8cc302d258b6895f4bf77dfc60a069c159a18eed
[become] / src / blowfish.c
1 /* -*-c-*-
2 *
3 * $Id: blowfish.c,v 1.2 1997/08/04 10:24:20 mdw Exp $
4 *
5 * Blowfish encryption routines
6 *
7 * (c) 1997 Mark Wooding
8 */
9
10 /*----- Licencing notice --------------------------------------------------*
11 *
12 * This file is part of `become'
13 *
14 * `Become' is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * `Become' is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with `become'; if not, write to the Free Software
26 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29 /*----- Revision history --------------------------------------------------*
30 *
31 * $Log: blowfish.c,v $
32 * Revision 1.2 1997/08/04 10:24:20 mdw
33 * Sources placed under CVS control.
34 *
35 * Revision 1.1 1997/07/21 13:47:53 mdw
36 * Initial revision
37 *
38 */
39
40 /*----- Header files ------------------------------------------------------*/
41
42 /* --- ANSI headers --- */
43
44 #include <stdio.h>
45
46 /* --- Local headers --- */
47
48 #include "config.h"
49 #include "blowfish.h"
50 #include "utils.h"
51
52 /*----- Define the initial S-box values -----------------------------------*/
53
54 #include "blowfish-sbox.h"
55
56 /*----- Useful macros -----------------------------------------------------*/
57
58 /* --- The Blowfish round function --- *
59 *
60 * This is why I like this cipher. The round function is microscopic. And
61 * very fast.
62 */
63
64 #define ROUND(L, R, K) \
65 ((L) ^= k->p[K], \
66 (R) ^= ((((k->s0[((L) >> 24) & 0xFF]) + \
67 k->s1[((L) >> 16) & 0xFF]) ^ \
68 k->s2[((L) >> 8) & 0xFF]) + \
69 k->s3[((L) >> 0) & 0xFF]))
70
71 /*----- Main code ---------------------------------------------------------*/
72
73 /* --- @blowfish_encrypt@ --- *
74 *
75 * Arguments: @const blowfish_key *k@ = pointer to key block
76 * @const void *from@ = block to encrypt from
77 * @void *to@ = block to encrypt to
78 *
79 * Returns: ---
80 *
81 * Use: Encrypts a block using the Blowfish algorithm.
82 */
83
84 void blowfish_encrypt(const blowfish_key *k, const void *from, void *to)
85 {
86 uint_32 l, r;
87 const unsigned char *f = from;
88 unsigned char *t = to;
89
90 /* --- Extract left and right block halves --- */
91
92 l = load32(f + 0);
93 r = load32(f + 4);
94
95 /* --- Now run the round function on these values --- */
96
97 ROUND(l, r, 0);
98 ROUND(r, l, 1);
99 ROUND(l, r, 2);
100 ROUND(r, l, 3);
101 ROUND(l, r, 4);
102 ROUND(r, l, 5);
103 ROUND(l, r, 6);
104 ROUND(r, l, 7);
105 ROUND(l, r, 8);
106 ROUND(r, l, 9);
107 ROUND(l, r, 10);
108 ROUND(r, l, 11);
109 ROUND(l, r, 12);
110 ROUND(r, l, 13);
111 ROUND(l, r, 14);
112 ROUND(r, l, 15);
113
114 /* --- Final transformation --- */
115
116 l ^= k->p[16];
117 r ^= k->p[17];
118
119 /* --- Store the encrypted value --- */
120
121 store32(t + 0, r);
122 store32(t + 4, l);
123 }
124
125 /* --- @blowfish_decrypt@ --- *
126 *
127 * Arguments: @const blowfish_key *k@ = pointer to key block
128 * @const void *from@ = block to decrypt from
129 * @void *to@ = block to decrypt to
130 *
131 * Returns: ---
132 *
133 * Use: Decrypts a block using the Blowfish algorithm.
134 */
135
136 void blowfish_decrypt(const blowfish_key *k, const void *from, void *to)
137 {
138 uint_32 l, r;
139 const unsigned char *f = from;
140 unsigned char *t = to;
141
142 /* --- Extract left and right block halves --- */
143
144 l = load32(f + 0);
145 r = load32(f + 4);
146
147 /* --- Now run the round function on these values --- */
148
149 ROUND(l, r, 17);
150 ROUND(r, l, 16);
151 ROUND(l, r, 15);
152 ROUND(r, l, 14);
153 ROUND(l, r, 13);
154 ROUND(r, l, 12);
155 ROUND(l, r, 11);
156 ROUND(r, l, 10);
157 ROUND(l, r, 9);
158 ROUND(r, l, 8);
159 ROUND(l, r, 7);
160 ROUND(r, l, 6);
161 ROUND(l, r, 5);
162 ROUND(r, l, 4);
163 ROUND(l, r, 3);
164 ROUND(r, l, 2);
165
166 /* --- Final transformation --- */
167
168 l ^= k->p[1];
169 r ^= k->p[0];
170
171 /* --- Store the decrypted value --- */
172
173 store32(t + 0, r);
174 store32(t + 4, l);
175 }
176
177 /* --- @blowfish__qcrypt@ --- *
178 *
179 * Arguments: @const blowfish_key *k@ = pointer to a key block
180 * @uint_32 *p@ = pointer to block to mangle
181 *
182 * Returns: ---
183 *
184 * Use: Mangles a block using the Blowfish algorithm.
185 */
186
187 static void blowfish__qcrypt(blowfish_key *k, uint_32 *p)
188 {
189 uint_32 l = p[0], r = p[1];
190
191 /* --- Run the round function --- */
192
193 ROUND(l, r, 0);
194 ROUND(r, l, 1);
195 ROUND(l, r, 2);
196 ROUND(r, l, 3);
197 ROUND(l, r, 4);
198 ROUND(r, l, 5);
199 ROUND(l, r, 6);
200 ROUND(r, l, 7);
201 ROUND(l, r, 8);
202 ROUND(r, l, 9);
203 ROUND(l, r, 10);
204 ROUND(r, l, 11);
205 ROUND(l, r, 12);
206 ROUND(r, l, 13);
207 ROUND(l, r, 14);
208 ROUND(r, l, 15);
209
210 /* --- Output transformation --- */
211
212 l ^= k->p[16];
213 r ^= k->p[17];
214
215 /* --- Store the new values --- */
216
217 p[0] = r;
218 p[1] = l;
219 }
220
221 /* --- @blowfish__buildKey@ --- *
222 *
223 * Arguments: @blowfish_key *k@ = pointer to a key block to set up
224 *
225 * Returns: ---
226 *
227 * Use: Sets up the P-array and S-boxes once a key has been mixed
228 * into the P-array. Use a local copy of the Blowfish
229 * encryption routine, to avoid penalising the main code too
230 * much with having to veneer onto a general args-in-words
231 * function, and to avoid me messing about with transforming
232 * values backwards and forwards between char arrays and
233 * integers.
234 */
235
236 static void blowfish__buildKey(blowfish_key *k)
237 {
238 uint_32 b[2] = { 0, 0 };
239 int i;
240
241 /* --- First, run through the P-array --- */
242
243 for (i = 0; i < 18; i += 2) {
244 blowfish__qcrypt(k, b);
245 k->p[i] = b[0];
246 k->p[i + 1] = b[1];
247 }
248
249 /* --- Now do the S-boxes --- */
250
251 for (i = 0; i < 256; i += 2) {
252 blowfish__qcrypt(k, b);
253 k->s0[i] = b[0];
254 k->s0[i + 1] = b[1];
255 }
256
257 for (i = 0; i < 256; i += 2) {
258 blowfish__qcrypt(k, b);
259 k->s1[i] = b[0];
260 k->s1[i + 1] = b[1];
261 }
262
263 for (i = 0; i < 256; i += 2) {
264 blowfish__qcrypt(k, b);
265 k->s2[i] = b[0];
266 k->s2[i + 1] = b[1];
267 }
268
269 for (i = 0; i < 256; i += 2) {
270 blowfish__qcrypt(k, b);
271 k->s3[i] = b[0];
272 k->s3[i + 1] = b[1];
273 }
274 }
275
276 /* --- @blowfish_setKey@ --- *
277 *
278 * Arguments: @blowfish_key *kb@ = pointer to key block to fill
279 * @void *k@ = pointer to key data
280 * @size_t sz@ = length of data in bytes
281 *
282 * Returns: ---
283 *
284 * Use: Expands a key which isn't represented as a number of whole
285 * words. This is a nonstandard extension, although it can be
286 * used to support 40-bit keys, which some governments might
287 * find more palatable than 160-bit (or 448-bit!) keys.
288 */
289
290 void blowfish_setKey(blowfish_key *kb, const void *k, size_t sz)
291 {
292 int i, j, l;
293 const unsigned char *p = k;
294 uint_32 a;
295
296 memcpy(kb, &blowfish__init, sizeof(blowfish__init));
297
298 j = 0;
299 for (i = 0; i < 18; i++) {
300 a = 0;
301 for (l = 0; l < 4; l++) {
302 a = (a << 8) | p[j];
303 j++;
304 if (j >= sz)
305 j = 0;
306 }
307 kb->p[i] ^= a;
308 }
309
310 blowfish__buildKey(kb);
311 }
312
313 /*----- Test rig ----------------------------------------------------------*/
314
315 #ifdef TEST_RIG
316
317 int main(void)
318 {
319 /* --- Stage one: ECB tests --- */
320
321 {
322 static struct {
323 uint_32 k[2];
324 uint_32 p[2];
325 uint_32 c[2];
326 } table[] = {
327 { { 0x00000000u, 0x00000000u },
328 { 0x00000000u, 0x00000000u },
329 { 0x4EF99745u, 0x6198DD78u } },
330
331 { { 0xFFFFFFFFu, 0xFFFFFFFFu },
332 { 0xFFFFFFFFu, 0xFFFFFFFFu },
333 { 0x51866FD5u, 0xB85ECB8Au } },
334
335 { { 0x30000000u, 0x00000000u },
336 { 0x10000000u, 0x00000001u },
337 { 0x7D856F9Au, 0x613063F2u } },
338
339 { { 0x11111111u, 0x11111111u },
340 { 0x11111111u, 0x11111111u },
341 { 0x2466DD87u, 0x8B963C9Du } },
342
343 { { 0x01234567u, 0x89ABCDEFu },
344 { 0x11111111u, 0x11111111u },
345 { 0x61F9C380u, 0x2281B096u } },
346
347 { { 0x11111111u, 0x11111111u },
348 { 0x01234567u, 0x89ABCDEFu },
349 { 0x7D0CC630u, 0xAFDA1EC7u } },
350
351 { { 0x00000000u, 0x00000000u },
352 { 0x00000000u, 0x00000000u },
353 { 0x4EF99745u, 0x6198DD78u } },
354
355 { { 0xFEDCBA98u, 0x76543210u },
356 { 0x01234567u, 0x89ABCDEFu },
357 { 0x0ACEAB0Fu, 0xC6A0A28Du } },
358
359 { { 0x7CA11045u, 0x4A1A6E57u },
360 { 0x01A1D6D0u, 0x39776742u },
361 { 0x59C68245u, 0xEB05282Bu } },
362
363 { { 0x0131D961u, 0x9DC1376Eu },
364 { 0x5CD54CA8u, 0x3DEF57DAu },
365 { 0xB1B8CC0Bu, 0x250F09A0u } },
366
367 { { 0x07A1133Eu, 0x4A0B2686u },
368 { 0x0248D438u, 0x06F67172u },
369 { 0x1730E577u, 0x8BEA1DA4u } },
370
371 { { 0x3849674Cu, 0x2602319Eu },
372 { 0x51454B58u, 0x2DDF440Au },
373 { 0xA25E7856u, 0xCF2651EBu } },
374
375 { { 0x04B915BAu, 0x43FEB5B6u },
376 { 0x42FD4430u, 0x59577FA2u },
377 { 0x353882B1u, 0x09CE8F1Au } },
378
379 { { 0x0113B970u, 0xFD34F2CEu },
380 { 0x059B5E08u, 0x51CF143Au },
381 { 0x48F4D088u, 0x4C379918u } },
382
383 { { 0x0170F175u, 0x468FB5E6u },
384 { 0x0756D8E0u, 0x774761D2u },
385 { 0x432193B7u, 0x8951FC98u } },
386
387 { { 0x43297FADu, 0x38E373FEu },
388 { 0x762514B8u, 0x29BF486Au },
389 { 0x13F04154u, 0xD69D1AE5u } },
390
391 { { 0x07A71370u, 0x45DA2A16u },
392 { 0x3BDD1190u, 0x49372802u },
393 { 0x2EEDDA93u, 0xFFD39C79u } },
394
395 { { 0x04689104u, 0xC2FD3B2Fu },
396 { 0x26955F68u, 0x35AF609Au },
397 { 0xD887E039u, 0x3C2DA6E3u } },
398
399 { { 0x37D06BB5u, 0x16CB7546u },
400 { 0x164D5E40u, 0x4F275232u },
401 { 0x5F99D04Fu, 0x5B163969u } },
402
403 { { 0x1F08260Du, 0x1AC2465Eu },
404 { 0x6B056E18u, 0x759F5CCAu },
405 { 0x4A057A3Bu, 0x24D3977Bu } },
406
407 { { 0x58402364u, 0x1ABA6176u },
408 { 0x004BD6EFu, 0x09176062u },
409 { 0x452031C1u, 0xE4FADA8Eu } },
410
411 { { 0x02581616u, 0x4629B007u },
412 { 0x480D3900u, 0x6EE762F2u },
413 { 0x7555AE39u, 0xF59B87BDu } },
414
415 { { 0x49793EBCu, 0x79B3258Fu },
416 { 0x437540C8u, 0x698F3CFAu },
417 { 0x53C55F9Cu, 0xB49FC019u } },
418
419 { { 0x4FB05E15u, 0x15AB73A7u },
420 { 0x072D43A0u, 0x77075292u },
421 { 0x7A8E7BFAu, 0x937E89A3u } },
422
423 { { 0x49E95D6Du, 0x4CA229BFu },
424 { 0x02FE5577u, 0x8117F12Au },
425 { 0xCF9C5D7Au, 0x4986ADB5u } },
426
427 { { 0x018310DCu, 0x409B26D6u },
428 { 0x1D9D5C50u, 0x18F728C2u },
429 { 0xD1ABB290u, 0x658BC778u } },
430
431 { { 0x1C587F1Cu, 0x13924FEFu },
432 { 0x30553228u, 0x6D6F295Au },
433 { 0x55CB3774u, 0xD13EF201u } },
434
435 { { 0x01010101u, 0x01010101u },
436 { 0x01234567u, 0x89ABCDEFu },
437 { 0xFA34EC48u, 0x47B268B2u } },
438
439 { { 0x1F1F1F1Fu, 0x0E0E0E0Eu },
440 { 0x01234567u, 0x89ABCDEFu },
441 { 0xA7907951u, 0x08EA3CAEu } },
442
443 { { 0xE0FEE0FEu, 0xF1FEF1FEu },
444 { 0x01234567u, 0x89ABCDEFu },
445 { 0xC39E072Du, 0x9FAC631Du } },
446
447 { { 0x00000000u, 0x00000000u },
448 { 0xFFFFFFFFu, 0xFFFFFFFFu },
449 { 0x014933E0u, 0xCDAFF6E4u } },
450
451 { { 0xFFFFFFFFu, 0xFFFFFFFFu },
452 { 0x00000000u, 0x00000000u },
453 { 0xF21E9A77u, 0xB71C49BCu } },
454
455 { { 0x01234567u, 0x89ABCDEFu },
456 { 0x00000000u, 0x00000000u },
457 { 0x24594688u, 0x5754369Au } },
458
459 { { 0xFEDCBA98u, 0x76543210u },
460 { 0xFFFFFFFFu, 0xFFFFFFFFu },
461 { 0x6B5C5A9Cu, 0x5D9E0A5Au } }
462 };
463
464 int f = 1;
465 int i;
466
467 printf("*** stage one: ");
468 fflush(stdout);
469
470 for (i = 0; i < sizeof(table) / sizeof(table[0]); i++) {
471 char kb[8], p[8], c[8];
472 blowfish_key k;
473
474 store32(kb + 0, table[i].k[0]);
475 store32(kb + 4, table[i].k[1]);
476 blowfish_setKey(&k, kb, 8);
477
478 store32(p + 0, table[i].p[0]);
479 store32(p + 4, table[i].p[1]);
480 blowfish_encrypt(&k, p, c);
481
482 if (load32(c + 0) != table[i].c[0] ||
483 load32(c + 4) != table[i].c[1]) {
484 printf("\n"
485 "!!! bad encryption\n"
486 " key = %08lx-%08lx\n"
487 " plaintext = %08lx-%08lx\n"
488 " expected ciphertext = %08lx-%08lx\n"
489 " calculated ciphertext = %08lx-%08lx\n",
490 (unsigned long)table[i].k[0],
491 (unsigned long)table[i].k[1],
492 (unsigned long)table[i].p[0],
493 (unsigned long)table[i].p[1],
494 (unsigned long)table[i].c[0],
495 (unsigned long)table[i].c[1],
496 (unsigned long)load32(c + 0),
497 (unsigned long)load32(c + 4));
498 f = 0;
499 }
500
501 blowfish_decrypt(&k, c, p);
502 if (load32(p + 0) != table[i].p[0] ||
503 load32(p + 4) != table[i].p[1]) {
504 printf("\n"
505 "!!! bad decryption\n"
506 " key = %08lx-%08lx\n"
507 " ciphertext = %08lx-%08lx\n"
508 " expected plaintext = %08lx-%08lx\n"
509 " calculated plaintext = %08lx-%08lx\n",
510 (unsigned long)table[i].k[0],
511 (unsigned long)table[i].k[1],
512 (unsigned long)table[i].c[0],
513 (unsigned long)table[i].c[1],
514 (unsigned long)table[i].p[0],
515 (unsigned long)table[i].p[1],
516 (unsigned long)load32(p + 0),
517 (unsigned long)load32(p + 4));
518 f = 0;
519 }
520
521 putchar('.');
522 fflush(stdout);
523 }
524 putchar('\n');
525 if (f)
526 printf("*** stage one ok\n");
527 }
528
529 /* --- Stage 2: key scheduling --- */
530
531 {
532 static struct {
533 uint_32 c[2];
534 } table[] = {
535 {{ 0xF9AD597Cu, 0x49DB005Eu }},
536 {{ 0xE91D21C1u, 0xD961A6D6u }},
537 {{ 0xE9C2B70Au, 0x1BC65CF3u }},
538 {{ 0xBE1E6394u, 0x08640F05u }},
539 {{ 0xB39E4448u, 0x1BDB1E6Eu }},
540 {{ 0x9457AA83u, 0xB1928C0Du }},
541 {{ 0x8BB77032u, 0xF960629Du }},
542 {{ 0xE87A244Eu, 0x2CC85E82u }},
543 {{ 0x15750E7Au, 0x4F4EC577u }},
544 {{ 0x122BA70Bu, 0x3AB64AE0u }},
545 {{ 0x3A833C9Au, 0xFFC537F6u }},
546 {{ 0x9409DA87u, 0xA90F6BF2u }},
547 {{ 0x884F8062u, 0x5060B8B4u }},
548 {{ 0x1F85031Cu, 0x19E11968u }},
549 {{ 0x79D9373Au, 0x714CA34Fu }},
550 {{ 0x93142887u, 0xEE3BE15Cu }},
551 {{ 0x03429E83u, 0x8CE2D14Bu }},
552 {{ 0xA4299E27u, 0x469FF67Bu }},
553 {{ 0xAFD5AED1u, 0xC1BC96A8u }},
554 {{ 0x10851C0Eu, 0x3858DA9Fu }},
555 {{ 0xE6F51ED7u, 0x9B9DB21Fu }},
556 {{ 0x64A6E14Au, 0xFD36B46Fu }},
557 {{ 0x80C7D7D4u, 0x5A5479ADu }},
558 {{ 0x05044B62u, 0xFA52D080u }},
559 };
560
561 unsigned char kk[] = {
562 0xF0, 0xE1, 0xD2, 0xC3, 0xB4, 0xA5, 0x96, 0x87,
563 0x78, 0x69, 0x5A, 0x4B, 0x3C, 0x2D, 0x1E, 0x0F,
564 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
565 };
566
567 int i;
568 int f = 1;
569
570 printf("*** stage two: ");
571 fflush(stdout);
572
573 for (i = 0; i < sizeof(kk); i++) {
574 blowfish_key k;
575 unsigned char p[8] = { 0xFE, 0xDC, 0xBA, 0x98,
576 0x76, 0x54, 0x32, 0x10 };
577
578 blowfish_setKey(&k, kk, i + 1);
579 blowfish_encrypt(&k, p, p);
580
581 if (load32(p + 0) != table[i].c[0] ||
582 load32(p + 4) != table[i].c[1]) {
583 printf("!!! bad encryption\n"
584 " key length = %i\n"
585 " expected = %08lx-%08lx\n"
586 " calculated = %08lx-%08lx\n",
587 i + 1,
588 (unsigned long)table[i].c[0],
589 (unsigned long)table[i].c[1],
590 (unsigned long)load32(p + 0),
591 (unsigned long)load32(p + 4));
592 f = 0;
593 }
594
595 putchar('.');
596 fflush(stdout);
597 }
598
599 putchar('\n');
600
601 if (f)
602 printf("*** stage two ok\n");
603 }
604
605 return (0);
606
607 }
608
609 #endif
610
611 /*----- That's all, folks -------------------------------------------------*/