mp.c: Proper binding for `mp_factorial'.
[catacomb-python] / catacomb / __init__.py
1 ### -*-python-*-
2 ###
3 ### Setup for Catacomb/Python bindings
4 ###
5 ### (c) 2004 Straylight/Edgeware
6 ###
7
8 ###----- Licensing notice ---------------------------------------------------
9 ###
10 ### This file is part of the Python interface to Catacomb.
11 ###
12 ### Catacomb/Python is free software; you can redistribute it and/or modify
13 ### it under the terms of the GNU General Public License as published by
14 ### the Free Software Foundation; either version 2 of the License, or
15 ### (at your option) any later version.
16 ###
17 ### Catacomb/Python is distributed in the hope that it will be useful,
18 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ### GNU General Public License for more details.
21 ###
22 ### You should have received a copy of the GNU General Public License
23 ### along with Catacomb/Python; if not, write to the Free Software Foundation,
24 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 import _base
27 import types as _types
28 from binascii import hexlify as _hexify, unhexlify as _unhexify
29 from sys import argv as _argv
30
31 ###--------------------------------------------------------------------------
32 ### Basic stuff.
33
34 ## For the benefit of the default keyreporter, we need the program na,e.
35 _base._ego(_argv[0])
36
37 ## Initialize the module. Drag in the static methods of the various
38 ## classes; create names for the various known crypto algorithms.
39 def _init():
40 d = globals()
41 b = _base.__dict__;
42 for i in b:
43 if i[0] != '_':
44 d[i] = b[i];
45 for i in ['MP', 'GF', 'Field',
46 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
47 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
48 'PrimeFilter', 'RabinMiller',
49 'Group', 'GE',
50 'KeySZ', 'KeyData']:
51 c = d[i]
52 pre = '_' + i + '_'
53 plen = len(pre)
54 for j in b:
55 if j[:plen] == pre:
56 setattr(c, j[plen:], classmethod(b[j]))
57 for i in [gcciphers, gchashes, gcmacs, gcprps]:
58 for c in i.itervalues():
59 d[c.name.replace('-', '_')] = c
60 for c in gccrands.itervalues():
61 d[c.name.replace('-', '_') + 'rand'] = c
62 _init()
63
64 ## A handy function for our work: add the methods of a named class to an
65 ## existing class. This is how we write the Python-implemented parts of our
66 ## mostly-C types.
67 def _augment(c, cc):
68 for i in cc.__dict__:
69 a = cc.__dict__[i]
70 if type(a) is _types.MethodType:
71 a = a.im_func
72 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
73 continue
74 setattr(c, i, a)
75
76 ## Parsing functions tend to return the object parsed and the remainder of
77 ## the input. This checks that the remainder is input and, if so, returns
78 ## just the object.
79 def _checkend(r):
80 x, rest = r
81 if rest != '':
82 raise SyntaxError, 'junk at end of string'
83 return x
84
85 ###--------------------------------------------------------------------------
86 ### Bytestrings.
87
88 class _tmp:
89 def fromhex(x):
90 return ByteString(_unhexify(x))
91 fromhex = staticmethod(fromhex)
92 def __hex__(me):
93 return _hexify(me)
94 def __repr__(me):
95 return 'bytes(%r)' % hex(me)
96 _augment(ByteString, _tmp)
97 bytes = ByteString.fromhex
98
99 ###--------------------------------------------------------------------------
100 ### Multiprecision integers and binary polynomials.
101
102 class _tmp:
103 def negp(x): return x < 0
104 def posp(x): return x > 0
105 def zerop(x): return x == 0
106 def oddp(x): return x.testbit(0)
107 def evenp(x): return not x.testbit(0)
108 def mont(x): return MPMont(x)
109 def barrett(x): return MPBarrett(x)
110 def reduce(x): return MPReduce(x)
111 _augment(MP, _tmp)
112
113 class _tmp:
114 def zerop(x): return x == 0
115 def reduce(x): return GFReduce(x)
116 def trace(x, y): return x.reduce().trace(y)
117 def halftrace(x, y): return x.reduce().halftrace(y)
118 def modsqrt(x, y): return x.reduce().sqrt(y)
119 def quadsolve(x, y): return x.reduce().quadsolve(y)
120 _augment(GF, _tmp)
121
122 class _tmp:
123 def product(*arg):
124 'product(ITERABLE) or product(I, ...) -> PRODUCT'
125 return MPMul(*arg).done()
126 product = staticmethod(product)
127 _augment(MPMul, _tmp)
128
129 ###--------------------------------------------------------------------------
130 ### Abstract fields.
131
132 class _tmp:
133 def fromstring(str): return _checkend(Field.parse(str))
134 fromstring = staticmethod(fromstring)
135 _augment(Field, _tmp)
136
137 class _tmp:
138 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
139 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
140 _augment(PrimeField, _tmp)
141
142 class _tmp:
143 def __repr__(me): return '%s(%sL)' % (type(me).__name__, hex(me.p))
144 def ec(me, a, b): return ECBinProjCurve(me, a, b)
145 _augment(BinField, _tmp)
146
147 class _tmp:
148 def __str__(me): return str(me.value)
149 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
150 _augment(FE, _tmp)
151
152 ###--------------------------------------------------------------------------
153 ### Elliptic curves.
154
155 class _tmp:
156 def __repr__(me):
157 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
158 def frombuf(me, s):
159 return ecpt.frombuf(me, s)
160 def fromraw(me, s):
161 return ecpt.fromraw(me, s)
162 def pt(me, *args):
163 return me(*args)
164 _augment(ECCurve, _tmp)
165
166 class _tmp:
167 def __repr__(me):
168 if not me: return 'ECPt()'
169 return 'ECPt(%s, %s)' % (me.ix, me.iy)
170 def __str__(me):
171 if not me: return 'inf'
172 return '(%s, %s)' % (me.ix, me.iy)
173 _augment(ECPt, _tmp)
174
175 class _tmp:
176 def __repr__(me):
177 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
178 (me.curve, me.G, me.r, me.h)
179 def group(me):
180 return ECGroup(me)
181 _augment(ECInfo, _tmp)
182
183 class _tmp:
184 def __repr__(me):
185 if not me: return '%r()' % (me.curve)
186 return '%r(%s, %s)' % (me.curve, me.x, me.y)
187 def __str__(me):
188 if not me: return 'inf'
189 return '(%s, %s)' % (me.x, me.y)
190 _augment(ECPtCurve, _tmp)
191
192 ###--------------------------------------------------------------------------
193 ### Key sizes.
194
195 class _tmp:
196 def __repr__(me): return 'KeySZAny(%d)' % me.default
197 def check(me, sz): return True
198 def best(me, sz): return sz
199 _augment(KeySZAny, _tmp)
200
201 class _tmp:
202 def __repr__(me):
203 return 'KeySZRange(%d, %d, %d, %d)' % \
204 (me.default, me.min, me.max, me.mod)
205 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
206 def best(me, sz):
207 if sz < me.min: raise ValueError, 'key too small'
208 elif sz > me.max: return me.max
209 else: return sz - (sz % me.mod)
210 _augment(KeySZRange, _tmp)
211
212 class _tmp:
213 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
214 def check(me, sz): return sz in me.set
215 def best(me, sz):
216 found = -1
217 for i in me.set:
218 if found < i <= sz: found = i
219 if found < 0: raise ValueError, 'key too small'
220 return found
221 _augment(KeySZSet, _tmp)
222
223 ###--------------------------------------------------------------------------
224 ### Abstract groups.
225
226 class _tmp:
227 def __repr__(me):
228 return '%s(p = %s, r = %s, g = %s)' % \
229 (type(me).__name__, me.p, me.r, me.g)
230 _augment(FGInfo, _tmp)
231
232 class _tmp:
233 def group(me): return PrimeGroup(me)
234 _augment(DHInfo, _tmp)
235
236 class _tmp:
237 def group(me): return BinGroup(me)
238 _augment(BinDHInfo, _tmp)
239
240 class _tmp:
241 def __repr__(me):
242 return '%s(%r)' % (type(me).__name__, me.info)
243 _augment(Group, _tmp)
244
245 class _tmp:
246 def __repr__(me):
247 return '%r(%r)' % (me.group, str(me))
248 _augment(GE, _tmp)
249
250 ###--------------------------------------------------------------------------
251 ### RSA encoding techniques.
252
253 class PKCS1Crypt (object):
254 def __init__(me, ep = '', rng = rand):
255 me.ep = ep
256 me.rng = rng
257 def encode(me, msg, nbits):
258 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
259 def decode(me, ct, nbits):
260 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
261
262 class PKCS1Sig (object):
263 def __init__(me, ep = '', rng = rand):
264 me.ep = ep
265 me.rng = rng
266 def encode(me, msg, nbits):
267 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
268 def decode(me, msg, sig, nbits):
269 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
270
271 class OAEP (object):
272 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
273 me.mgf = mgf
274 me.hash = hash
275 me.ep = ep
276 me.rng = rng
277 def encode(me, msg, nbits):
278 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
279 def decode(me, ct, nbits):
280 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
281
282 class PSS (object):
283 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
284 me.mgf = mgf
285 me.hash = hash
286 if saltsz is None:
287 saltsz = hash.hashsz
288 me.saltsz = saltsz
289 me.rng = rng
290 def encode(me, msg, nbits):
291 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
292 def decode(me, msg, sig, nbits):
293 return _base._pss_decode(msg, sig, nbits,
294 me.mgf, me.hash, me.saltsz, me.rng)
295
296 class _tmp:
297 def encrypt(me, msg, enc):
298 return me.pubop(enc.encode(msg, me.n.nbits))
299 def verify(me, msg, sig, enc):
300 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
301 try:
302 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
303 return x is None or x == msg
304 except ValueError:
305 return False
306 _augment(RSAPub, _tmp)
307
308 class _tmp:
309 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
310 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
311 _augment(RSAPriv, _tmp)
312
313 ###--------------------------------------------------------------------------
314 ### Built-in named curves and prime groups.
315
316 class _groupmap (object):
317 def __init__(me, map, nth):
318 me.map = map
319 me.nth = nth
320 me.i = [None] * (max(map.values()) + 1)
321 def __repr__(me):
322 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
323 def __contains__(me, k):
324 return k in me.map
325 def __getitem__(me, k):
326 i = me.map[k]
327 if me.i[i] is None:
328 me.i[i] = me.nth(i)
329 return me.i[i]
330 def __setitem__(me, k, v):
331 raise TypeError, "immutable object"
332 def __iter__(me):
333 return iter(me.map)
334 def iterkeys(me):
335 return iter(me.map)
336 def itervalues(me):
337 for k in me:
338 yield me[k]
339 def iteritems(me):
340 for k in me:
341 yield k, me[k]
342 def keys(me):
343 return [k for k in me]
344 def values(me):
345 return [me[k] for k in me]
346 def items(me):
347 return [(k, me[k]) for k in me]
348 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
349 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
350 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
351
352 ###--------------------------------------------------------------------------
353 ### Prime number generation.
354
355 class PrimeGenEventHandler (object):
356 def pg_begin(me, ev):
357 return me.pg_try(ev)
358 def pg_done(me, ev):
359 return PGEN_DONE
360 def pg_abort(me, ev):
361 return PGEN_TRY
362 def pg_fail(me, ev):
363 return PGEN_TRY
364 def pg_pass(me, ev):
365 return PGEN_TRY
366
367 class SophieGermainStepJump (object):
368 def pg_begin(me, ev):
369 me.lf = PrimeFilter(ev.x)
370 me.hf = me.lf.muladd(2, 1)
371 return me.cont(ev)
372 def pg_try(me, ev):
373 me.step()
374 return me.cont(ev)
375 def cont(me, ev):
376 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
377 me.step()
378 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
379 return PGEN_ABORT
380 ev.x = me.lf.x
381 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
382 return PGEN_DONE
383 return PGEN_TRY
384 def pg_done(me, ev):
385 del me.lf
386 del me.hf
387
388 class SophieGermainStepper (SophieGermainStepJump):
389 def __init__(me, step):
390 me.lstep = step;
391 me.hstep = 2 * step
392 def step(me):
393 me.lf.step(me.lstep)
394 me.hf.step(me.hstep)
395
396 class SophieGermainJumper (SophieGermainStepJump):
397 def __init__(me, jump):
398 me.ljump = PrimeFilter(jump);
399 me.hjump = me.ljump.muladd(2, 0)
400 def step(me):
401 me.lf.jump(me.ljump)
402 me.hf.jump(me.hjump)
403 def pg_done(me, ev):
404 del me.ljump
405 del me.hjump
406 SophieGermainStepJump.pg_done(me, ev)
407
408 class SophieGermainTester (object):
409 def __init__(me):
410 pass
411 def pg_begin(me, ev):
412 me.lr = RabinMiller(ev.x)
413 me.hr = RabinMiller(2 * ev.x + 1)
414 def pg_try(me, ev):
415 lst = me.lr.test(ev.rng.range(me.lr.x))
416 if lst != PGEN_PASS and lst != PGEN_DONE:
417 return lst
418 rst = me.hr.test(ev.rng.range(me.hr.x))
419 if rst != PGEN_PASS and rst != PGEN_DONE:
420 return rst
421 if lst == PGEN_DONE and rst == PGEN_DONE:
422 return PGEN_DONE
423 return PGEN_PASS
424 def pg_done(me, ev):
425 del me.lr
426 del me.hr
427
428 class PrimitiveStepper (PrimeGenEventHandler):
429 def __init__(me):
430 pass
431 def pg_try(me, ev):
432 ev.x = me.i.next()
433 return PGEN_TRY
434 def pg_begin(me, ev):
435 me.i = iter(smallprimes)
436 return me.pg_try(ev)
437
438 class PrimitiveTester (PrimeGenEventHandler):
439 def __init__(me, mod, hh = [], exp = None):
440 me.mod = MPMont(mod)
441 me.exp = exp
442 me.hh = hh
443 def pg_try(me, ev):
444 x = ev.x
445 if me.exp is not None:
446 x = me.mod.exp(x, me.exp)
447 if x == 1: return PGEN_FAIL
448 for h in me.hh:
449 if me.mod.exp(x, h) == 1: return PGEN_FAIL
450 ev.x = x
451 return PGEN_DONE
452
453 class SimulStepper (PrimeGenEventHandler):
454 def __init__(me, mul = 2, add = 1, step = 2):
455 me.step = step
456 me.mul = mul
457 me.add = add
458 def _stepfn(me, step):
459 if step <= 0:
460 raise ValueError, 'step must be positive'
461 if step <= MPW_MAX:
462 return lambda f: f.step(step)
463 j = PrimeFilter(step)
464 return lambda f: f.jump(j)
465 def pg_begin(me, ev):
466 x = ev.x
467 me.lf = PrimeFilter(x)
468 me.hf = PrimeFilter(x * me.mul + me.add)
469 me.lstep = me._stepfn(me.step)
470 me.hstep = me._stepfn(me.step * me.mul)
471 SimulStepper._cont(me, ev)
472 def pg_try(me, ev):
473 me._step()
474 me._cont(ev)
475 def _step(me):
476 me.lstep(me.lf)
477 me.hstep(me.hf)
478 def _cont(me, ev):
479 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
480 me._step()
481 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
482 return PGEN_ABORT
483 ev.x = me.lf.x
484 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
485 return PGEN_DONE
486 return PGEN_TRY
487 def pg_done(me, ev):
488 del me.lf
489 del me.hf
490 del me.lstep
491 del me.hstep
492
493 class SimulTester (PrimeGenEventHandler):
494 def __init__(me, mul = 2, add = 1):
495 me.mul = mul
496 me.add = add
497 def pg_begin(me, ev):
498 x = ev.x
499 me.lr = RabinMiller(x)
500 me.hr = RabinMiller(x * me.mul + me.add)
501 def pg_try(me, ev):
502 lst = me.lr.test(ev.rng.range(me.lr.x))
503 if lst != PGEN_PASS and lst != PGEN_DONE:
504 return lst
505 rst = me.hr.test(ev.rng.range(me.hr.x))
506 if rst != PGEN_PASS and rst != PGEN_DONE:
507 return rst
508 if lst == PGEN_DONE and rst == PGEN_DONE:
509 return PGEN_DONE
510 return PGEN_PASS
511 def pg_done(me, ev):
512 del me.lr
513 del me.hr
514
515 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
516 start = MP(start)
517 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
518 nsteps, RabinMiller.iters(start.nbits))
519
520 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
521 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
522 event, 0, 1)
523
524 def kcdsaprime(pbits, qbits, rng = rand,
525 event = pgen_nullev, name = 'p', nsteps = 0):
526 hbits = pbits - qbits
527 h = pgen(rng.mp(hbits, 1), name + ' [h]',
528 PrimeGenStepper(2), PrimeGenTester(),
529 event, nsteps, RabinMiller.iters(hbits))
530 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
531 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
532 p = 2 * q * h + 1
533 return p, q, h
534
535 #----- That's all, folks ----------------------------------------------------