sshec.c: Initial cut at elliptic curve arithmetic.
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11 #include "bn-internal.h"
12 #include "ssh.h"
13
14 BignumInt bnZero[1] = { 0 };
15 BignumInt bnOne[2] = { 1, 1 };
16
17 /*
18 * The Bignum format is an array of `BignumInt'. The first
19 * element of the array counts the remaining elements. The
20 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
21 * significant digit first. (So it's trivial to extract the bit
22 * with value 2^n for any n.)
23 *
24 * All Bignums in this module are positive. Negative numbers must
25 * be dealt with outside it.
26 *
27 * INVARIANT: the most significant word of any Bignum must be
28 * nonzero.
29 */
30
31 Bignum Zero = bnZero, One = bnOne;
32
33 static Bignum newbn(int length)
34 {
35 Bignum b = snewn(length + 1, BignumInt);
36 if (!b)
37 abort(); /* FIXME */
38 memset(b, 0, (length + 1) * sizeof(*b));
39 b[0] = length;
40 return b;
41 }
42
43 void bn_restore_invariant(Bignum b)
44 {
45 while (b[0] > 1 && b[b[0]] == 0)
46 b[0]--;
47 }
48
49 Bignum copybn(Bignum orig)
50 {
51 Bignum b = snewn(orig[0] + 1, BignumInt);
52 if (!b)
53 abort(); /* FIXME */
54 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
55 return b;
56 }
57
58 void freebn(Bignum b)
59 {
60 /*
61 * Burn the evidence, just in case.
62 */
63 smemclr(b, sizeof(b[0]) * (b[0] + 1));
64 sfree(b);
65 }
66
67 Bignum bn_power_2(int n)
68 {
69 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
70 bignum_set_bit(ret, n, 1);
71 return ret;
72 }
73
74 /*
75 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
76 * little-endian arrays of 'len' BignumInts. Returns a BignumInt carried
77 * off the top.
78 */
79 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
80 BignumInt *c, int len)
81 {
82 int i;
83 BignumDblInt carry = 0;
84
85 for (i = 0; i < len; i++) {
86 carry += (BignumDblInt)a[i] + b[i];
87 c[i] = (BignumInt)carry;
88 carry >>= BIGNUM_INT_BITS;
89 }
90
91 return (BignumInt)carry;
92 }
93
94 /*
95 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
96 * all little-endian arrays of 'len' BignumInts. Any borrow from the top
97 * is ignored.
98 */
99 static void internal_sub(const BignumInt *a, const BignumInt *b,
100 BignumInt *c, int len)
101 {
102 int i;
103 BignumDblInt carry = 1;
104
105 for (i = 0; i < len; i++) {
106 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
107 c[i] = (BignumInt)carry;
108 carry >>= BIGNUM_INT_BITS;
109 }
110 }
111
112 /*
113 * Compute c = a * b.
114 * Input is in the first len words of a and b.
115 * Result is returned in the first 2*len words of c.
116 *
117 * 'scratch' must point to an array of BignumInt of size at least
118 * mul_compute_scratch(len). (This covers the needs of internal_mul
119 * and all its recursive calls to itself.)
120 */
121 #define KARATSUBA_THRESHOLD 50
122 static int mul_compute_scratch(int len)
123 {
124 int ret = 0;
125 while (len > KARATSUBA_THRESHOLD) {
126 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
127 int midlen = botlen + 1;
128 ret += 4*midlen;
129 len = midlen;
130 }
131 return ret;
132 }
133 static void internal_mul(const BignumInt *a, const BignumInt *b,
134 BignumInt *c, int len, BignumInt *scratch)
135 {
136 if (len > KARATSUBA_THRESHOLD) {
137 int i;
138
139 /*
140 * Karatsuba divide-and-conquer algorithm. Cut each input in
141 * half, so that it's expressed as two big 'digits' in a giant
142 * base D:
143 *
144 * a = a_1 D + a_0
145 * b = b_1 D + b_0
146 *
147 * Then the product is of course
148 *
149 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
150 *
151 * and we compute the three coefficients by recursively
152 * calling ourself to do half-length multiplications.
153 *
154 * The clever bit that makes this worth doing is that we only
155 * need _one_ half-length multiplication for the central
156 * coefficient rather than the two that it obviouly looks
157 * like, because we can use a single multiplication to compute
158 *
159 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
160 *
161 * and then we subtract the other two coefficients (a_1 b_1
162 * and a_0 b_0) which we were computing anyway.
163 *
164 * Hence we get to multiply two numbers of length N in about
165 * three times as much work as it takes to multiply numbers of
166 * length N/2, which is obviously better than the four times
167 * as much work it would take if we just did a long
168 * conventional multiply.
169 */
170
171 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
172 int midlen = botlen + 1;
173 BignumDblInt carry;
174
175 /*
176 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
177 * in the output array, so we can compute them immediately in
178 * place.
179 */
180
181 #ifdef KARA_DEBUG
182 printf("a1,a0 = 0x");
183 for (i = 0; i < len; i++) {
184 if (i == toplen) printf(", 0x");
185 printf("%0*x", BIGNUM_INT_BITS/4, a[len - 1 - i]);
186 }
187 printf("\n");
188 printf("b1,b0 = 0x");
189 for (i = 0; i < len; i++) {
190 if (i == toplen) printf(", 0x");
191 printf("%0*x", BIGNUM_INT_BITS/4, b[len - 1 - i]);
192 }
193 printf("\n");
194 #endif
195
196 /* a_1 b_1 */
197 internal_mul(a + botlen, b + botlen, c + 2*botlen, toplen, scratch);
198 #ifdef KARA_DEBUG
199 printf("a1b1 = 0x");
200 for (i = 0; i < 2*toplen; i++) {
201 printf("%0*x", BIGNUM_INT_BITS/4, c[2*len - 1 - i]);
202 }
203 printf("\n");
204 #endif
205
206 /* a_0 b_0 */
207 internal_mul(a, b, c, botlen, scratch);
208 #ifdef KARA_DEBUG
209 printf("a0b0 = 0x");
210 for (i = 0; i < 2*botlen; i++) {
211 printf("%0*x", BIGNUM_INT_BITS/4, c[2*botlen - 1 - i]);
212 }
213 printf("\n");
214 #endif
215
216 /* Zero padding. botlen exceeds toplen by at most 1, and we'll set
217 * the extra carry explicitly below, so we only need to zero at most
218 * one of the top words here.
219 */
220 scratch[midlen - 2] = scratch[2*midlen - 2] = 0;
221
222 for (i = 0; i < toplen; i++) {
223 scratch[i] = a[i + botlen]; /* a_1 */
224 scratch[midlen + i] = b[i + botlen]; /* b_1 */
225 }
226
227 /* compute a_1 + a_0 */
228 scratch[midlen - 1] = internal_add(scratch, a, scratch, botlen);
229 #ifdef KARA_DEBUG
230 printf("a1plusa0 = 0x");
231 for (i = 0; i < midlen; i++) {
232 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen - 1 - i]);
233 }
234 printf("\n");
235 #endif
236 /* compute b_1 + b_0 */
237 scratch[2*midlen - 1] = internal_add(scratch+midlen, b,
238 scratch+midlen, botlen);
239 #ifdef KARA_DEBUG
240 printf("b1plusb0 = 0x");
241 for (i = 0; i < midlen; i++) {
242 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen - 1 - i]);
243 }
244 printf("\n");
245 #endif
246
247 /*
248 * Now we can do the third multiplication.
249 */
250 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
251 scratch + 4*midlen);
252 #ifdef KARA_DEBUG
253 printf("a1plusa0timesb1plusb0 = 0x");
254 for (i = 0; i < 2*midlen; i++) {
255 printf("%0*x", BIGNUM_INT_BITS/4, scratch[4*midlen - 1 - i]);
256 }
257 printf("\n");
258 #endif
259
260 /*
261 * Now we can reuse the first half of 'scratch' to compute the
262 * sum of the outer two coefficients, to subtract from that
263 * product to obtain the middle one.
264 */
265 scratch[2*botlen - 2] = scratch[2*botlen - 1] = 0;
266 for (i = 0; i < 2*toplen; i++)
267 scratch[i] = c[2*botlen + i];
268 scratch[2*botlen] = internal_add(scratch, c, scratch, 2*botlen);
269 scratch[2*botlen + 1] = 0;
270 #ifdef KARA_DEBUG
271 printf("a1b1plusa0b0 = 0x");
272 for (i = 0; i < 2*midlen; i++) {
273 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen - 1 - i]);
274 }
275 printf("\n");
276 #endif
277
278 internal_sub(scratch + 2*midlen, scratch, scratch, 2*midlen);
279 #ifdef KARA_DEBUG
280 printf("a1b0plusa0b1 = 0x");
281 for (i = 0; i < 2*midlen; i++) {
282 printf("%0*x", BIGNUM_INT_BITS/4, scratch[4*midlen - 1 - i]);
283 }
284 printf("\n");
285 #endif
286
287 /*
288 * And now all we need to do is to add that middle coefficient
289 * back into the output. We may have to propagate a carry
290 * further up the output, but we can be sure it won't
291 * propagate right the way off the top.
292 */
293 carry = internal_add(c + botlen, scratch, c + botlen, 2*midlen);
294 i = botlen + 2*midlen;
295 while (carry) {
296 assert(i <= 2*len);
297 carry += c[i];
298 c[i] = (BignumInt)carry;
299 carry >>= BIGNUM_INT_BITS;
300 i++;
301 }
302 #ifdef KARA_DEBUG
303 printf("ab = 0x");
304 for (i = 0; i < 2*len; i++) {
305 printf("%0*x", BIGNUM_INT_BITS/4, c[2*len - i]);
306 }
307 printf("\n");
308 #endif
309
310 } else {
311 int i;
312 BignumInt carry;
313 BignumDblInt t;
314 const BignumInt *ap, *alim = a + len, *bp, *blim = b + len;
315 BignumInt *cp, *cps;
316
317 /*
318 * Multiply in the ordinary O(N^2) way.
319 */
320
321 for (i = 0; i < 2 * len; i++)
322 c[i] = 0;
323
324 for (cps = c, ap = a; ap < alim; ap++, cps++) {
325 carry = 0;
326 for (cp = cps, bp = b, i = blim - bp; i--; bp++, cp++) {
327 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
328 *cp = (BignumInt) t;
329 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
330 }
331 *cp = carry;
332 }
333 }
334 }
335
336 /*
337 * Variant form of internal_mul used for the initial step of
338 * Montgomery reduction. Only bothers outputting 'len' words
339 * (everything above that is thrown away).
340 */
341 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
342 BignumInt *c, int len, BignumInt *scratch)
343 {
344 if (len > KARATSUBA_THRESHOLD) {
345 int i;
346
347 /*
348 * Karatsuba-aware version of internal_mul_low. As before, we
349 * express each input value as a shifted combination of two
350 * halves:
351 *
352 * a = a_1 D + a_0
353 * b = b_1 D + b_0
354 *
355 * Then the full product is, as before,
356 *
357 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
358 *
359 * Provided we choose D on the large side (so that a_0 and b_0
360 * are _at least_ as long as a_1 and b_1), we don't need the
361 * topmost term at all, and we only need half of the middle
362 * term. So there's no point in doing the proper Karatsuba
363 * optimisation which computes the middle term using the top
364 * one, because we'd take as long computing the top one as
365 * just computing the middle one directly.
366 *
367 * So instead, we do a much more obvious thing: we call the
368 * fully optimised internal_mul to compute a_0 b_0, and we
369 * recursively call ourself to compute the _bottom halves_ of
370 * a_1 b_0 and a_0 b_1, each of which we add into the result
371 * in the obvious way.
372 *
373 * In other words, there's no actual Karatsuba _optimisation_
374 * in this function; the only benefit in doing it this way is
375 * that we call internal_mul proper for a large part of the
376 * work, and _that_ can optimise its operation.
377 */
378
379 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
380
381 /*
382 * Scratch space for the various bits and pieces we're going
383 * to be adding together: we need botlen*2 words for a_0 b_0
384 * (though we may end up throwing away its topmost word), and
385 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
386 * to exactly 2*len.
387 */
388
389 /* a_0 b_0 */
390 internal_mul(a, b, scratch + 2*toplen, botlen, scratch + 2*len);
391
392 /* a_1 b_0 */
393 internal_mul_low(a + botlen, b, scratch + toplen, toplen,
394 scratch + 2*len);
395
396 /* a_0 b_1 */
397 internal_mul_low(a, b + botlen, scratch, toplen, scratch + 2*len);
398
399 /* Copy the bottom half of the big coefficient into place */
400 for (i = 0; i < botlen; i++)
401 c[i] = scratch[2*toplen + i];
402
403 /* Add the two small coefficients, throwing away the returned carry */
404 internal_add(scratch, scratch + toplen, scratch, toplen);
405
406 /* And add that to the large coefficient, leaving the result in c. */
407 internal_add(scratch, scratch + 2*toplen + botlen,
408 c + botlen, toplen);
409
410 } else {
411 int i;
412 BignumInt carry;
413 BignumDblInt t;
414 const BignumInt *ap, *alim = a + len, *bp;
415 BignumInt *cp, *cps, *clim = c + len;
416
417 /*
418 * Multiply in the ordinary O(N^2) way.
419 */
420
421 for (i = 0; i < len; i++)
422 c[i] = 0;
423
424 for (cps = c, ap = a; ap < alim; ap++, cps++) {
425 carry = 0;
426 for (cp = cps, bp = b, i = clim - cp; i--; bp++, cp++) {
427 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
428 *cp = (BignumInt) t;
429 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
430 }
431 }
432 }
433 }
434
435 /*
436 * Montgomery reduction. Expects x to be a little-endian array of 2*len
437 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
438 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
439 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
440 * x' < n.
441 *
442 * 'n' and 'mninv' should be little-endian arrays of 'len' BignumInts
443 * each, containing respectively n and the multiplicative inverse of
444 * -n mod r.
445 *
446 * 'tmp' is an array of BignumInt used as scratch space, of length at
447 * least 3*len + mul_compute_scratch(len).
448 */
449 static void monty_reduce(BignumInt *x, const BignumInt *n,
450 const BignumInt *mninv, BignumInt *tmp, int len)
451 {
452 int i;
453 BignumInt carry;
454
455 /*
456 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
457 * that mn is congruent to -x mod r. Hence, mn+x is an exact
458 * multiple of r, and is also (obviously) congruent to x mod n.
459 */
460 internal_mul_low(x, mninv, tmp, len, tmp + 3*len);
461
462 /*
463 * Compute t = (mn+x)/r in ordinary, non-modular, integer
464 * arithmetic. By construction this is exact, and is congruent mod
465 * n to x * r^{-1}, i.e. the answer we want.
466 *
467 * The following multiply leaves that answer in the _most_
468 * significant half of the 'x' array, so then we must shift it
469 * down.
470 */
471 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
472 carry = internal_add(x, tmp+len, x, 2*len);
473 for (i = 0; i < len; i++)
474 x[i] = x[len + i], x[len + i] = 0;
475
476 /*
477 * Reduce t mod n. This doesn't require a full-on division by n,
478 * but merely a test and single optional subtraction, since we can
479 * show that 0 <= t < 2n.
480 *
481 * Proof:
482 * + we computed m mod r, so 0 <= m < r.
483 * + so 0 <= mn < rn, obviously
484 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
485 * + yielding 0 <= (mn+x)/r < 2n as required.
486 */
487 if (!carry) {
488 for (i = len; i-- > 0; )
489 if (x[i] != n[i])
490 break;
491 }
492 if (carry || i < 0 || x[i] > n[i])
493 internal_sub(x, n, x, len);
494 }
495
496 static void internal_add_shifted(BignumInt *number,
497 unsigned n, int shift)
498 {
499 int word = 1 + (shift / BIGNUM_INT_BITS);
500 int bshift = shift % BIGNUM_INT_BITS;
501 BignumDblInt addend;
502
503 addend = (BignumDblInt)n << bshift;
504
505 while (addend) {
506 addend += number[word];
507 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
508 addend >>= BIGNUM_INT_BITS;
509 word++;
510 }
511 }
512
513 /*
514 * Compute a = a % m.
515 * Input in first alen words of a and first mlen words of m.
516 * Output in first alen words of a
517 * (of which last alen-mlen words will be zero).
518 * The MSW of m MUST have its high bit set.
519 * Quotient is accumulated in the `quotient' array. Quotient parts
520 * are shifted left by `qshift' before adding into quot.
521 */
522 static void internal_mod(BignumInt *a, int alen,
523 BignumInt *m, int mlen,
524 BignumInt *quot, int qshift)
525 {
526 BignumInt m0, m1;
527 unsigned int h;
528 int i, j, k;
529
530 m0 = m[mlen - 1];
531 if (mlen > 1)
532 m1 = m[mlen - 2];
533 else
534 m1 = 0;
535
536 for (i = alen, h = 0; i-- >= mlen; ) {
537 BignumDblInt t;
538 unsigned int q, r, c, ai1;
539
540 if (i)
541 ai1 = a[i - 1];
542 else
543 ai1 = 0;
544
545 /* Find q = h:a[i] / m0 */
546 if (h >= m0) {
547 /*
548 * Special case.
549 *
550 * To illustrate it, suppose a BignumInt is 8 bits, and
551 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
552 * our initial division will be 0xA123 / 0xA1, which
553 * will give a quotient of 0x100 and a divide overflow.
554 * However, the invariants in this division algorithm
555 * are not violated, since the full number A1:23:... is
556 * _less_ than the quotient prefix A1:B2:... and so the
557 * following correction loop would have sorted it out.
558 *
559 * In this situation we set q to be the largest
560 * quotient we _can_ stomach (0xFF, of course).
561 */
562 q = BIGNUM_INT_MASK;
563 } else {
564 /* Macro doesn't want an array subscript expression passed
565 * into it (see definition), so use a temporary. */
566 BignumInt tmplo = a[i];
567 DIVMOD_WORD(q, r, h, tmplo, m0);
568
569 /* Refine our estimate of q by looking at
570 h:a[i]:a[i-1] / m0:m1 */
571 t = MUL_WORD(m1, q);
572 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
573 q--;
574 t -= m1;
575 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
576 if (r >= (BignumDblInt) m0 &&
577 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
578 }
579 }
580
581 j = i + 1 - mlen;
582
583 /* Subtract q * m from a[i...] */
584 c = 0;
585 for (k = 0; k < mlen; k++) {
586 t = MUL_WORD(q, m[k]);
587 t += c;
588 c = (unsigned)(t >> BIGNUM_INT_BITS);
589 if ((BignumInt) t > a[j + k])
590 c++;
591 a[j + k] -= (BignumInt) t;
592 }
593
594 /* Add back m in case of borrow */
595 if (c != h) {
596 t = 0;
597 for (k = 0; k < mlen; k++) {
598 t += m[k];
599 t += a[j + k];
600 a[j + k] = (BignumInt) t;
601 t = t >> BIGNUM_INT_BITS;
602 }
603 q--;
604 }
605
606 if (quot)
607 internal_add_shifted(quot, q,
608 qshift + BIGNUM_INT_BITS * (i + 1 - mlen));
609
610 if (i >= mlen) {
611 h = a[i];
612 a[i] = 0;
613 }
614 }
615 }
616
617 static void shift_left(BignumInt *x, int xlen, int shift)
618 {
619 int i;
620
621 if (!shift)
622 return;
623 for (i = xlen; --i > 0; )
624 x[i] = (x[i] << shift) | (x[i - 1] >> (BIGNUM_INT_BITS - shift));
625 x[0] = x[0] << shift;
626 }
627
628 static void shift_right(BignumInt *x, int xlen, int shift)
629 {
630 int i;
631
632 if (!shift || !xlen)
633 return;
634 xlen--;
635 for (i = 0; i < xlen; i++)
636 x[i] = (x[i] >> shift) | (x[i + 1] << (BIGNUM_INT_BITS - shift));
637 x[i] = x[i] >> shift;
638 }
639
640 /*
641 * Compute (base ^ exp) % mod, the pedestrian way.
642 */
643 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
644 {
645 BignumInt *a, *b, *n, *m, *scratch;
646 int mshift;
647 int mlen, scratchlen, i, j;
648 Bignum base, result;
649
650 /*
651 * The most significant word of mod needs to be non-zero. It
652 * should already be, but let's make sure.
653 */
654 assert(mod[mod[0]] != 0);
655
656 /*
657 * Make sure the base is smaller than the modulus, by reducing
658 * it modulo the modulus if not.
659 */
660 base = bigmod(base_in, mod);
661
662 /* Allocate m of size mlen, copy mod to m */
663 mlen = mod[0];
664 m = snewn(mlen, BignumInt);
665 for (j = 0; j < mlen; j++)
666 m[j] = mod[j + 1];
667
668 /* Shift m left to make msb bit set */
669 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
670 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
671 break;
672 if (mshift)
673 shift_left(m, mlen, mshift);
674
675 /* Allocate n of size mlen, copy base to n */
676 n = snewn(mlen, BignumInt);
677 for (i = 0; i < (int)base[0]; i++)
678 n[i] = base[i + 1];
679 for (; i < mlen; i++)
680 n[i] = 0;
681
682 /* Allocate a and b of size 2*mlen. Set a = 1 */
683 a = snewn(2 * mlen, BignumInt);
684 b = snewn(2 * mlen, BignumInt);
685 a[0] = 1;
686 for (i = 1; i < 2 * mlen; i++)
687 a[i] = 0;
688
689 /* Scratch space for multiplies */
690 scratchlen = mul_compute_scratch(mlen);
691 scratch = snewn(scratchlen, BignumInt);
692
693 /* Skip leading zero bits of exp. */
694 i = 0;
695 j = BIGNUM_INT_BITS-1;
696 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
697 j--;
698 if (j < 0) {
699 i++;
700 j = BIGNUM_INT_BITS-1;
701 }
702 }
703
704 /* Main computation */
705 while (i < (int)exp[0]) {
706 while (j >= 0) {
707 internal_mul(a, a, b, mlen, scratch);
708 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
709 if ((exp[exp[0] - i] & (1 << j)) != 0) {
710 internal_mul(b, n, a, mlen, scratch);
711 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
712 } else {
713 BignumInt *t;
714 t = a;
715 a = b;
716 b = t;
717 }
718 j--;
719 }
720 i++;
721 j = BIGNUM_INT_BITS-1;
722 }
723
724 /* Fixup result in case the modulus was shifted */
725 if (mshift) {
726 shift_left(a, mlen + 1, mshift);
727 internal_mod(a, mlen + 1, m, mlen, NULL, 0);
728 shift_right(a, mlen, mshift);
729 }
730
731 /* Copy result to buffer */
732 result = newbn(mod[0]);
733 for (i = 0; i < mlen; i++)
734 result[i + 1] = a[i];
735 while (result[0] > 1 && result[result[0]] == 0)
736 result[0]--;
737
738 /* Free temporary arrays */
739 for (i = 0; i < 2 * mlen; i++)
740 a[i] = 0;
741 sfree(a);
742 for (i = 0; i < scratchlen; i++)
743 scratch[i] = 0;
744 sfree(scratch);
745 for (i = 0; i < 2 * mlen; i++)
746 b[i] = 0;
747 sfree(b);
748 for (i = 0; i < mlen; i++)
749 m[i] = 0;
750 sfree(m);
751 for (i = 0; i < mlen; i++)
752 n[i] = 0;
753 sfree(n);
754
755 freebn(base);
756
757 return result;
758 }
759
760 /*
761 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
762 * technique where possible, falling back to modpow_simple otherwise.
763 */
764 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
765 {
766 BignumInt *a, *b, *x, *n, *mninv, *scratch;
767 int len, scratchlen, i, j;
768 Bignum base, base2, r, rn, inv, result;
769
770 /*
771 * The most significant word of mod needs to be non-zero. It
772 * should already be, but let's make sure.
773 */
774 assert(mod[mod[0]] != 0);
775
776 /*
777 * mod had better be odd, or we can't do Montgomery multiplication
778 * using a power of two at all.
779 */
780 if (!(mod[1] & 1))
781 return modpow_simple(base_in, exp, mod);
782
783 /*
784 * Make sure the base is smaller than the modulus, by reducing
785 * it modulo the modulus if not.
786 */
787 base = bigmod(base_in, mod);
788
789 /*
790 * Compute the inverse of n mod r, for monty_reduce. (In fact we
791 * want the inverse of _minus_ n mod r, but we'll sort that out
792 * below.)
793 */
794 len = mod[0];
795 r = bn_power_2(BIGNUM_INT_BITS * len);
796 inv = modinv(mod, r);
797
798 /*
799 * Multiply the base by r mod n, to get it into Montgomery
800 * representation.
801 */
802 base2 = modmul(base, r, mod);
803 freebn(base);
804 base = base2;
805
806 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
807
808 freebn(r); /* won't need this any more */
809
810 /*
811 * Set up internal arrays of the right lengths containing the base,
812 * the modulus, and the modulus's inverse.
813 */
814 n = snewn(len, BignumInt);
815 for (j = 0; j < len; j++)
816 n[j] = mod[j + 1];
817
818 mninv = snewn(len, BignumInt);
819 for (j = 0; j < len; j++)
820 mninv[j] = (j < (int)inv[0] ? inv[j + 1] : 0);
821 freebn(inv); /* we don't need this copy of it any more */
822 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
823 x = snewn(len, BignumInt);
824 for (j = 0; j < len; j++)
825 x[j] = 0;
826 internal_sub(x, mninv, mninv, len);
827
828 /* x = snewn(len, BignumInt); */ /* already done above */
829 for (j = 0; j < len; j++)
830 x[j] = (j < (int)base[0] ? base[j + 1] : 0);
831 freebn(base); /* we don't need this copy of it any more */
832
833 a = snewn(2*len, BignumInt);
834 b = snewn(2*len, BignumInt);
835 for (j = 0; j < len; j++)
836 a[j] = (j < (int)rn[0] ? rn[j + 1] : 0);
837 freebn(rn);
838
839 /* Scratch space for multiplies */
840 scratchlen = 3*len + mul_compute_scratch(len);
841 scratch = snewn(scratchlen, BignumInt);
842
843 /* Skip leading zero bits of exp. */
844 i = 0;
845 j = BIGNUM_INT_BITS-1;
846 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
847 j--;
848 if (j < 0) {
849 i++;
850 j = BIGNUM_INT_BITS-1;
851 }
852 }
853
854 /* Main computation */
855 while (i < (int)exp[0]) {
856 while (j >= 0) {
857 internal_mul(a, a, b, len, scratch);
858 monty_reduce(b, n, mninv, scratch, len);
859 if ((exp[exp[0] - i] & (1 << j)) != 0) {
860 internal_mul(b, x, a, len, scratch);
861 monty_reduce(a, n, mninv, scratch, len);
862 } else {
863 BignumInt *t;
864 t = a;
865 a = b;
866 b = t;
867 }
868 j--;
869 }
870 i++;
871 j = BIGNUM_INT_BITS-1;
872 }
873
874 /*
875 * Final monty_reduce to get back from the adjusted Montgomery
876 * representation.
877 */
878 monty_reduce(a, n, mninv, scratch, len);
879
880 /* Copy result to buffer */
881 result = newbn(mod[0]);
882 for (i = 0; i < len; i++)
883 result[i + 1] = a[i];
884 while (result[0] > 1 && result[result[0]] == 0)
885 result[0]--;
886
887 /* Free temporary arrays */
888 for (i = 0; i < scratchlen; i++)
889 scratch[i] = 0;
890 sfree(scratch);
891 for (i = 0; i < 2 * len; i++)
892 a[i] = 0;
893 sfree(a);
894 for (i = 0; i < 2 * len; i++)
895 b[i] = 0;
896 sfree(b);
897 for (i = 0; i < len; i++)
898 mninv[i] = 0;
899 sfree(mninv);
900 for (i = 0; i < len; i++)
901 n[i] = 0;
902 sfree(n);
903 for (i = 0; i < len; i++)
904 x[i] = 0;
905 sfree(x);
906
907 return result;
908 }
909
910 /*
911 * Compute (p * q) % mod.
912 * The most significant word of mod MUST be non-zero.
913 * We assume that the result array is the same size as the mod array.
914 */
915 Bignum modmul(Bignum p, Bignum q, Bignum mod)
916 {
917 BignumInt *a, *n, *m, *o, *scratch;
918 int mshift, scratchlen;
919 int pqlen, mlen, rlen, i, j;
920 Bignum result;
921
922 /* Allocate m of size mlen, copy mod to m */
923 mlen = mod[0];
924 m = snewn(mlen, BignumInt);
925 for (j = 0; j < mlen; j++)
926 m[j] = mod[j + 1];
927
928 /* Shift m left to make msb bit set */
929 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
930 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
931 break;
932 if (mshift)
933 shift_left(m, mlen, mshift);
934
935 pqlen = (p[0] > q[0] ? p[0] : q[0]);
936
937 /* Make sure that we're allowing enough space. The shifting below will
938 * underflow the vectors we allocate if `pqlen' is too small.
939 */
940 if (2*pqlen <= mlen)
941 pqlen = mlen/2 + 1;
942
943 /* Allocate n of size pqlen, copy p to n */
944 n = snewn(pqlen, BignumInt);
945 for (i = 0; i < (int)p[0]; i++)
946 n[i] = p[i + 1];
947 for (; i < pqlen; i++)
948 n[i] = 0;
949
950 /* Allocate o of size pqlen, copy q to o */
951 o = snewn(pqlen, BignumInt);
952 for (i = 0; i < (int)q[0]; i++)
953 o[i] = q[i + 1];
954 for (; i < pqlen; i++)
955 o[i] = 0;
956
957 /* Allocate a of size 2*pqlen for result */
958 a = snewn(2 * pqlen, BignumInt);
959
960 /* Scratch space for multiplies */
961 scratchlen = mul_compute_scratch(pqlen);
962 scratch = snewn(scratchlen, BignumInt);
963
964 /* Main computation */
965 internal_mul(n, o, a, pqlen, scratch);
966 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
967
968 /* Fixup result in case the modulus was shifted */
969 if (mshift) {
970 shift_left(a, mlen + 1, mshift);
971 internal_mod(a, mlen + 1, m, mlen, NULL, 0);
972 shift_right(a, mlen, mshift);
973 }
974
975 /* Copy result to buffer */
976 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
977 result = newbn(rlen);
978 for (i = 0; i < rlen; i++)
979 result[i + 1] = a[i];
980 while (result[0] > 1 && result[result[0]] == 0)
981 result[0]--;
982
983 /* Free temporary arrays */
984 for (i = 0; i < scratchlen; i++)
985 scratch[i] = 0;
986 sfree(scratch);
987 for (i = 0; i < 2 * pqlen; i++)
988 a[i] = 0;
989 sfree(a);
990 for (i = 0; i < mlen; i++)
991 m[i] = 0;
992 sfree(m);
993 for (i = 0; i < pqlen; i++)
994 n[i] = 0;
995 sfree(n);
996 for (i = 0; i < pqlen; i++)
997 o[i] = 0;
998 sfree(o);
999
1000 return result;
1001 }
1002
1003 /*
1004 * Compute p % mod.
1005 * The most significant word of mod MUST be non-zero.
1006 * We assume that the result array is the same size as the mod array.
1007 * We optionally write out a quotient if `quotient' is non-NULL.
1008 * We can avoid writing out the result if `result' is NULL.
1009 */
1010 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1011 {
1012 BignumInt *n, *m;
1013 int mshift;
1014 int plen, mlen, i, j;
1015
1016 /* Allocate m of size mlen, copy mod to m */
1017 mlen = mod[0];
1018 m = snewn(mlen, BignumInt);
1019 for (j = 0; j < mlen; j++)
1020 m[j] = mod[j + 1];
1021
1022 /* Shift m left to make msb bit set */
1023 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1024 if ((m[mlen - 1] << mshift) & BIGNUM_TOP_BIT)
1025 break;
1026 if (mshift)
1027 shift_left(m, mlen, mshift);
1028
1029 plen = p[0];
1030 /* Ensure plen > mlen */
1031 if (plen <= mlen)
1032 plen = mlen + 1;
1033
1034 /* Allocate n of size plen, copy p to n */
1035 n = snewn(plen, BignumInt);
1036 for (i = 0; i < (int)p[0]; i++)
1037 n[i] = p[i + 1];
1038 for (; i < plen; i++)
1039 n[i] = 0;
1040
1041 /* Main computation */
1042 internal_mod(n, plen, m, mlen, quotient, mshift);
1043
1044 /* Fixup result in case the modulus was shifted */
1045 if (mshift) {
1046 shift_left(n, mlen + 1, mshift);
1047 internal_mod(n, plen, m, mlen, quotient, 0);
1048 shift_right(n, mlen, mshift);
1049 }
1050
1051 /* Copy result to buffer */
1052 if (result) {
1053 for (i = 0; i < (int)result[0]; i++)
1054 result[i + 1] = i < plen ? n[i] : 0;
1055 bn_restore_invariant(result);
1056 }
1057
1058 /* Free temporary arrays */
1059 for (i = 0; i < mlen; i++)
1060 m[i] = 0;
1061 sfree(m);
1062 for (i = 0; i < plen; i++)
1063 n[i] = 0;
1064 sfree(n);
1065 }
1066
1067 /*
1068 * Decrement a number.
1069 */
1070 void decbn(Bignum bn)
1071 {
1072 int i = 1;
1073 while (i < (int)bn[0] && bn[i] == 0)
1074 bn[i++] = BIGNUM_INT_MASK;
1075 bn[i]--;
1076 }
1077
1078 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1079 {
1080 Bignum result;
1081 int w, i;
1082
1083 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1084
1085 result = newbn(w);
1086 for (i = 1; i <= w; i++)
1087 result[i] = 0;
1088 for (i = nbytes; i--;) {
1089 unsigned char byte = *data++;
1090 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1091 }
1092
1093 while (result[0] > 1 && result[result[0]] == 0)
1094 result[0]--;
1095 return result;
1096 }
1097
1098 /*
1099 * Read an SSH-1-format bignum from a data buffer. Return the number
1100 * of bytes consumed, or -1 if there wasn't enough data.
1101 */
1102 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1103 {
1104 const unsigned char *p = data;
1105 int i;
1106 int w, b;
1107
1108 if (len < 2)
1109 return -1;
1110
1111 w = 0;
1112 for (i = 0; i < 2; i++)
1113 w = (w << 8) + *p++;
1114 b = (w + 7) / 8; /* bits -> bytes */
1115
1116 if (len < b+2)
1117 return -1;
1118
1119 if (!result) /* just return length */
1120 return b + 2;
1121
1122 *result = bignum_from_bytes(p, b);
1123
1124 return p + b - data;
1125 }
1126
1127 /*
1128 * Return the bit count of a bignum, for SSH-1 encoding.
1129 */
1130 int bignum_bitcount(Bignum bn)
1131 {
1132 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1133 while (bitcount >= 0
1134 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1135 return bitcount + 1;
1136 }
1137
1138 /*
1139 * Return the byte length of a bignum when SSH-1 encoded.
1140 */
1141 int ssh1_bignum_length(Bignum bn)
1142 {
1143 return 2 + (bignum_bitcount(bn) + 7) / 8;
1144 }
1145
1146 /*
1147 * Return the byte length of a bignum when SSH-2 encoded.
1148 */
1149 int ssh2_bignum_length(Bignum bn)
1150 {
1151 return 4 + (bignum_bitcount(bn) + 8) / 8;
1152 }
1153
1154 /*
1155 * Return a byte from a bignum; 0 is least significant, etc.
1156 */
1157 int bignum_byte(Bignum bn, int i)
1158 {
1159 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1160 return 0; /* beyond the end */
1161 else
1162 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1163 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1164 }
1165
1166 /*
1167 * Return a bit from a bignum; 0 is least significant, etc.
1168 */
1169 int bignum_bit(Bignum bn, int i)
1170 {
1171 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1172 return 0; /* beyond the end */
1173 else
1174 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1175 }
1176
1177 /*
1178 * Set a bit in a bignum; 0 is least significant, etc.
1179 */
1180 void bignum_set_bit(Bignum bn, int bitnum, int value)
1181 {
1182 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1183 abort(); /* beyond the end */
1184 else {
1185 int v = bitnum / BIGNUM_INT_BITS + 1;
1186 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1187 if (value)
1188 bn[v] |= mask;
1189 else
1190 bn[v] &= ~mask;
1191 }
1192 }
1193
1194 /*
1195 * Write a SSH-1-format bignum into a buffer. It is assumed the
1196 * buffer is big enough. Returns the number of bytes used.
1197 */
1198 int ssh1_write_bignum(void *data, Bignum bn)
1199 {
1200 unsigned char *p = data;
1201 int len = ssh1_bignum_length(bn);
1202 int i;
1203 int bitc = bignum_bitcount(bn);
1204
1205 *p++ = (bitc >> 8) & 0xFF;
1206 *p++ = (bitc) & 0xFF;
1207 for (i = len - 2; i--;)
1208 *p++ = bignum_byte(bn, i);
1209 return len;
1210 }
1211
1212 /*
1213 * Compare two bignums. Returns like strcmp.
1214 */
1215 int bignum_cmp(Bignum a, Bignum b)
1216 {
1217 int amax = a[0], bmax = b[0];
1218 int i = (amax > bmax ? amax : bmax);
1219 while (i) {
1220 BignumInt aval = (i > amax ? 0 : a[i]);
1221 BignumInt bval = (i > bmax ? 0 : b[i]);
1222 if (aval < bval)
1223 return -1;
1224 if (aval > bval)
1225 return +1;
1226 i--;
1227 }
1228 return 0;
1229 }
1230
1231 /*
1232 * Right-shift one bignum to form another.
1233 */
1234 Bignum bignum_rshift(Bignum a, int shift)
1235 {
1236 Bignum ret;
1237 int i, shiftw, shiftb, shiftbb, bits;
1238 BignumInt ai, ai1;
1239
1240 bits = bignum_bitcount(a) - shift;
1241 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1242
1243 if (ret) {
1244 shiftw = shift / BIGNUM_INT_BITS;
1245 shiftb = shift % BIGNUM_INT_BITS;
1246 shiftbb = BIGNUM_INT_BITS - shiftb;
1247
1248 ai1 = a[shiftw + 1];
1249 for (i = 1; i <= (int)ret[0]; i++) {
1250 ai = ai1;
1251 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1252 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1253 }
1254 }
1255
1256 return ret;
1257 }
1258
1259 /*
1260 * Non-modular multiplication and addition.
1261 */
1262 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1263 {
1264 int alen = a[0], blen = b[0];
1265 int mlen = (alen > blen ? alen : blen);
1266 int rlen, i, maxspot;
1267 int wslen;
1268 BignumInt *workspace;
1269 Bignum ret;
1270
1271 /* mlen space for a, mlen space for b, 2*mlen for result,
1272 * plus scratch space for multiplication */
1273 wslen = mlen * 4 + mul_compute_scratch(mlen);
1274 workspace = snewn(wslen, BignumInt);
1275 for (i = 0; i < mlen; i++) {
1276 workspace[0 * mlen + i] = i < (int)a[0] ? a[i + 1] : 0;
1277 workspace[1 * mlen + i] = i < (int)b[0] ? b[i + 1] : 0;
1278 }
1279
1280 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1281 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1282
1283 /* now just copy the result back */
1284 rlen = alen + blen + 1;
1285 if (addend && rlen <= (int)addend[0])
1286 rlen = addend[0] + 1;
1287 ret = newbn(rlen);
1288 maxspot = 0;
1289 for (i = 0; i < (int)ret[0]; i++) {
1290 ret[i + 1] = (i < 2 * mlen ? workspace[2 * mlen + i] : 0);
1291 if (ret[i + 1] != 0)
1292 maxspot = i + 1;
1293 }
1294 ret[0] = maxspot;
1295
1296 /* now add in the addend, if any */
1297 if (addend) {
1298 BignumDblInt carry = 0;
1299 for (i = 1; i <= rlen; i++) {
1300 carry += (i <= (int)ret[0] ? ret[i] : 0);
1301 carry += (i <= (int)addend[0] ? addend[i] : 0);
1302 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1303 carry >>= BIGNUM_INT_BITS;
1304 if (ret[i] != 0 && i > maxspot)
1305 maxspot = i;
1306 }
1307 }
1308 ret[0] = maxspot;
1309
1310 for (i = 0; i < wslen; i++)
1311 workspace[i] = 0;
1312 sfree(workspace);
1313 return ret;
1314 }
1315
1316 /*
1317 * Non-modular multiplication.
1318 */
1319 Bignum bigmul(Bignum a, Bignum b)
1320 {
1321 return bigmuladd(a, b, NULL);
1322 }
1323
1324 /*
1325 * Simple addition.
1326 */
1327 Bignum bigadd(Bignum a, Bignum b)
1328 {
1329 int alen = a[0], blen = b[0];
1330 int rlen = (alen > blen ? alen : blen) + 1;
1331 int i, maxspot;
1332 Bignum ret;
1333 BignumDblInt carry;
1334
1335 ret = newbn(rlen);
1336
1337 carry = 0;
1338 maxspot = 0;
1339 for (i = 1; i <= rlen; i++) {
1340 carry += (i <= (int)a[0] ? a[i] : 0);
1341 carry += (i <= (int)b[0] ? b[i] : 0);
1342 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1343 carry >>= BIGNUM_INT_BITS;
1344 if (ret[i] != 0 && i > maxspot)
1345 maxspot = i;
1346 }
1347 ret[0] = maxspot;
1348
1349 return ret;
1350 }
1351
1352 /*
1353 * Subtraction. Returns a-b, or NULL if the result would come out
1354 * negative (recall that this entire bignum module only handles
1355 * positive numbers).
1356 */
1357 Bignum bigsub(Bignum a, Bignum b)
1358 {
1359 int alen = a[0], blen = b[0];
1360 int rlen = (alen > blen ? alen : blen);
1361 int i, maxspot;
1362 Bignum ret;
1363 BignumDblInt carry;
1364
1365 ret = newbn(rlen);
1366
1367 carry = 1;
1368 maxspot = 0;
1369 for (i = 1; i <= rlen; i++) {
1370 carry += (i <= (int)a[0] ? a[i] : 0);
1371 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1372 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1373 carry >>= BIGNUM_INT_BITS;
1374 if (ret[i] != 0 && i > maxspot)
1375 maxspot = i;
1376 }
1377 ret[0] = maxspot;
1378
1379 if (!carry) {
1380 freebn(ret);
1381 return NULL;
1382 }
1383
1384 return ret;
1385 }
1386
1387 /*
1388 * Return a bignum which is the result of shifting another left by N bits.
1389 * If N is negative then you get a right shift instead.
1390 */
1391 Bignum biglsl(Bignum x, int n)
1392 {
1393 Bignum d;
1394 unsigned o, i;
1395
1396 /* Eliminate some simple special cases. */
1397 if (!n || !x[0]) return copybn(x);
1398 else if (n < 0) return biglsr(x, -n);
1399
1400 /* Some initial setup. */
1401 o = n/BIGNUM_INT_BITS;
1402 n %= BIGNUM_INT_BITS;
1403 d = newbn(x[0] + o + !!n);
1404
1405 /* Clear the low-significant words of d. */
1406 for (i = 1; i <= o; i++) d[i] = 0;
1407
1408 if (!n) {
1409 /* Easy case: we're shifting by a multiple of the word size, so we
1410 * can just copy whole words.
1411 */
1412 for (i = 1; i <= x[0]; i++) d[o + i] = x[i];
1413 } else {
1414 /* Hard case: destination words can be a combination of two source
1415 * words.
1416 */
1417
1418 /* Take the low bits from the least significant source word. */
1419 d[o + 1] = x[1] << n;
1420
1421 /* The intermediate words really are a combination of two source
1422 * words.
1423 */
1424 for (i = 2; i <= x[0]; i++)
1425 d[o + i] = (x[i] << n) | (x[i - 1] >> (BIGNUM_INT_BITS - n));
1426
1427 /* Finally, the high bits of the most significant input word. */
1428 d[o + i + 1] = x[i] >> (BIGNUM_INT_BITS - n);
1429 }
1430
1431 /* The destination length is a conservative estimate, so we'll need to
1432 * sort that out.
1433 */
1434 bn_restore_invariant(d);
1435
1436 /* We're done. */
1437 return d;
1438 }
1439
1440 /*
1441 * Return a bignum which is the result of shifting another right by N bits
1442 * (discarding the least significant N bits, and shifting zeroes in at the
1443 * most significant end). If N is negative then you get a left shift
1444 * instead.
1445 */
1446 Bignum biglsr(Bignum x, int n)
1447 {
1448 Bignum d;
1449 unsigned o, i;
1450
1451 /* Eliminate some simple special cases. */
1452 if (!n || !x[0]) return copybn(x);
1453 else if (n < 0) return biglsl(x, -n);
1454
1455 /* Some initial setup. */
1456 o = n/BIGNUM_INT_BITS;
1457 n %= BIGNUM_INT_BITS;
1458 d = newbn(x[0] - o);
1459
1460 if (!n) {
1461 /* Simple case: we're shifting by a multiple of the word size, so we
1462 * can just copy whole words across.
1463 */
1464 for (i = o + 1; i <= x[0]; i++) d[i - o] = x[i];
1465 } else {
1466 /* Hard case: some destination words will be a combination of two
1467 * source words. We get to discard some of the input words.
1468 */
1469
1470 /* The intermediate words are combinations of two input words. */
1471 for (i = o + 1; i < x[0]; i++)
1472 d[i - o] = (x[i] >> n) | (x[i + 1] << (BIGNUM_INT_BITS - n));
1473
1474 /* And finally the high-significance bits of the top source word. */
1475 d[i - o + 1] = x[i] << (BIGNUM_INT_BITS - n);
1476 }
1477
1478 /* The destination length is a conservative estimate, so we'll need to
1479 * sort that out.
1480 */
1481 bn_restore_invariant(d);
1482
1483 /* And we're done. */
1484 return d;
1485 }
1486
1487 /*
1488 * Create a bignum which is the bitmask covering another one. That
1489 * is, the smallest integer which is >= N and is also one less than
1490 * a power of two.
1491 */
1492 Bignum bignum_bitmask(Bignum n)
1493 {
1494 Bignum ret = copybn(n);
1495 int i;
1496 BignumInt j;
1497
1498 i = ret[0];
1499 while (n[i] == 0 && i > 0)
1500 i--;
1501 if (i <= 0)
1502 return ret; /* input was zero */
1503 j = 1;
1504 while (j < n[i])
1505 j = 2 * j + 1;
1506 ret[i] = j;
1507 while (--i > 0)
1508 ret[i] = BIGNUM_INT_MASK;
1509 return ret;
1510 }
1511
1512 /*
1513 * Convert a (max 32-bit) long into a bignum.
1514 */
1515 Bignum bignum_from_long(unsigned long nn)
1516 {
1517 Bignum ret;
1518 BignumDblInt n = nn;
1519
1520 ret = newbn(3);
1521 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1522 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1523 ret[3] = 0;
1524 ret[0] = (ret[2] ? 2 : 1);
1525 return ret;
1526 }
1527
1528 /*
1529 * Add a long to a bignum.
1530 */
1531 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1532 {
1533 Bignum ret = newbn(number[0] + 1);
1534 int i, maxspot = 0;
1535 BignumDblInt carry = 0, addend = addendx;
1536
1537 for (i = 1; i <= (int)ret[0]; i++) {
1538 carry += addend & BIGNUM_INT_MASK;
1539 carry += (i <= (int)number[0] ? number[i] : 0);
1540 addend >>= BIGNUM_INT_BITS;
1541 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1542 carry >>= BIGNUM_INT_BITS;
1543 if (ret[i] != 0)
1544 maxspot = i;
1545 }
1546 ret[0] = maxspot;
1547 return ret;
1548 }
1549
1550 /*
1551 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1552 */
1553 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1554 {
1555 BignumDblInt mod, r;
1556 int i;
1557
1558 r = 0;
1559 mod = modulus;
1560 for (i = number[0]; i > 0; i--)
1561 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1562 return (unsigned short) r;
1563 }
1564
1565 #ifdef DEBUG
1566 void diagbn(char *prefix, Bignum md)
1567 {
1568 int i, nibbles, morenibbles;
1569 static const char hex[] = "0123456789ABCDEF";
1570
1571 debug(("%s0x", prefix ? prefix : ""));
1572
1573 nibbles = (3 + bignum_bitcount(md)) / 4;
1574 if (nibbles < 1)
1575 nibbles = 1;
1576 morenibbles = 4 * md[0] - nibbles;
1577 for (i = 0; i < morenibbles; i++)
1578 debug(("-"));
1579 for (i = nibbles; i--;)
1580 debug(("%c",
1581 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1582
1583 if (prefix)
1584 debug(("\n"));
1585 }
1586 #endif
1587
1588 /*
1589 * Simple division.
1590 */
1591 Bignum bigdiv(Bignum a, Bignum b)
1592 {
1593 Bignum q = newbn(a[0]);
1594 bigdivmod(a, b, NULL, q);
1595 return q;
1596 }
1597
1598 /*
1599 * Simple remainder.
1600 */
1601 Bignum bigmod(Bignum a, Bignum b)
1602 {
1603 Bignum r = newbn(b[0]);
1604 bigdivmod(a, b, r, NULL);
1605 return r;
1606 }
1607
1608 /*
1609 * Greatest common divisor.
1610 */
1611 Bignum biggcd(Bignum av, Bignum bv)
1612 {
1613 Bignum a = copybn(av);
1614 Bignum b = copybn(bv);
1615
1616 while (bignum_cmp(b, Zero) != 0) {
1617 Bignum t = newbn(b[0]);
1618 bigdivmod(a, b, t, NULL);
1619 while (t[0] > 1 && t[t[0]] == 0)
1620 t[0]--;
1621 freebn(a);
1622 a = b;
1623 b = t;
1624 }
1625
1626 freebn(b);
1627 return a;
1628 }
1629
1630 /*
1631 * Modular inverse, using Euclid's extended algorithm.
1632 */
1633 Bignum modinv(Bignum number, Bignum modulus)
1634 {
1635 Bignum a = copybn(modulus);
1636 Bignum b = copybn(number);
1637 Bignum xp = copybn(Zero);
1638 Bignum x = copybn(One);
1639 int sign = +1;
1640
1641 while (bignum_cmp(b, One) != 0) {
1642 Bignum t = newbn(b[0]);
1643 Bignum q = newbn(a[0]);
1644 bigdivmod(a, b, t, q);
1645 while (t[0] > 1 && t[t[0]] == 0)
1646 t[0]--;
1647 freebn(a);
1648 a = b;
1649 b = t;
1650 t = xp;
1651 xp = x;
1652 x = bigmuladd(q, xp, t);
1653 sign = -sign;
1654 freebn(t);
1655 freebn(q);
1656 }
1657
1658 freebn(b);
1659 freebn(a);
1660 freebn(xp);
1661
1662 /* now we know that sign * x == 1, and that x < modulus */
1663 if (sign < 0) {
1664 /* set a new x to be modulus - x */
1665 Bignum newx = newbn(modulus[0]);
1666 BignumInt carry = 0;
1667 int maxspot = 1;
1668 int i;
1669
1670 for (i = 1; i <= (int)newx[0]; i++) {
1671 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1672 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1673 newx[i] = aword - bword - carry;
1674 bword = ~bword;
1675 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1676 if (newx[i] != 0)
1677 maxspot = i;
1678 }
1679 newx[0] = maxspot;
1680 freebn(x);
1681 x = newx;
1682 }
1683
1684 /* and return. */
1685 return x;
1686 }
1687
1688 /*
1689 * Extract the largest power of 2 dividing x, storing it in p2, and returning
1690 * the product of the remaining factors.
1691 */
1692 static Bignum extract_p2(Bignum x, unsigned *p2)
1693 {
1694 unsigned i, j, k, n;
1695 Bignum y;
1696
1697 /* If x is zero then the following won't work. And if x is odd then
1698 * there's nothing very useful to do.
1699 */
1700 if (!x[0] || (x[1] & 1)) {
1701 *p2 = 0;
1702 return copybn(x);
1703 }
1704
1705 /* Find the power of two. */
1706 for (i = 0; !x[i + 1]; i++);
1707 for (j = 0; !((x[i + 1] >> j) & 1); j++);
1708 *p2 = i*BIGNUM_INT_BITS + j;
1709
1710 /* Work out how big the copy should be. */
1711 n = x[0] - i - 1;
1712 if (x[x[0]] >> j) n++;
1713
1714 /* Copy and shift down. */
1715 y = newbn(n);
1716 for (k = 1; k <= n; k++) {
1717 y[k] = x[k + i] >> j;
1718 if (j && k < x[0]) y[k] |= x[k + i + 1] << (BIGNUM_INT_BITS - j);
1719 }
1720
1721 /* Done. */
1722 return y;
1723 }
1724
1725 /*
1726 * Kronecker symbol (a|n). The result is always in { -1, 0, +1 }, and is
1727 * zero if and only if a and n have a nontrivial common factor. Most
1728 * usefully, if n is prime, this is the Legendre symbol, taking the value +1
1729 * if a is a quadratic residue mod n, and -1 otherwise; i.e., (a|p) ==
1730 * a^{(p-1)/2} (mod p).
1731 */
1732 int kronecker(Bignum a, Bignum n)
1733 {
1734 unsigned s, nn;
1735 int r = +1;
1736 Bignum t;
1737
1738 /* Special case for n = 0. This is the same convention PARI uses,
1739 * except that we can't represent negative numbers.
1740 */
1741 if (bignum_cmp(n, Zero) == 0) {
1742 if (bignum_cmp(a, One) == 0) return +1;
1743 else return 0;
1744 }
1745
1746 /* Write n = 2^s t, with t odd. If s > 0 and a is even, then the answer
1747 * is zero; otherwise throw in a factor of (-1)^s if a == 3 or 5 (mod 8).
1748 *
1749 * At this point, we have a copy of n, and must remember to free it when
1750 * we're done. It's convenient to take a copy of a at the same time.
1751 */
1752 a = copybn(a);
1753 n = extract_p2(n, &s);
1754
1755 if (s && (!a[0] || !(a[1] & 1))) { r = 0; goto done; }
1756 else if ((s & 1) && ((a[1] & 7) == 3 || (a[1] & 7) == 5)) r = -r;
1757
1758 /* If n is (now) a unit then we're done. */
1759 if (bignum_cmp(n, One) == 0) goto done;
1760
1761 /* Reduce a modulo n before we go any further. */
1762 if (bignum_cmp(a, n) >= 0) { t = bigmod(a, n); freebn(a); a = t; }
1763
1764 /* Main loop. */
1765 for (;;) {
1766 if (bignum_cmp(a, Zero) == 0) { r = 0; goto done; }
1767
1768 /* Strip out and handle powers of two from a. */
1769 t = extract_p2(a, &s); freebn(a); a = t;
1770 nn = n[1] & 7;
1771 if ((s & 1) && (nn == 3 || nn == 5)) r = -r;
1772 if (bignum_cmp(a, One) == 0) break;
1773
1774 /* Swap, applying quadratic reciprocity. */
1775 if ((nn & 3) == 3 && (a[1] & 3) == 3) r = -r;
1776 t = bigmod(n, a); freebn(n); n = a; a = t;
1777 }
1778
1779 /* Tidy up: we're done. */
1780 done:
1781 freebn(a); freebn(n);
1782 return r;
1783 }
1784
1785 /*
1786 * Modular square root. We must have p prime: extracting square roots modulo
1787 * composites is equivalent to factoring (but we don't check: you'll just get
1788 * the wrong answer). Returns NULL if x is not a quadratic residue mod p.
1789 */
1790 Bignum modsqrt(Bignum x, Bignum p)
1791 {
1792 Bignum xinv, b, c, r, t, z, X, mone;
1793 unsigned i, j, s;
1794
1795 /* If x is not a quadratic residue then we will not go to space today. */
1796 if (kronecker(x, p) != +1) return NULL;
1797
1798 /* We need a quadratic nonresidue from somewhere. Exactly half of all
1799 * units mod p are quadratic residues, but no efficient deterministic
1800 * algorithm for finding one is known. So pick at random: we don't
1801 * expect this to take long.
1802 */
1803 z = newbn(p[0]);
1804 do {
1805 for (i = 1; i <= p[0]; i++) z[i] = rand();
1806 z[0] = p[0]; bn_restore_invariant(z);
1807 } while (kronecker(z, p) != -1);
1808 b = bigmod(z, p); freebn(z);
1809
1810 /* We need to compute a few things before we really get started. */
1811 xinv = modinv(x, p); /* x^{-1} mod p */
1812 mone = bigsub(p, One); /* p - 1 == -1 (mod p) */
1813 t = extract_p2(mone, &s); /* 2^s t = p - 1 */
1814 c = modpow(b, t, p); /* b^t (mod p) */
1815 z = bigadd(t, One); freebn(t); t = z; /* (t + 1) */
1816 shift_right(t + 1, t[0], 1); if (!t[t[0]]) t[0]--;
1817 r = modpow(x, t, p); /* x^{(t+1)/2} (mod p) */
1818 freebn(b); freebn(mone); freebn(t);
1819
1820 /* OK, so how does this work anyway?
1821 *
1822 * We know that x^t is somewhere in the order-2^s subgroup of GF(p)^*;
1823 * and g = c^{-1} is a generator for this subgroup (since we know that
1824 * g^{2^{s-1}} = b^{(p-1)/2} = (b|p) = -1); so x^t = g^m for some m. In
1825 * fact, we know that m is even because x is a square. Suppose we can
1826 * determine m; then we know that x^t/g^m = 1, so x^{t+1}/c^m = x -- but
1827 * both t + 1 and m are even, so x^{(t+1)/2}/g^{m/2} is a square root of
1828 * x.
1829 *
1830 * Conveniently, finding the discrete log of an element X in a group of
1831 * order 2^s is easy. Write X = g^m = g^{m_0+2k'}; then X^{2^{s-1}} =
1832 * g^{m_0 2^{s-1}} c^{m' 2^s} = g^{m_0 2^{s-1}} is either -1 or +1,
1833 * telling us that m_0 is 1 or 0 respectively. Then X/g^{m_0} =
1834 * (g^2)^{m'} has order 2^{s-1} so we can continue inductively. What we
1835 * end up with at the end is X/g^m.
1836 *
1837 * There are a few wrinkles. As we proceed through the induction, the
1838 * generator for the subgroup will be c^{-2}, since we know that m is
1839 * even. While we want the discrete log of X = x^t, we're actually going
1840 * to keep track of r, which will eventually be x^{(t+1)/2}/g^{m/2} =
1841 * x^{(t+1)/2} c^m, recovering X/g^m = r^2/x as we go. We don't actually
1842 * form the discrete log explicitly, because the final result will
1843 * actually be the square root we want.
1844 */
1845 for (i = 1; i < s; i++) {
1846
1847 /* Determine X. We could optimize this, only recomputing it when
1848 * it's been invalidated, but that's fiddlier and this isn't
1849 * performance critical.
1850 */
1851 z = modmul(r, r, p);
1852 X = modmul(z, xinv, p);
1853 freebn(z);
1854
1855 /* Determine X^{2^{s-1-i}}. */
1856 for (j = i + 1; j < s; j++)
1857 z = modmul(X, X, p), freebn(X), X = z;
1858
1859 /* Maybe accumulate a factor of c. */
1860 if (bignum_cmp(X, One) != 0)
1861 z = modmul(r, c, p), freebn(r), r = z;
1862
1863 /* Move on to the next smaller subgroup. */
1864 z = modmul(c, c, p), freebn(c), c = z;
1865 freebn(X);
1866 }
1867
1868 /* Of course, there are two square roots of x. For predictability's sake
1869 * we'll always return the one in [1..(p - 1)/2]. The other is, of
1870 * course, p - r.
1871 */
1872 z = bigsub(p, r);
1873 if (bignum_cmp(r, z) < 0)
1874 freebn(z);
1875 else {
1876 freebn(r);
1877 r = z;
1878 }
1879
1880 /* We're done. */
1881 freebn(xinv); freebn(c);
1882 return r;
1883 }
1884
1885 /*
1886 * Render a bignum into decimal. Return a malloced string holding
1887 * the decimal representation.
1888 */
1889 char *bignum_decimal(Bignum x)
1890 {
1891 int ndigits, ndigit;
1892 int i, iszero;
1893 BignumDblInt carry;
1894 char *ret;
1895 BignumInt *workspace;
1896
1897 /*
1898 * First, estimate the number of digits. Since log(10)/log(2)
1899 * is just greater than 93/28 (the joys of continued fraction
1900 * approximations...) we know that for every 93 bits, we need
1901 * at most 28 digits. This will tell us how much to malloc.
1902 *
1903 * Formally: if x has i bits, that means x is strictly less
1904 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1905 * 10^(28i/93). We need an integer power of ten, so we must
1906 * round up (rounding down might make it less than x again).
1907 * Therefore if we multiply the bit count by 28/93, rounding
1908 * up, we will have enough digits.
1909 *
1910 * i=0 (i.e., x=0) is an irritating special case.
1911 */
1912 i = bignum_bitcount(x);
1913 if (!i)
1914 ndigits = 1; /* x = 0 */
1915 else
1916 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1917 ndigits++; /* allow for trailing \0 */
1918 ret = snewn(ndigits, char);
1919
1920 /*
1921 * Now allocate some workspace to hold the binary form as we
1922 * repeatedly divide it by ten. Initialise this to the
1923 * big-endian form of the number.
1924 */
1925 workspace = snewn(x[0], BignumInt);
1926 for (i = 0; i < (int)x[0]; i++)
1927 workspace[i] = x[x[0] - i];
1928
1929 /*
1930 * Next, write the decimal number starting with the last digit.
1931 * We use ordinary short division, dividing 10 into the
1932 * workspace.
1933 */
1934 ndigit = ndigits - 1;
1935 ret[ndigit] = '\0';
1936 do {
1937 iszero = 1;
1938 carry = 0;
1939 for (i = 0; i < (int)x[0]; i++) {
1940 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1941 workspace[i] = (BignumInt) (carry / 10);
1942 if (workspace[i])
1943 iszero = 0;
1944 carry %= 10;
1945 }
1946 ret[--ndigit] = (char) (carry + '0');
1947 } while (!iszero);
1948
1949 /*
1950 * There's a chance we've fallen short of the start of the
1951 * string. Correct if so.
1952 */
1953 if (ndigit > 0)
1954 memmove(ret, ret + ndigit, ndigits - ndigit);
1955
1956 /*
1957 * Done.
1958 */
1959 sfree(workspace);
1960 return ret;
1961 }
1962
1963 #ifdef TESTBN
1964
1965 #include <stdio.h>
1966 #include <stdlib.h>
1967 #include <ctype.h>
1968
1969 /*
1970 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1971 *
1972 * Then feed to this program's standard input the output of
1973 * testdata/bignum.py .
1974 */
1975
1976 void modalfatalbox(char *p, ...)
1977 {
1978 va_list ap;
1979 fprintf(stderr, "FATAL ERROR: ");
1980 va_start(ap, p);
1981 vfprintf(stderr, p, ap);
1982 va_end(ap);
1983 fputc('\n', stderr);
1984 exit(1);
1985 }
1986
1987 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1988
1989 int main(int argc, char **argv)
1990 {
1991 char *buf;
1992 int line = 0;
1993 int passes = 0, fails = 0;
1994
1995 while ((buf = fgetline(stdin)) != NULL) {
1996 int maxlen = strlen(buf);
1997 unsigned char *data = snewn(maxlen, unsigned char);
1998 unsigned char *ptrs[5], *q;
1999 int ptrnum;
2000 char *bufp = buf;
2001
2002 line++;
2003
2004 q = data;
2005 ptrnum = 0;
2006
2007 while (*bufp && !isspace((unsigned char)*bufp))
2008 bufp++;
2009 if (bufp)
2010 *bufp++ = '\0';
2011
2012 while (*bufp) {
2013 char *start, *end;
2014 int i;
2015
2016 while (*bufp && !isxdigit((unsigned char)*bufp))
2017 bufp++;
2018 start = bufp;
2019
2020 if (!*bufp)
2021 break;
2022
2023 while (*bufp && isxdigit((unsigned char)*bufp))
2024 bufp++;
2025 end = bufp;
2026
2027 if (ptrnum >= lenof(ptrs))
2028 break;
2029 ptrs[ptrnum++] = q;
2030
2031 for (i = -((end - start) & 1); i < end-start; i += 2) {
2032 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
2033 val = val * 16 + fromxdigit(start[i+1]);
2034 *q++ = val;
2035 }
2036
2037 ptrs[ptrnum] = q;
2038 }
2039
2040 if (!strcmp(buf, "mul")) {
2041 Bignum a, b, c, p;
2042
2043 if (ptrnum != 3) {
2044 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
2045 exit(1);
2046 }
2047 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2048 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2049 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2050 p = bigmul(a, b);
2051
2052 if (bignum_cmp(c, p) == 0) {
2053 passes++;
2054 } else {
2055 char *as = bignum_decimal(a);
2056 char *bs = bignum_decimal(b);
2057 char *cs = bignum_decimal(c);
2058 char *ps = bignum_decimal(p);
2059
2060 printf("%d: fail: %s * %s gave %s expected %s\n",
2061 line, as, bs, ps, cs);
2062 fails++;
2063
2064 sfree(as);
2065 sfree(bs);
2066 sfree(cs);
2067 sfree(ps);
2068 }
2069 freebn(a);
2070 freebn(b);
2071 freebn(c);
2072 freebn(p);
2073 } else if (!strcmp(buf, "pow")) {
2074 Bignum base, expt, modulus, expected, answer;
2075
2076 if (ptrnum != 4) {
2077 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
2078 exit(1);
2079 }
2080
2081 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2082 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2083 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2084 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
2085 answer = modpow(base, expt, modulus);
2086
2087 if (bignum_cmp(expected, answer) == 0) {
2088 passes++;
2089 } else {
2090 char *as = bignum_decimal(base);
2091 char *bs = bignum_decimal(expt);
2092 char *cs = bignum_decimal(modulus);
2093 char *ds = bignum_decimal(answer);
2094 char *ps = bignum_decimal(expected);
2095
2096 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
2097 line, as, bs, cs, ds, ps);
2098 fails++;
2099
2100 sfree(as);
2101 sfree(bs);
2102 sfree(cs);
2103 sfree(ds);
2104 sfree(ps);
2105 }
2106 freebn(base);
2107 freebn(expt);
2108 freebn(modulus);
2109 freebn(expected);
2110 freebn(answer);
2111 } else if (!strcmp(buf, "modsqrt")) {
2112 Bignum x, p, expected, answer;
2113
2114 if (ptrnum != 3) {
2115 printf("%d: modsqrt with %d parameters, expected 3\n", line, ptrnum);
2116 exit(1);
2117 }
2118
2119 x = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
2120 p = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
2121 expected = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
2122 answer = modsqrt(x, p);
2123 if (!answer)
2124 answer = copybn(Zero);
2125
2126 if (bignum_cmp(expected, answer) == 0) {
2127 passes++;
2128 } else {
2129 char *xs = bignum_decimal(x);
2130 char *ps = bignum_decimal(p);
2131 char *qs = bignum_decimal(answer);
2132 char *ws = bignum_decimal(expected);
2133
2134 printf("%d: fail: sqrt(%s) mod %s gave %s expected %s\n",
2135 line, xs, ps, qs, ws);
2136 fails++;
2137
2138 sfree(xs);
2139 sfree(ps);
2140 sfree(qs);
2141 sfree(ws);
2142 }
2143 freebn(p);
2144 freebn(x);
2145 freebn(expected);
2146 freebn(answer);
2147 } else {
2148 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
2149 exit(1);
2150 }
2151
2152 sfree(buf);
2153 sfree(data);
2154 }
2155
2156 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
2157 return fails != 0;
2158 }
2159
2160 #endif