
551 { return (ginit(k, sz, &gops_##r)); } \
552 \
553 static gcipher *ginit_##r##_ietf(const void *k, size_t sz) \
554 { return (ginit(k, sz, &gops_##r##_ietf)); } \
555 \
556 static void gencrypt_##r(gcipher *c, const void *s, \
557 void *t, size_t sz) \
558 { gctx *g = (gctx *)c; SALSA20_ENCRYPT(r, &g->ctx, s, t, sz); } \
559 \
560 static const gcipher_ops gops_##r = { \
561 &SALSA20_DECOR(salsa20, r, ), \
562 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv, 0 \
563 }; \
564 \
565 static const gcipher_ops gops_##r##_ietf = { \
566 &SALSA20_DECOR(salsa20, r, _ietf), \
567 gencrypt_##r, gencrypt_##r, gdestroy, gsetiv_ietf, 0 \
568 }; \
569 \
570 const gccipher SALSA20_DECOR(salsa20, r, ) = { \
571 SALSA20_NAME_##r, salsa20_keysz, \
572 SALSA20_NONCESZ, ginit_##r \
573 }; \
574 \
575 const gccipher SALSA20_DECOR(salsa20, r, _ietf) = { \
576 SALSA20_NAME_##r "-ietf", salsa20_keysz, \
577 SALSA20_IETF_NONCESZ, ginit_##r##_ietf \
578 };
579
580 SALSA20_VARS(DEFGCIPHER)
581
582 #define DEFGXCIPHER(r) \
583 \
584 typedef struct { gcipher c; XSALSA20_CTX(r) ctx; } gxctx_##r; \
585 \
586 static void gxsetiv_##r(gcipher *c, const void *iv) \
587 { gxctx_##r *g = (gxctx_##r *)c; XSALSA20_SETNONCE(r, &g->ctx, iv); } \
588 \
589 static void gxdestroy_##r(gcipher *c) \
590 { gxctx_##r *g = (gxctx_##r *)c; BURN(*g); S_DESTROY(g); } \
591 \
592 static const gcipher_ops gxops_##r; \
593 \
594 static gcipher *gxinit_##r(const void *k, size_t sz) \
595 { \
596 gxctx_##r *g = S_CREATE(gxctx_##r); \
597 g->c.ops = &gxops_##r; \
598 XSALSA20_INIT(r, &g->ctx, k, sz, 0); \
599 return (&g->c); \
600 } \
601 \
602 static void gxencrypt_##r(gcipher *c, const void *s, \
603 void *t, size_t sz) \
604 { \
605 gxctx_##r *g = (gxctx_##r *)c; \
606 XSALSA20_ENCRYPT(r, &g->ctx, s, t, sz); \
607 } \
608 \
609 static const gcipher_ops gxops_##r = { \
610 &SALSA20_DECOR(xsalsa20, r, ), \
611 gxencrypt_##r, gxencrypt_##r, gxdestroy_##r, gxsetiv_##r, 0 \
612 }; \
613 \
614 const gccipher SALSA20_DECOR(xsalsa20, r, ) = { \
615 "x" SALSA20_NAME_##r, salsa20_keysz, \
616 XSALSA20_NONCESZ, gxinit_##r \
617 };
618
619 SALSA20_VARS(DEFGXCIPHER)
620
621 /*----- Generic random number generator interface -------------------------*/
622
623 typedef struct grops {
624 size_t noncesz;
625 void (*seek)(void *, kludge64);
626 kludge64 (*tell)(void *);
627 void (*setnonce)(void *, const void *);
628 void (*generate)(void *, void *, size_t);
629 } grops;
630
631 typedef struct grbasectx {
632 grand r;
633 const grops *ops;
634 } grbasectx;
635
636 static int grmisc(grand *r, unsigned op, ...)
637 {
638 octet buf[XSALSA20_NONCESZ];
639 grbasectx *g = (grbasectx *)r;
640 grand *rr;
641 const octet *p;
642 size_t sz;
643 uint32 i;
644 unsigned long ul;
645 kludge64 pos;
646 va_list ap;
647 int rc = 0;
648
649 va_start(ap, op);
650
651 switch (op) {
652 case GRAND_CHECK:
653 switch (va_arg(ap, unsigned)) {
654 case GRAND_CHECK:
655 case GRAND_SEEDINT:
656 case GRAND_SEEDUINT32:
657 case GRAND_SEEDBLOCK:
658 case GRAND_SEEDRAND:
659 case SALSA20_SEEK:
660 case SALSA20_SEEKU64:
661 case SALSA20_TELL:
662 case SALSA20_TELLU64:
663 rc = 1;
664 break;
665 default:
666 rc = 0;
667 break;
668 }
669 break;
670
671 case GRAND_SEEDINT:
672 i = va_arg(ap, unsigned); STORE32_L(buf, i);
673 memset(buf + 4, 0, g->ops->noncesz - 4);
674 g->ops->setnonce(g, buf);
675 break;
676 case GRAND_SEEDUINT32:
677 i = va_arg(ap, uint32); STORE32_L(buf, i);
678 memset(buf + 4, 0, g->ops->noncesz - 4);
679 g->ops->setnonce(g, buf);
680 break;
681 case GRAND_SEEDBLOCK:
682 p = va_arg(ap, const void *);
683 sz = va_arg(ap, size_t);
684 if (sz < g->ops->noncesz) {
685 memcpy(buf, p, sz);
686 memset(buf + sz, 0, g->ops->noncesz - sz);
687 p = buf;
688 }
689 g->ops->setnonce(g, p);
690 break;
691 case GRAND_SEEDRAND:
692 rr = va_arg(ap, grand *);
693 rr->ops->fill(rr, buf, g->ops->noncesz);
694 g->ops->setnonce(g, buf);
695 break;
696 case SALSA20_SEEK:
697 ul = va_arg(ap, unsigned long); ASSIGN64(pos, ul);
698 g->ops->seek(g, pos);
699 break;
700 case SALSA20_SEEKU64:
701 pos = va_arg(ap, kludge64);
702 g->ops->seek(g, pos);
703 break;
704 case SALSA20_TELL:
705 pos = g->ops->tell(g);
706 *va_arg(ap, unsigned long *) = GET64(unsigned long, pos);
707 break;
708 case SALSA20_TELLU64:
709 *va_arg(ap, kludge64 *) = g->ops->tell(g);
710 break;
711 default:
712 GRAND_BADOP;
713 break;
714 }
715
716 return (rc);
717 }
718
719 static octet grbyte(grand *r)
720 {
721 grbasectx *g = (grbasectx *)r;
722 octet o;
723 g->ops->generate(g, &o, 1);
724 return (o);
725 }
726
727 static uint32 grword(grand *r)
728 {
729 grbasectx *g = (grbasectx *)r;
730 octet b[4];
731 g->ops->generate(g, b, sizeof(b));
732 return (LOAD32_L(b));
733 }
734
735 static void grfill(grand *r, void *p, size_t sz)
736 {
737 grbasectx *g = (grbasectx *)r;
738 g->ops->generate(r, p, sz);
739 }
740
741 typedef struct grctx {
742 grbasectx r;
743 salsa20_ctx ctx;
744 } grctx;
745
746 static void gr_seek(void *r, kludge64 pos)
747 { grctx *g = r; salsa20_seeku64(&g->ctx, pos); }
748
749 static void gr_seek_ietf(void *r, kludge64 pos)
750 { grctx *g = r; salsa20_seek_ietf(&g->ctx, LO64(pos)); }
751
752 static kludge64 gr_tell(void *r)
753 { grctx *g = r; return (salsa20_tellu64(&g->ctx)); }
754
755 static kludge64 gr_tell_ietf(void *r)
756 {
757 grctx *g = r;
758 kludge64 pos;
759
760 SET64(pos, 0, salsa20_tell_ietf(&g->ctx));
761 return (pos);
762 }
763
764 static void gr_setnonce(void *r, const void *n)
765 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
766
767 static void gr_setnonce_ietf(void *r, const void *n)
768 { grctx *g = r; salsa20_setnonce(&g->ctx, n); }
769
770 static void grdestroy(grand *r)
771 { grctx *g = (grctx *)r; BURN(*g); S_DESTROY(g); }
772
773 static grand *grinit(const void *k, size_t ksz, const void *n,
774 const grand_ops *ops, const grops *myops)
775 {
776 grctx *g = S_CREATE(grctx);
777 g->r.r.ops = ops;
778 g->r.ops = myops;
779 salsa20_init(&g->ctx, k, ksz, 0);
780 if (n) myops->setnonce(g, n);
781 return (&g->r.r);
782 }
783
784 #define DEFGRAND(rr) \
785 \
786 static void gr_generate_##rr(void *r, void *b, size_t sz) \
787 { grctx *g = r; SALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
788 \
789 static const grops grops_##rr = \
790 { SALSA20_NONCESZ, gr_seek, gr_tell, \
791 gr_setnonce, gr_generate_##rr }; \
792 \
793 static const grops grops_##rr##_ietf = \
794 { SALSA20_IETF_NONCESZ, gr_seek_ietf, gr_tell_ietf, \
795 gr_setnonce_ietf, gr_generate_##rr }; \
796 \
797 static const grand_ops grops_rand_##rr = { \
798 SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
799 grmisc, grdestroy, grword, \
800 grbyte, grword, grand_defaultrange, grfill \
801 }; \
802 \
803 static const grand_ops grops_rand_##rr##_ietf = { \
804 SALSA20_NAME_##rr "-ietf", GRAND_CRYPTO, 0, \
805 grmisc, grdestroy, grword, \
806 grbyte, grword, grand_defaultrange, grfill \
807 }; \
808 \
809 grand *SALSA20_DECOR(salsa20, rr, _rand) \
810 (const void *k, size_t ksz, const void *n) \
811 { return (grinit(k, ksz, n, &grops_rand_##rr, &grops_##rr)); } \
812 \
813 grand *SALSA20_DECOR(salsa20, rr, _ietf_rand) \
814 (const void *k, size_t ksz, const void *n) \
815 { \
816 return (grinit(k, ksz, n, \
817 &grops_rand_##rr##_ietf, \
818 &grops_##rr##_ietf)); \
819 }
820
821 SALSA20_VARS(DEFGRAND)
822
823 #define DEFXGRAND(rr) \
824 \
825 typedef struct grxctx_##rr { \
826 grbasectx r; \
827 XSALSA20_CTX(rr) ctx; \
828 } grxctx_##rr; \
829 \
830 static void grx_seek_##rr(void *r, kludge64 pos) \
831 { grxctx_##rr *g = r; XSALSA20_SEEKU64(rr, &g->ctx, pos); } \
832 \
833 static kludge64 grx_tell_##rr(void *r) \
834 { grxctx_##rr *g = r; return (XSALSA20_TELLU64(rr, &g->ctx)); } \
835 \
836 static void grx_setnonce_##rr(void *r, const void *n) \
837 { grxctx_##rr *g = r; XSALSA20_SETNONCE(rr, &g->ctx, n); } \
838 \
839 static void grxdestroy_##rr(grand *r) \
840 { grxctx_##rr *g = (grxctx_##rr *)r; BURN(*g); S_DESTROY(g); } \
841 \
842 static void grx_generate_##rr(void *r, void *b, size_t sz) \
843 { grxctx_##rr *g = r; XSALSA20_ENCRYPT(rr, &g->ctx, 0, b, sz); } \
844 \
845 static const grops grxops_##rr = \
846 { XSALSA20_NONCESZ, grx_seek_##rr, grx_tell_##rr, \
847 grx_setnonce_##rr, grx_generate_##rr }; \
848 \
849 static const grand_ops grxops_rand_##rr = { \
850 "x" SALSA20_NAME_##rr, GRAND_CRYPTO, 0, \
851 grmisc, grxdestroy_##rr, grword, \
852 grbyte, grword, grand_defaultrange, grfill \
853 }; \
854 \
855 grand *SALSA20_DECOR(xsalsa20, rr, _rand) \
856 (const void *k, size_t ksz, const void *n) \
857 { \
858 grxctx_##rr *g = S_CREATE(grxctx_##rr); \
859 g->r.r.ops = &grxops_rand_##rr; \
860 g->r.ops = &grxops_##rr; \
861 XSALSA20_INIT(rr, &g->ctx, k, ksz, n); \
862 return (&g->r.r); \
863 }
864 SALSA20_VARS(DEFXGRAND)
865
866 /*----- Test rig ----------------------------------------------------------*/
867
868 #ifdef TEST_RIG
869
870 #include <stdio.h>
871 #include <string.h>
872
873 #include <mLib/quis.h>
874 #include <mLib/testrig.h>
875
876 static const int perm[] = {
877 0, 13, 10, 7,
878 4, 1, 14, 11,
879 8, 5, 2, 15,
880 12, 9, 6, 3
881 };
882
883 #define DEFVCORE(r) \
884 static int v_core_##r(dstr *v) \
885 { \
886 salsa20_matrix a, b; \
887 dstr d = DSTR_INIT; \
888 int i, j, n; \
889 int ok = 1; \
890 \
891 DENSURE(&d, SALSA20_OUTSZ); d.len = SALSA20_OUTSZ; \
892 n = *(int *)v[0].buf; \
893 for (i = 0; i < SALSA20_OUTSZ/4; i++) \
894 b[i] = LOAD32_L(v[1].buf + 4*i); \
895 for (i = 0; i < n; i++) { \
896 for (j = 0; j < 16; j++) a[perm[j]] = b[j]; \
897 core(r, a, b); \
898 memcpy(a, b, sizeof(a)); \
899 } \
900 for (i = 0; i < SALSA20_OUTSZ/4; i++) STORE32_L(d.buf + 4*i, b[i]); \
901 \
902 if (d.len != v[2].len || memcmp(d.buf, v[2].buf, v[2].len) != 0) { \
903 ok = 0; \
904 printf("\nfail core:" \
905 "\n\titerations = %d" \
906 "\n\tin = ", n); \
907 type_hex.dump(&v[1], stdout); \
908 printf("\n\texpected = "); \
909 type_hex.dump(&v[2], stdout); \
910 printf("\n\tcalculated = "); \
911 type_hex.dump(&d, stdout); \
912 putchar('\n'); \
913 } \
914 \
915 dstr_destroy(&d); \
916 return (ok); \
917 }
918 SALSA20_VARS(DEFVCORE)
919
920 #define SALSA20_CTX(r) salsa20_ctx
921
922 #define SALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
923 kludge64 pos64; \
924 salsa20_init(ctx, k, ksz, 0); \
925 if (nsz == 8) salsa20_setnonce(ctx, n); \
926 else if (nsz == 12) salsa20_setnonce_ietf(ctx, n); \
927 if (psz == 8) { LOAD64_(pos64, p); salsa20_seeku64(ctx, pos64); } \
928 else if (psz == 4) salsa20_seek_ietf(ctx, LOAD32(p)); \
929 } while (0)
930
931 #define XSALSA20_TESTSETUP(r, ctx, k, ksz, n, nsz, p, psz) do { \
932 kludge64 pos64; \
933 XSALSA20_INIT(r, ctx, k, ksz, 0); \
934 if (nsz == 24) XSALSA20_SETNONCE(r, ctx, n); \
935 if (psz == 8) { LOAD64_(pos64, p); XSALSA20_SEEKU64(r, ctx, pos64); } \
936 } while (0)
937
938 #define DEFxVENC(base, BASE, r) \
939 static int v_encrypt_##base##_##r(dstr *v) \
940 { \
941 BASE##_CTX(r) ctx; \
942 dstr d = DSTR_INIT; \
943 const octet *p, *p0; \
944 octet *q; \
945 size_t sz, sz0, step; \
946 unsigned long skip; \
947 int ok = 1; \
948 \
949 if (v[4].len) { p0 = (const octet *)v[4].buf; sz0 = v[4].len; } \
950 else { p0 = 0; sz0 = v[5].len; } \
951 DENSURE(&d, sz0); d.len = sz0; \
952 skip = *(unsigned long *)v[3].buf; \
953 \
954 step = 0; \
955 while (step < sz0 + skip) { \
956 step = step ? 3*step + 4 : 1; \
957 if (step > sz0 + skip) step = sz0 + skip; \
958 BASE##_TESTSETUP(r, &ctx, v[0].buf, v[0].len, \
959 v[1].buf, v[1].len, v[2].buf, v[2].len); \
960 \
961 for (sz = skip; sz >= step; sz -= step) \
962 BASE##_ENCRYPT(r, &ctx, 0, 0, step); \
963 if (sz) BASE##_ENCRYPT(r, &ctx, 0, 0, sz); \
964 for (p = p0, q = (octet *)d.buf, sz = sz0; \
965 sz >= step; \
966 sz -= step, q += step) { \
967 BASE##_ENCRYPT(r, &ctx, p, q, step); \
968 if (p) p += step; \
969 } \
970 if (sz) BASE##_ENCRYPT(r, &ctx, p, q, sz); \
971 \
972 if (d.len != v[5].len || memcmp(d.buf, v[5].buf, v[5].len) != 0) { \
973 ok = 0; \
974 printf("\nfail encrypt:" \
975 "\n\tstep = %lu" \
976 "\n\tkey = ", (unsigned long)step); \
977 type_hex.dump(&v[0], stdout); \
978 printf("\n\tnonce = "); \
979 type_hex.dump(&v[1], stdout); \
980 printf("\n\tposition = "); \
981 type_hex.dump(&v[2], stdout); \
982 printf("\n\tskip = %lu", skip); \
983 printf("\n\tmessage = "); \
984 type_hex.dump(&v[4], stdout); \
985 printf("\n\texpected = "); \
986 type_hex.dump(&v[5], stdout); \
987 printf("\n\tcalculated = "); \
988 type_hex.dump(&d, stdout); \
989 putchar('\n'); \
990 } \
991 } \
992 \
993 dstr_destroy(&d); \
994 return (ok); \
995 }
996 #define DEFVENC(r) DEFxVENC(salsa20, SALSA20, r)
997 #define DEFXVENC(r) DEFxVENC(xsalsa20, XSALSA20, r)
998 SALSA20_VARS(DEFVENC)
999 SALSA20_VARS(DEFXVENC)
1000
1001 static test_chunk defs[] = {
1002 #define DEFxTAB(pre, base, r) \
1003 { pre SALSA20_NAME_##r, v_encrypt_##base##_##r, \
1004 { &type_hex, &type_hex, &type_hex, &type_ulong, \
1005 &type_hex, &type_hex, 0 } },
1006 #define DEFTAB(r) \
1007 { SALSA20_NAME_##r "-core", v_core_##r, \
1008 { &type_int, &type_hex, &type_hex, 0 } }, \
1009 DEFxTAB("", salsa20, r)
1010 #define DEFXTAB(r) DEFxTAB("x", xsalsa20, r)
1011 SALSA20_VARS(DEFTAB)
1012 SALSA20_VARS(DEFXTAB)
1013 { 0, 0, { 0 } }
1014 };
1015
1016 int main(int argc, char *argv[])
1017 {
1018 test_run(argc, argv, defs, SRCDIR"/t/salsa20");
1019 return (0);
1020 }
1021
1022 #endif
1023
1024 /*----- That's all, folks -------------------------------------------------*/