catacomb/__init__.py: Slightly cheesy rational arithmetic.
[catacomb-python] / catacomb / __init__.py
1 ### -*-python-*-
2 ###
3 ### Setup for Catacomb/Python bindings
4 ###
5 ### (c) 2004 Straylight/Edgeware
6 ###
7
8 ###----- Licensing notice ---------------------------------------------------
9 ###
10 ### This file is part of the Python interface to Catacomb.
11 ###
12 ### Catacomb/Python is free software; you can redistribute it and/or modify
13 ### it under the terms of the GNU General Public License as published by
14 ### the Free Software Foundation; either version 2 of the License, or
15 ### (at your option) any later version.
16 ###
17 ### Catacomb/Python is distributed in the hope that it will be useful,
18 ### but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ### GNU General Public License for more details.
21 ###
22 ### You should have received a copy of the GNU General Public License
23 ### along with Catacomb/Python; if not, write to the Free Software Foundation,
24 ### Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25
26 import _base
27 import types as _types
28 from binascii import hexlify as _hexify, unhexlify as _unhexify
29 from sys import argv as _argv
30
31 ###--------------------------------------------------------------------------
32 ### Basic stuff.
33
34 ## For the benefit of the default keyreporter, we need the program na,e.
35 _base._ego(_argv[0])
36
37 ## Initialize the module. Drag in the static methods of the various
38 ## classes; create names for the various known crypto algorithms.
39 def _init():
40 d = globals()
41 b = _base.__dict__;
42 for i in b:
43 if i[0] != '_':
44 d[i] = b[i];
45 for i in ['MP', 'GF', 'Field',
46 'ECPt', 'ECPtCurve', 'ECCurve', 'ECInfo',
47 'DHInfo', 'BinDHInfo', 'RSAPriv', 'BBSPriv',
48 'PrimeFilter', 'RabinMiller',
49 'Group', 'GE',
50 'KeySZ', 'KeyData']:
51 c = d[i]
52 pre = '_' + i + '_'
53 plen = len(pre)
54 for j in b:
55 if j[:plen] == pre:
56 setattr(c, j[plen:], classmethod(b[j]))
57 for i in [gcciphers, gchashes, gcmacs, gcprps]:
58 for c in i.itervalues():
59 d[c.name.replace('-', '_')] = c
60 for c in gccrands.itervalues():
61 d[c.name.replace('-', '_') + 'rand'] = c
62 _init()
63
64 ## A handy function for our work: add the methods of a named class to an
65 ## existing class. This is how we write the Python-implemented parts of our
66 ## mostly-C types.
67 def _augment(c, cc):
68 for i in cc.__dict__:
69 a = cc.__dict__[i]
70 if type(a) is _types.MethodType:
71 a = a.im_func
72 elif type(a) not in (_types.FunctionType, staticmethod, classmethod):
73 continue
74 setattr(c, i, a)
75
76 ## Parsing functions tend to return the object parsed and the remainder of
77 ## the input. This checks that the remainder is input and, if so, returns
78 ## just the object.
79 def _checkend(r):
80 x, rest = r
81 if rest != '':
82 raise SyntaxError, 'junk at end of string'
83 return x
84
85 ###--------------------------------------------------------------------------
86 ### Bytestrings.
87
88 class _tmp:
89 def fromhex(x):
90 return ByteString(_unhexify(x))
91 fromhex = staticmethod(fromhex)
92 def __hex__(me):
93 return _hexify(me)
94 def __repr__(me):
95 return 'bytes(%r)' % hex(me)
96 _augment(ByteString, _tmp)
97 bytes = ByteString.fromhex
98
99 ###--------------------------------------------------------------------------
100 ### Multiprecision integers and binary polynomials.
101
102 def _split_rat(x):
103 if isinstance(x, Rat): return x._n, x._d
104 else: return x, 1
105 class Rat (object):
106 def __new__(cls, a, b):
107 a, b = MP(a), MP(b)
108 q, r = divmod(a, b)
109 if r == 0: return q
110 g = b.gcd(r)
111 me = super(Rat, cls).__new__(cls)
112 me._n = a//g
113 me._d = b//g
114 return me
115 @property
116 def numer(me): return me._n
117 @property
118 def denom(me): return me._d
119 def __str__(me): return '%s/%s' % (me._n, me._d)
120 def __repr__(me): return 'Rat(%s, %s)' % (me._n, me._d)
121
122 def __add__(me, you):
123 n, d = _split_rat(you)
124 return Rat(me._n*d + n*me._d, d*me._d)
125 __radd__ = __add__
126 def __sub__(me, you):
127 n, d = _split_rat(you)
128 return Rat(me._n*d - n*me._d, d*me._d)
129 def __rsub__(me, you):
130 n, d = _split_rat(you)
131 return Rat(n*me._d - me._n*d, d*me._d)
132 def __mul__(me, you):
133 n, d = _split_rat(you)
134 return Rat(me._n*n, me._d*d)
135 def __div__(me, you):
136 n, d = _split_rat(you)
137 return Rat(me._n*d, me._d*n)
138 def __rdiv__(me, you):
139 n, d = _split_rat(you)
140 return Rat(me._d*n, me._n*d)
141 def __cmp__(me, you):
142 n, d = _split_rat(you)
143 return cmp(me._n*d, n*me._d)
144 def __rcmp__(me, you):
145 n, d = _split_rat(you)
146 return cmp(n*me._d, me._n*d)
147
148 class _tmp:
149 def negp(x): return x < 0
150 def posp(x): return x > 0
151 def zerop(x): return x == 0
152 def oddp(x): return x.testbit(0)
153 def evenp(x): return not x.testbit(0)
154 def mont(x): return MPMont(x)
155 def barrett(x): return MPBarrett(x)
156 def reduce(x): return MPReduce(x)
157 def __div__(me, you): return Rat(me, you)
158 def __rdiv__(me, you): return Rat(you, me)
159 _augment(MP, _tmp)
160
161 class _tmp:
162 def zerop(x): return x == 0
163 def reduce(x): return GFReduce(x)
164 def trace(x, y): return x.reduce().trace(y)
165 def halftrace(x, y): return x.reduce().halftrace(y)
166 def modsqrt(x, y): return x.reduce().sqrt(y)
167 def quadsolve(x, y): return x.reduce().quadsolve(y)
168 _augment(GF, _tmp)
169
170 class _tmp:
171 def product(*arg):
172 'product(ITERABLE) or product(I, ...) -> PRODUCT'
173 return MPMul(*arg).done()
174 product = staticmethod(product)
175 _augment(MPMul, _tmp)
176
177 ###--------------------------------------------------------------------------
178 ### Abstract fields.
179
180 class _tmp:
181 def fromstring(str): return _checkend(Field.parse(str))
182 fromstring = staticmethod(fromstring)
183 _augment(Field, _tmp)
184
185 class _tmp:
186 def __repr__(me): return '%s(%sL)' % (type(me).__name__, me.p)
187 def ec(me, a, b): return ECPrimeProjCurve(me, a, b)
188 _augment(PrimeField, _tmp)
189
190 class _tmp:
191 def __repr__(me): return '%s(%sL)' % (type(me).__name__, hex(me.p))
192 def ec(me, a, b): return ECBinProjCurve(me, a, b)
193 _augment(BinField, _tmp)
194
195 class _tmp:
196 def __str__(me): return str(me.value)
197 def __repr__(me): return '%s(%s)' % (repr(me.field), repr(me.value))
198 _augment(FE, _tmp)
199
200 ###--------------------------------------------------------------------------
201 ### Elliptic curves.
202
203 class _tmp:
204 def __repr__(me):
205 return '%s(%r, %s, %s)' % (type(me).__name__, me.field, me.a, me.b)
206 def frombuf(me, s):
207 return ecpt.frombuf(me, s)
208 def fromraw(me, s):
209 return ecpt.fromraw(me, s)
210 def pt(me, *args):
211 return me(*args)
212 _augment(ECCurve, _tmp)
213
214 class _tmp:
215 def __repr__(me):
216 if not me: return 'ECPt()'
217 return 'ECPt(%s, %s)' % (me.ix, me.iy)
218 def __str__(me):
219 if not me: return 'inf'
220 return '(%s, %s)' % (me.ix, me.iy)
221 _augment(ECPt, _tmp)
222
223 class _tmp:
224 def __repr__(me):
225 return 'ECInfo(curve = %r, G = %r, r = %s, h = %s)' % \
226 (me.curve, me.G, me.r, me.h)
227 def group(me):
228 return ECGroup(me)
229 _augment(ECInfo, _tmp)
230
231 class _tmp:
232 def __repr__(me):
233 if not me: return '%r()' % (me.curve)
234 return '%r(%s, %s)' % (me.curve, me.x, me.y)
235 def __str__(me):
236 if not me: return 'inf'
237 return '(%s, %s)' % (me.x, me.y)
238 _augment(ECPtCurve, _tmp)
239
240 ###--------------------------------------------------------------------------
241 ### Key sizes.
242
243 class _tmp:
244 def __repr__(me): return 'KeySZAny(%d)' % me.default
245 def check(me, sz): return True
246 def best(me, sz): return sz
247 _augment(KeySZAny, _tmp)
248
249 class _tmp:
250 def __repr__(me):
251 return 'KeySZRange(%d, %d, %d, %d)' % \
252 (me.default, me.min, me.max, me.mod)
253 def check(me, sz): return me.min <= sz <= me.max and sz % me.mod == 0
254 def best(me, sz):
255 if sz < me.min: raise ValueError, 'key too small'
256 elif sz > me.max: return me.max
257 else: return sz - (sz % me.mod)
258 _augment(KeySZRange, _tmp)
259
260 class _tmp:
261 def __repr__(me): return 'KeySZSet(%d, %s)' % (me.default, me.set)
262 def check(me, sz): return sz in me.set
263 def best(me, sz):
264 found = -1
265 for i in me.set:
266 if found < i <= sz: found = i
267 if found < 0: raise ValueError, 'key too small'
268 return found
269 _augment(KeySZSet, _tmp)
270
271 ###--------------------------------------------------------------------------
272 ### Abstract groups.
273
274 class _tmp:
275 def __repr__(me):
276 return '%s(p = %s, r = %s, g = %s)' % \
277 (type(me).__name__, me.p, me.r, me.g)
278 _augment(FGInfo, _tmp)
279
280 class _tmp:
281 def group(me): return PrimeGroup(me)
282 _augment(DHInfo, _tmp)
283
284 class _tmp:
285 def group(me): return BinGroup(me)
286 _augment(BinDHInfo, _tmp)
287
288 class _tmp:
289 def __repr__(me):
290 return '%s(%r)' % (type(me).__name__, me.info)
291 _augment(Group, _tmp)
292
293 class _tmp:
294 def __repr__(me):
295 return '%r(%r)' % (me.group, str(me))
296 _augment(GE, _tmp)
297
298 ###--------------------------------------------------------------------------
299 ### RSA encoding techniques.
300
301 class PKCS1Crypt (object):
302 def __init__(me, ep = '', rng = rand):
303 me.ep = ep
304 me.rng = rng
305 def encode(me, msg, nbits):
306 return _base._p1crypt_encode(msg, nbits, me.ep, me.rng)
307 def decode(me, ct, nbits):
308 return _base._p1crypt_decode(ct, nbits, me.ep, me.rng)
309
310 class PKCS1Sig (object):
311 def __init__(me, ep = '', rng = rand):
312 me.ep = ep
313 me.rng = rng
314 def encode(me, msg, nbits):
315 return _base._p1sig_encode(msg, nbits, me.ep, me.rng)
316 def decode(me, msg, sig, nbits):
317 return _base._p1sig_decode(msg, sig, nbits, me.ep, me.rng)
318
319 class OAEP (object):
320 def __init__(me, mgf = sha_mgf, hash = sha, ep = '', rng = rand):
321 me.mgf = mgf
322 me.hash = hash
323 me.ep = ep
324 me.rng = rng
325 def encode(me, msg, nbits):
326 return _base._oaep_encode(msg, nbits, me.mgf, me.hash, me.ep, me.rng)
327 def decode(me, ct, nbits):
328 return _base._oaep_decode(ct, nbits, me.mgf, me.hash, me.ep, me.rng)
329
330 class PSS (object):
331 def __init__(me, mgf = sha_mgf, hash = sha, saltsz = None, rng = rand):
332 me.mgf = mgf
333 me.hash = hash
334 if saltsz is None:
335 saltsz = hash.hashsz
336 me.saltsz = saltsz
337 me.rng = rng
338 def encode(me, msg, nbits):
339 return _base._pss_encode(msg, nbits, me.mgf, me.hash, me.saltsz, me.rng)
340 def decode(me, msg, sig, nbits):
341 return _base._pss_decode(msg, sig, nbits,
342 me.mgf, me.hash, me.saltsz, me.rng)
343
344 class _tmp:
345 def encrypt(me, msg, enc):
346 return me.pubop(enc.encode(msg, me.n.nbits))
347 def verify(me, msg, sig, enc):
348 if msg is None: return enc.decode(msg, me.pubop(sig), me.n.nbits)
349 try:
350 x = enc.decode(msg, me.pubop(sig), me.n.nbits)
351 return x is None or x == msg
352 except ValueError:
353 return False
354 _augment(RSAPub, _tmp)
355
356 class _tmp:
357 def decrypt(me, ct, enc): return enc.decode(me.privop(ct), me.n.nbits)
358 def sign(me, msg, enc): return me.privop(enc.encode(msg, me.n.nbits))
359 _augment(RSAPriv, _tmp)
360
361 ###--------------------------------------------------------------------------
362 ### Built-in named curves and prime groups.
363
364 class _groupmap (object):
365 def __init__(me, map, nth):
366 me.map = map
367 me.nth = nth
368 me.i = [None] * (max(map.values()) + 1)
369 def __repr__(me):
370 return '{%s}' % ', '.join(['%r: %r' % (k, me[k]) for k in me])
371 def __contains__(me, k):
372 return k in me.map
373 def __getitem__(me, k):
374 i = me.map[k]
375 if me.i[i] is None:
376 me.i[i] = me.nth(i)
377 return me.i[i]
378 def __setitem__(me, k, v):
379 raise TypeError, "immutable object"
380 def __iter__(me):
381 return iter(me.map)
382 def iterkeys(me):
383 return iter(me.map)
384 def itervalues(me):
385 for k in me:
386 yield me[k]
387 def iteritems(me):
388 for k in me:
389 yield k, me[k]
390 def keys(me):
391 return [k for k in me]
392 def values(me):
393 return [me[k] for k in me]
394 def items(me):
395 return [(k, me[k]) for k in me]
396 eccurves = _groupmap(_base._eccurves, ECInfo._curven)
397 primegroups = _groupmap(_base._pgroups, DHInfo._groupn)
398 bingroups = _groupmap(_base._bingroups, BinDHInfo._groupn)
399
400 ###--------------------------------------------------------------------------
401 ### Prime number generation.
402
403 class PrimeGenEventHandler (object):
404 def pg_begin(me, ev):
405 return me.pg_try(ev)
406 def pg_done(me, ev):
407 return PGEN_DONE
408 def pg_abort(me, ev):
409 return PGEN_TRY
410 def pg_fail(me, ev):
411 return PGEN_TRY
412 def pg_pass(me, ev):
413 return PGEN_TRY
414
415 class SophieGermainStepJump (object):
416 def pg_begin(me, ev):
417 me.lf = PrimeFilter(ev.x)
418 me.hf = me.lf.muladd(2, 1)
419 return me.cont(ev)
420 def pg_try(me, ev):
421 me.step()
422 return me.cont(ev)
423 def cont(me, ev):
424 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
425 me.step()
426 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
427 return PGEN_ABORT
428 ev.x = me.lf.x
429 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
430 return PGEN_DONE
431 return PGEN_TRY
432 def pg_done(me, ev):
433 del me.lf
434 del me.hf
435
436 class SophieGermainStepper (SophieGermainStepJump):
437 def __init__(me, step):
438 me.lstep = step;
439 me.hstep = 2 * step
440 def step(me):
441 me.lf.step(me.lstep)
442 me.hf.step(me.hstep)
443
444 class SophieGermainJumper (SophieGermainStepJump):
445 def __init__(me, jump):
446 me.ljump = PrimeFilter(jump);
447 me.hjump = me.ljump.muladd(2, 0)
448 def step(me):
449 me.lf.jump(me.ljump)
450 me.hf.jump(me.hjump)
451 def pg_done(me, ev):
452 del me.ljump
453 del me.hjump
454 SophieGermainStepJump.pg_done(me, ev)
455
456 class SophieGermainTester (object):
457 def __init__(me):
458 pass
459 def pg_begin(me, ev):
460 me.lr = RabinMiller(ev.x)
461 me.hr = RabinMiller(2 * ev.x + 1)
462 def pg_try(me, ev):
463 lst = me.lr.test(ev.rng.range(me.lr.x))
464 if lst != PGEN_PASS and lst != PGEN_DONE:
465 return lst
466 rst = me.hr.test(ev.rng.range(me.hr.x))
467 if rst != PGEN_PASS and rst != PGEN_DONE:
468 return rst
469 if lst == PGEN_DONE and rst == PGEN_DONE:
470 return PGEN_DONE
471 return PGEN_PASS
472 def pg_done(me, ev):
473 del me.lr
474 del me.hr
475
476 class PrimitiveStepper (PrimeGenEventHandler):
477 def __init__(me):
478 pass
479 def pg_try(me, ev):
480 ev.x = me.i.next()
481 return PGEN_TRY
482 def pg_begin(me, ev):
483 me.i = iter(smallprimes)
484 return me.pg_try(ev)
485
486 class PrimitiveTester (PrimeGenEventHandler):
487 def __init__(me, mod, hh = [], exp = None):
488 me.mod = MPMont(mod)
489 me.exp = exp
490 me.hh = hh
491 def pg_try(me, ev):
492 x = ev.x
493 if me.exp is not None:
494 x = me.mod.exp(x, me.exp)
495 if x == 1: return PGEN_FAIL
496 for h in me.hh:
497 if me.mod.exp(x, h) == 1: return PGEN_FAIL
498 ev.x = x
499 return PGEN_DONE
500
501 class SimulStepper (PrimeGenEventHandler):
502 def __init__(me, mul = 2, add = 1, step = 2):
503 me.step = step
504 me.mul = mul
505 me.add = add
506 def _stepfn(me, step):
507 if step <= 0:
508 raise ValueError, 'step must be positive'
509 if step <= MPW_MAX:
510 return lambda f: f.step(step)
511 j = PrimeFilter(step)
512 return lambda f: f.jump(j)
513 def pg_begin(me, ev):
514 x = ev.x
515 me.lf = PrimeFilter(x)
516 me.hf = PrimeFilter(x * me.mul + me.add)
517 me.lstep = me._stepfn(me.step)
518 me.hstep = me._stepfn(me.step * me.mul)
519 SimulStepper._cont(me, ev)
520 def pg_try(me, ev):
521 me._step()
522 me._cont(ev)
523 def _step(me):
524 me.lstep(me.lf)
525 me.hstep(me.hf)
526 def _cont(me, ev):
527 while me.lf.status == PGEN_FAIL or me.hf.status == PGEN_FAIL:
528 me._step()
529 if me.lf.status == PGEN_ABORT or me.hf.status == PGEN_ABORT:
530 return PGEN_ABORT
531 ev.x = me.lf.x
532 if me.lf.status == PGEN_DONE and me.hf.status == PGEN_DONE:
533 return PGEN_DONE
534 return PGEN_TRY
535 def pg_done(me, ev):
536 del me.lf
537 del me.hf
538 del me.lstep
539 del me.hstep
540
541 class SimulTester (PrimeGenEventHandler):
542 def __init__(me, mul = 2, add = 1):
543 me.mul = mul
544 me.add = add
545 def pg_begin(me, ev):
546 x = ev.x
547 me.lr = RabinMiller(x)
548 me.hr = RabinMiller(x * me.mul + me.add)
549 def pg_try(me, ev):
550 lst = me.lr.test(ev.rng.range(me.lr.x))
551 if lst != PGEN_PASS and lst != PGEN_DONE:
552 return lst
553 rst = me.hr.test(ev.rng.range(me.hr.x))
554 if rst != PGEN_PASS and rst != PGEN_DONE:
555 return rst
556 if lst == PGEN_DONE and rst == PGEN_DONE:
557 return PGEN_DONE
558 return PGEN_PASS
559 def pg_done(me, ev):
560 del me.lr
561 del me.hr
562
563 def sgprime(start, step = 2, name = 'p', event = pgen_nullev, nsteps = 0):
564 start = MP(start)
565 return pgen(start, name, SimulStepper(step = step), SimulTester(), event,
566 nsteps, RabinMiller.iters(start.nbits))
567
568 def findprimitive(mod, hh = [], exp = None, name = 'g', event = pgen_nullev):
569 return pgen(0, name, PrimitiveStepper(), PrimitiveTester(mod, hh, exp),
570 event, 0, 1)
571
572 def kcdsaprime(pbits, qbits, rng = rand,
573 event = pgen_nullev, name = 'p', nsteps = 0):
574 hbits = pbits - qbits
575 h = pgen(rng.mp(hbits, 1), name + ' [h]',
576 PrimeGenStepper(2), PrimeGenTester(),
577 event, nsteps, RabinMiller.iters(hbits))
578 q = pgen(rng.mp(qbits, 1), name, SimulStepper(2 * h, 1, 2),
579 SimulTester(2 * h, 1), event, nsteps, RabinMiller.iters(qbits))
580 p = 2 * q * h + 1
581 return p, q, h
582
583 #----- That's all, folks ----------------------------------------------------