Add tests of modpow.
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 memset(b, 0, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 */
205 #define KARATSUBA_THRESHOLD 50
206 static void internal_mul(const BignumInt *a, const BignumInt *b,
207 BignumInt *c, int len)
208 {
209 int i, j;
210 BignumDblInt t;
211
212 if (len > KARATSUBA_THRESHOLD) {
213
214 /*
215 * Karatsuba divide-and-conquer algorithm. Cut each input in
216 * half, so that it's expressed as two big 'digits' in a giant
217 * base D:
218 *
219 * a = a_1 D + a_0
220 * b = b_1 D + b_0
221 *
222 * Then the product is of course
223 *
224 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
225 *
226 * and we compute the three coefficients by recursively
227 * calling ourself to do half-length multiplications.
228 *
229 * The clever bit that makes this worth doing is that we only
230 * need _one_ half-length multiplication for the central
231 * coefficient rather than the two that it obviouly looks
232 * like, because we can use a single multiplication to compute
233 *
234 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
235 *
236 * and then we subtract the other two coefficients (a_1 b_1
237 * and a_0 b_0) which we were computing anyway.
238 *
239 * Hence we get to multiply two numbers of length N in about
240 * three times as much work as it takes to multiply numbers of
241 * length N/2, which is obviously better than the four times
242 * as much work it would take if we just did a long
243 * conventional multiply.
244 */
245
246 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
247 int midlen = botlen + 1;
248 BignumInt *scratch;
249 BignumDblInt carry;
250 #ifdef KARA_DEBUG
251 int i;
252 #endif
253
254 /*
255 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
256 * in the output array, so we can compute them immediately in
257 * place.
258 */
259
260 #ifdef KARA_DEBUG
261 printf("a1,a0 = 0x");
262 for (i = 0; i < len; i++) {
263 if (i == toplen) printf(", 0x");
264 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
265 }
266 printf("\n");
267 printf("b1,b0 = 0x");
268 for (i = 0; i < len; i++) {
269 if (i == toplen) printf(", 0x");
270 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
271 }
272 printf("\n");
273 #endif
274
275 /* a_1 b_1 */
276 internal_mul(a, b, c, toplen);
277 #ifdef KARA_DEBUG
278 printf("a1b1 = 0x");
279 for (i = 0; i < 2*toplen; i++) {
280 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
281 }
282 printf("\n");
283 #endif
284
285 /* a_0 b_0 */
286 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen);
287 #ifdef KARA_DEBUG
288 printf("a0b0 = 0x");
289 for (i = 0; i < 2*botlen; i++) {
290 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
291 }
292 printf("\n");
293 #endif
294
295 /*
296 * We must allocate scratch space for the central coefficient,
297 * and also for the two input values that we multiply when
298 * computing it. Since either or both may carry into the
299 * (botlen+1)th word, we must use a slightly longer length
300 * 'midlen'.
301 */
302 scratch = snewn(4 * midlen, BignumInt);
303
304 /* Zero padding. midlen exceeds toplen by at most 2, so just
305 * zero the first two words of each input and the rest will be
306 * copied over. */
307 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
308
309 for (j = 0; j < toplen; j++) {
310 scratch[midlen - toplen + j] = a[j]; /* a_1 */
311 scratch[2*midlen - toplen + j] = b[j]; /* b_1 */
312 }
313
314 /* compute a_1 + a_0 */
315 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
316 #ifdef KARA_DEBUG
317 printf("a1plusa0 = 0x");
318 for (i = 0; i < midlen; i++) {
319 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
320 }
321 printf("\n");
322 #endif
323 /* compute b_1 + b_0 */
324 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
325 scratch+midlen+1, botlen);
326 #ifdef KARA_DEBUG
327 printf("b1plusb0 = 0x");
328 for (i = 0; i < midlen; i++) {
329 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
330 }
331 printf("\n");
332 #endif
333
334 /*
335 * Now we can do the third multiplication.
336 */
337 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen);
338 #ifdef KARA_DEBUG
339 printf("a1plusa0timesb1plusb0 = 0x");
340 for (i = 0; i < 2*midlen; i++) {
341 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
342 }
343 printf("\n");
344 #endif
345
346 /*
347 * Now we can reuse the first half of 'scratch' to compute the
348 * sum of the outer two coefficients, to subtract from that
349 * product to obtain the middle one.
350 */
351 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
352 for (j = 0; j < 2*toplen; j++)
353 scratch[2*midlen - 2*toplen + j] = c[j];
354 scratch[1] = internal_add(scratch+2, c + 2*toplen,
355 scratch+2, 2*botlen);
356 #ifdef KARA_DEBUG
357 printf("a1b1plusa0b0 = 0x");
358 for (i = 0; i < 2*midlen; i++) {
359 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
360 }
361 printf("\n");
362 #endif
363
364 internal_sub(scratch + 2*midlen, scratch,
365 scratch + 2*midlen, 2*midlen);
366 #ifdef KARA_DEBUG
367 printf("a1b0plusa0b1 = 0x");
368 for (i = 0; i < 2*midlen; i++) {
369 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
370 }
371 printf("\n");
372 #endif
373
374 /*
375 * And now all we need to do is to add that middle coefficient
376 * back into the output. We may have to propagate a carry
377 * further up the output, but we can be sure it won't
378 * propagate right the way off the top.
379 */
380 carry = internal_add(c + 2*len - botlen - 2*midlen,
381 scratch + 2*midlen,
382 c + 2*len - botlen - 2*midlen, 2*midlen);
383 j = 2*len - botlen - 2*midlen - 1;
384 while (carry) {
385 assert(j >= 0);
386 carry += c[j];
387 c[j] = (BignumInt)carry;
388 carry >>= BIGNUM_INT_BITS;
389 j--;
390 }
391 #ifdef KARA_DEBUG
392 printf("ab = 0x");
393 for (i = 0; i < 2*len; i++) {
394 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
395 }
396 printf("\n");
397 #endif
398
399 /* Free scratch. */
400 for (j = 0; j < 4 * midlen; j++)
401 scratch[j] = 0;
402 sfree(scratch);
403
404 } else {
405
406 /*
407 * Multiply in the ordinary O(N^2) way.
408 */
409
410 for (j = 0; j < 2 * len; j++)
411 c[j] = 0;
412
413 for (i = len - 1; i >= 0; i--) {
414 t = 0;
415 for (j = len - 1; j >= 0; j--) {
416 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
417 t += (BignumDblInt) c[i + j + 1];
418 c[i + j + 1] = (BignumInt) t;
419 t = t >> BIGNUM_INT_BITS;
420 }
421 c[i] = (BignumInt) t;
422 }
423 }
424 }
425
426 /*
427 * Variant form of internal_mul used for the initial step of
428 * Montgomery reduction. Only bothers outputting 'len' words
429 * (everything above that is thrown away).
430 */
431 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
432 BignumInt *c, int len)
433 {
434 int i, j;
435 BignumDblInt t;
436
437 if (len > KARATSUBA_THRESHOLD) {
438
439 /*
440 * Karatsuba-aware version of internal_mul_low. As before, we
441 * express each input value as a shifted combination of two
442 * halves:
443 *
444 * a = a_1 D + a_0
445 * b = b_1 D + b_0
446 *
447 * Then the full product is, as before,
448 *
449 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
450 *
451 * Provided we choose D on the large side (so that a_0 and b_0
452 * are _at least_ as long as a_1 and b_1), we don't need the
453 * topmost term at all, and we only need half of the middle
454 * term. So there's no point in doing the proper Karatsuba
455 * optimisation which computes the middle term using the top
456 * one, because we'd take as long computing the top one as
457 * just computing the middle one directly.
458 *
459 * So instead, we do a much more obvious thing: we call the
460 * fully optimised internal_mul to compute a_0 b_0, and we
461 * recursively call ourself to compute the _bottom halves_ of
462 * a_1 b_0 and a_0 b_1, each of which we add into the result
463 * in the obvious way.
464 *
465 * In other words, there's no actual Karatsuba _optimisation_
466 * in this function; the only benefit in doing it this way is
467 * that we call internal_mul proper for a large part of the
468 * work, and _that_ can optimise its operation.
469 */
470
471 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
472 BignumInt *scratch;
473
474 /*
475 * Allocate scratch space for the various bits and pieces
476 * we're going to be adding together. We need botlen*2 words
477 * for a_0 b_0 (though we may end up throwing away its topmost
478 * word), and toplen words for each of a_1 b_0 and a_0 b_1.
479 * That adds up to exactly 2*len.
480 */
481 scratch = snewn(len*2, BignumInt);
482
483 /* a_0 b_0 */
484 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen);
485
486 /* a_1 b_0 */
487 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen);
488
489 /* a_0 b_1 */
490 internal_mul_low(a + len - toplen, b, scratch, toplen);
491
492 /* Copy the bottom half of the big coefficient into place */
493 for (j = 0; j < botlen; j++)
494 c[toplen + j] = scratch[2*toplen + botlen + j];
495
496 /* Add the two small coefficients, throwing away the returned carry */
497 internal_add(scratch, scratch + toplen, scratch, toplen);
498
499 /* And add that to the large coefficient, leaving the result in c. */
500 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
501 c, toplen);
502
503 /* Free scratch. */
504 for (j = 0; j < len*2; j++)
505 scratch[j] = 0;
506 sfree(scratch);
507
508 } else {
509
510 for (j = 0; j < len; j++)
511 c[j] = 0;
512
513 for (i = len - 1; i >= 0; i--) {
514 t = 0;
515 for (j = len - 1; j >= len - i - 1; j--) {
516 t += MUL_WORD(a[i], (BignumDblInt) b[j]);
517 t += (BignumDblInt) c[i + j + 1 - len];
518 c[i + j + 1 - len] = (BignumInt) t;
519 t = t >> BIGNUM_INT_BITS;
520 }
521 }
522
523 }
524 }
525
526 /*
527 * Montgomery reduction. Expects x to be a big-endian array of 2*len
528 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
529 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
530 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
531 * x' < n.
532 *
533 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
534 * each, containing respectively n and the multiplicative inverse of
535 * -n mod r.
536 *
537 * 'tmp' is an array of at least '3*len' BignumInts used as scratch
538 * space.
539 */
540 static void monty_reduce(BignumInt *x, const BignumInt *n,
541 const BignumInt *mninv, BignumInt *tmp, int len)
542 {
543 int i;
544 BignumInt carry;
545
546 /*
547 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
548 * that mn is congruent to -x mod r. Hence, mn+x is an exact
549 * multiple of r, and is also (obviously) congruent to x mod n.
550 */
551 internal_mul_low(x + len, mninv, tmp, len);
552
553 /*
554 * Compute t = (mn+x)/r in ordinary, non-modular, integer
555 * arithmetic. By construction this is exact, and is congruent mod
556 * n to x * r^{-1}, i.e. the answer we want.
557 *
558 * The following multiply leaves that answer in the _most_
559 * significant half of the 'x' array, so then we must shift it
560 * down.
561 */
562 internal_mul(tmp, n, tmp+len, len);
563 carry = internal_add(x, tmp+len, x, 2*len);
564 for (i = 0; i < len; i++)
565 x[len + i] = x[i], x[i] = 0;
566
567 /*
568 * Reduce t mod n. This doesn't require a full-on division by n,
569 * but merely a test and single optional subtraction, since we can
570 * show that 0 <= t < 2n.
571 *
572 * Proof:
573 * + we computed m mod r, so 0 <= m < r.
574 * + so 0 <= mn < rn, obviously
575 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
576 * + yielding 0 <= (mn+x)/r < 2n as required.
577 */
578 if (!carry) {
579 for (i = 0; i < len; i++)
580 if (x[len + i] != n[i])
581 break;
582 }
583 if (carry || i >= len || x[len + i] > n[i])
584 internal_sub(x+len, n, x+len, len);
585 }
586
587 static void internal_add_shifted(BignumInt *number,
588 unsigned n, int shift)
589 {
590 int word = 1 + (shift / BIGNUM_INT_BITS);
591 int bshift = shift % BIGNUM_INT_BITS;
592 BignumDblInt addend;
593
594 addend = (BignumDblInt)n << bshift;
595
596 while (addend) {
597 addend += number[word];
598 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
599 addend >>= BIGNUM_INT_BITS;
600 word++;
601 }
602 }
603
604 /*
605 * Compute a = a % m.
606 * Input in first alen words of a and first mlen words of m.
607 * Output in first alen words of a
608 * (of which first alen-mlen words will be zero).
609 * The MSW of m MUST have its high bit set.
610 * Quotient is accumulated in the `quotient' array, which is a Bignum
611 * rather than the internal bigendian format. Quotient parts are shifted
612 * left by `qshift' before adding into quot.
613 */
614 static void internal_mod(BignumInt *a, int alen,
615 BignumInt *m, int mlen,
616 BignumInt *quot, int qshift)
617 {
618 BignumInt m0, m1;
619 unsigned int h;
620 int i, k;
621
622 m0 = m[0];
623 if (mlen > 1)
624 m1 = m[1];
625 else
626 m1 = 0;
627
628 for (i = 0; i <= alen - mlen; i++) {
629 BignumDblInt t;
630 unsigned int q, r, c, ai1;
631
632 if (i == 0) {
633 h = 0;
634 } else {
635 h = a[i - 1];
636 a[i - 1] = 0;
637 }
638
639 if (i == alen - 1)
640 ai1 = 0;
641 else
642 ai1 = a[i + 1];
643
644 /* Find q = h:a[i] / m0 */
645 if (h >= m0) {
646 /*
647 * Special case.
648 *
649 * To illustrate it, suppose a BignumInt is 8 bits, and
650 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
651 * our initial division will be 0xA123 / 0xA1, which
652 * will give a quotient of 0x100 and a divide overflow.
653 * However, the invariants in this division algorithm
654 * are not violated, since the full number A1:23:... is
655 * _less_ than the quotient prefix A1:B2:... and so the
656 * following correction loop would have sorted it out.
657 *
658 * In this situation we set q to be the largest
659 * quotient we _can_ stomach (0xFF, of course).
660 */
661 q = BIGNUM_INT_MASK;
662 } else {
663 /* Macro doesn't want an array subscript expression passed
664 * into it (see definition), so use a temporary. */
665 BignumInt tmplo = a[i];
666 DIVMOD_WORD(q, r, h, tmplo, m0);
667
668 /* Refine our estimate of q by looking at
669 h:a[i]:a[i+1] / m0:m1 */
670 t = MUL_WORD(m1, q);
671 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
672 q--;
673 t -= m1;
674 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
675 if (r >= (BignumDblInt) m0 &&
676 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
677 }
678 }
679
680 /* Subtract q * m from a[i...] */
681 c = 0;
682 for (k = mlen - 1; k >= 0; k--) {
683 t = MUL_WORD(q, m[k]);
684 t += c;
685 c = (unsigned)(t >> BIGNUM_INT_BITS);
686 if ((BignumInt) t > a[i + k])
687 c++;
688 a[i + k] -= (BignumInt) t;
689 }
690
691 /* Add back m in case of borrow */
692 if (c != h) {
693 t = 0;
694 for (k = mlen - 1; k >= 0; k--) {
695 t += m[k];
696 t += a[i + k];
697 a[i + k] = (BignumInt) t;
698 t = t >> BIGNUM_INT_BITS;
699 }
700 q--;
701 }
702 if (quot)
703 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
704 }
705 }
706
707 /*
708 * Compute (base ^ exp) % mod, the pedestrian way.
709 */
710 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
711 {
712 BignumInt *a, *b, *n, *m;
713 int mshift;
714 int mlen, i, j;
715 Bignum base, result;
716
717 /*
718 * The most significant word of mod needs to be non-zero. It
719 * should already be, but let's make sure.
720 */
721 assert(mod[mod[0]] != 0);
722
723 /*
724 * Make sure the base is smaller than the modulus, by reducing
725 * it modulo the modulus if not.
726 */
727 base = bigmod(base_in, mod);
728
729 /* Allocate m of size mlen, copy mod to m */
730 /* We use big endian internally */
731 mlen = mod[0];
732 m = snewn(mlen, BignumInt);
733 for (j = 0; j < mlen; j++)
734 m[j] = mod[mod[0] - j];
735
736 /* Shift m left to make msb bit set */
737 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
738 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
739 break;
740 if (mshift) {
741 for (i = 0; i < mlen - 1; i++)
742 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
743 m[mlen - 1] = m[mlen - 1] << mshift;
744 }
745
746 /* Allocate n of size mlen, copy base to n */
747 n = snewn(mlen, BignumInt);
748 i = mlen - base[0];
749 for (j = 0; j < i; j++)
750 n[j] = 0;
751 for (j = 0; j < (int)base[0]; j++)
752 n[i + j] = base[base[0] - j];
753
754 /* Allocate a and b of size 2*mlen. Set a = 1 */
755 a = snewn(2 * mlen, BignumInt);
756 b = snewn(2 * mlen, BignumInt);
757 for (i = 0; i < 2 * mlen; i++)
758 a[i] = 0;
759 a[2 * mlen - 1] = 1;
760
761 /* Skip leading zero bits of exp. */
762 i = 0;
763 j = BIGNUM_INT_BITS-1;
764 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
765 j--;
766 if (j < 0) {
767 i++;
768 j = BIGNUM_INT_BITS-1;
769 }
770 }
771
772 /* Main computation */
773 while (i < (int)exp[0]) {
774 while (j >= 0) {
775 internal_mul(a + mlen, a + mlen, b, mlen);
776 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
777 if ((exp[exp[0] - i] & (1 << j)) != 0) {
778 internal_mul(b + mlen, n, a, mlen);
779 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
780 } else {
781 BignumInt *t;
782 t = a;
783 a = b;
784 b = t;
785 }
786 j--;
787 }
788 i++;
789 j = BIGNUM_INT_BITS-1;
790 }
791
792 /* Fixup result in case the modulus was shifted */
793 if (mshift) {
794 for (i = mlen - 1; i < 2 * mlen - 1; i++)
795 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
796 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
797 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
798 for (i = 2 * mlen - 1; i >= mlen; i--)
799 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
800 }
801
802 /* Copy result to buffer */
803 result = newbn(mod[0]);
804 for (i = 0; i < mlen; i++)
805 result[result[0] - i] = a[i + mlen];
806 while (result[0] > 1 && result[result[0]] == 0)
807 result[0]--;
808
809 /* Free temporary arrays */
810 for (i = 0; i < 2 * mlen; i++)
811 a[i] = 0;
812 sfree(a);
813 for (i = 0; i < 2 * mlen; i++)
814 b[i] = 0;
815 sfree(b);
816 for (i = 0; i < mlen; i++)
817 m[i] = 0;
818 sfree(m);
819 for (i = 0; i < mlen; i++)
820 n[i] = 0;
821 sfree(n);
822
823 freebn(base);
824
825 return result;
826 }
827
828 /*
829 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
830 * technique where possible, falling back to modpow_simple otherwise.
831 */
832 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
833 {
834 BignumInt *a, *b, *x, *n, *mninv, *tmp;
835 int len, i, j;
836 Bignum base, base2, r, rn, inv, result;
837
838 /*
839 * The most significant word of mod needs to be non-zero. It
840 * should already be, but let's make sure.
841 */
842 assert(mod[mod[0]] != 0);
843
844 /*
845 * mod had better be odd, or we can't do Montgomery multiplication
846 * using a power of two at all.
847 */
848 if (!(mod[1] & 1))
849 return modpow_simple(base_in, exp, mod);
850
851 /*
852 * Make sure the base is smaller than the modulus, by reducing
853 * it modulo the modulus if not.
854 */
855 base = bigmod(base_in, mod);
856
857 /*
858 * Compute the inverse of n mod r, for monty_reduce. (In fact we
859 * want the inverse of _minus_ n mod r, but we'll sort that out
860 * below.)
861 */
862 len = mod[0];
863 r = bn_power_2(BIGNUM_INT_BITS * len);
864 inv = modinv(mod, r);
865
866 /*
867 * Multiply the base by r mod n, to get it into Montgomery
868 * representation.
869 */
870 base2 = modmul(base, r, mod);
871 freebn(base);
872 base = base2;
873
874 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
875
876 freebn(r); /* won't need this any more */
877
878 /*
879 * Set up internal arrays of the right lengths, in big-endian
880 * format, containing the base, the modulus, and the modulus's
881 * inverse.
882 */
883 n = snewn(len, BignumInt);
884 for (j = 0; j < len; j++)
885 n[len - 1 - j] = mod[j + 1];
886
887 mninv = snewn(len, BignumInt);
888 for (j = 0; j < len; j++)
889 mninv[len - 1 - j] = (j < inv[0] ? inv[j + 1] : 0);
890 freebn(inv); /* we don't need this copy of it any more */
891 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
892 x = snewn(len, BignumInt);
893 for (j = 0; j < len; j++)
894 x[j] = 0;
895 internal_sub(x, mninv, mninv, len);
896
897 /* x = snewn(len, BignumInt); */ /* already done above */
898 for (j = 0; j < len; j++)
899 x[len - 1 - j] = (j < base[0] ? base[j + 1] : 0);
900 freebn(base); /* we don't need this copy of it any more */
901
902 a = snewn(2*len, BignumInt);
903 b = snewn(2*len, BignumInt);
904 for (j = 0; j < len; j++)
905 a[2*len - 1 - j] = (j < rn[0] ? rn[j + 1] : 0);
906 freebn(rn);
907
908 tmp = snewn(3*len, BignumInt);
909
910 /* Skip leading zero bits of exp. */
911 i = 0;
912 j = BIGNUM_INT_BITS-1;
913 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
914 j--;
915 if (j < 0) {
916 i++;
917 j = BIGNUM_INT_BITS-1;
918 }
919 }
920
921 /* Main computation */
922 while (i < (int)exp[0]) {
923 while (j >= 0) {
924 internal_mul(a + len, a + len, b, len);
925 monty_reduce(b, n, mninv, tmp, len);
926 if ((exp[exp[0] - i] & (1 << j)) != 0) {
927 internal_mul(b + len, x, a, len);
928 monty_reduce(a, n, mninv, tmp, len);
929 } else {
930 BignumInt *t;
931 t = a;
932 a = b;
933 b = t;
934 }
935 j--;
936 }
937 i++;
938 j = BIGNUM_INT_BITS-1;
939 }
940
941 /*
942 * Final monty_reduce to get back from the adjusted Montgomery
943 * representation.
944 */
945 monty_reduce(a, n, mninv, tmp, len);
946
947 /* Copy result to buffer */
948 result = newbn(mod[0]);
949 for (i = 0; i < len; i++)
950 result[result[0] - i] = a[i + len];
951 while (result[0] > 1 && result[result[0]] == 0)
952 result[0]--;
953
954 /* Free temporary arrays */
955 for (i = 0; i < 3 * len; i++)
956 tmp[i] = 0;
957 sfree(tmp);
958 for (i = 0; i < 2 * len; i++)
959 a[i] = 0;
960 sfree(a);
961 for (i = 0; i < 2 * len; i++)
962 b[i] = 0;
963 sfree(b);
964 for (i = 0; i < len; i++)
965 mninv[i] = 0;
966 sfree(mninv);
967 for (i = 0; i < len; i++)
968 n[i] = 0;
969 sfree(n);
970 for (i = 0; i < len; i++)
971 x[i] = 0;
972 sfree(x);
973
974 return result;
975 }
976
977 /*
978 * Compute (p * q) % mod.
979 * The most significant word of mod MUST be non-zero.
980 * We assume that the result array is the same size as the mod array.
981 */
982 Bignum modmul(Bignum p, Bignum q, Bignum mod)
983 {
984 BignumInt *a, *n, *m, *o;
985 int mshift;
986 int pqlen, mlen, rlen, i, j;
987 Bignum result;
988
989 /* Allocate m of size mlen, copy mod to m */
990 /* We use big endian internally */
991 mlen = mod[0];
992 m = snewn(mlen, BignumInt);
993 for (j = 0; j < mlen; j++)
994 m[j] = mod[mod[0] - j];
995
996 /* Shift m left to make msb bit set */
997 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
998 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
999 break;
1000 if (mshift) {
1001 for (i = 0; i < mlen - 1; i++)
1002 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1003 m[mlen - 1] = m[mlen - 1] << mshift;
1004 }
1005
1006 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1007
1008 /* Allocate n of size pqlen, copy p to n */
1009 n = snewn(pqlen, BignumInt);
1010 i = pqlen - p[0];
1011 for (j = 0; j < i; j++)
1012 n[j] = 0;
1013 for (j = 0; j < (int)p[0]; j++)
1014 n[i + j] = p[p[0] - j];
1015
1016 /* Allocate o of size pqlen, copy q to o */
1017 o = snewn(pqlen, BignumInt);
1018 i = pqlen - q[0];
1019 for (j = 0; j < i; j++)
1020 o[j] = 0;
1021 for (j = 0; j < (int)q[0]; j++)
1022 o[i + j] = q[q[0] - j];
1023
1024 /* Allocate a of size 2*pqlen for result */
1025 a = snewn(2 * pqlen, BignumInt);
1026
1027 /* Main computation */
1028 internal_mul(n, o, a, pqlen);
1029 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1030
1031 /* Fixup result in case the modulus was shifted */
1032 if (mshift) {
1033 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
1034 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
1035 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1036 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1037 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
1038 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
1039 }
1040
1041 /* Copy result to buffer */
1042 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1043 result = newbn(rlen);
1044 for (i = 0; i < rlen; i++)
1045 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1046 while (result[0] > 1 && result[result[0]] == 0)
1047 result[0]--;
1048
1049 /* Free temporary arrays */
1050 for (i = 0; i < 2 * pqlen; i++)
1051 a[i] = 0;
1052 sfree(a);
1053 for (i = 0; i < mlen; i++)
1054 m[i] = 0;
1055 sfree(m);
1056 for (i = 0; i < pqlen; i++)
1057 n[i] = 0;
1058 sfree(n);
1059 for (i = 0; i < pqlen; i++)
1060 o[i] = 0;
1061 sfree(o);
1062
1063 return result;
1064 }
1065
1066 /*
1067 * Compute p % mod.
1068 * The most significant word of mod MUST be non-zero.
1069 * We assume that the result array is the same size as the mod array.
1070 * We optionally write out a quotient if `quotient' is non-NULL.
1071 * We can avoid writing out the result if `result' is NULL.
1072 */
1073 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1074 {
1075 BignumInt *n, *m;
1076 int mshift;
1077 int plen, mlen, i, j;
1078
1079 /* Allocate m of size mlen, copy mod to m */
1080 /* We use big endian internally */
1081 mlen = mod[0];
1082 m = snewn(mlen, BignumInt);
1083 for (j = 0; j < mlen; j++)
1084 m[j] = mod[mod[0] - j];
1085
1086 /* Shift m left to make msb bit set */
1087 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1088 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1089 break;
1090 if (mshift) {
1091 for (i = 0; i < mlen - 1; i++)
1092 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1093 m[mlen - 1] = m[mlen - 1] << mshift;
1094 }
1095
1096 plen = p[0];
1097 /* Ensure plen > mlen */
1098 if (plen <= mlen)
1099 plen = mlen + 1;
1100
1101 /* Allocate n of size plen, copy p to n */
1102 n = snewn(plen, BignumInt);
1103 for (j = 0; j < plen; j++)
1104 n[j] = 0;
1105 for (j = 1; j <= (int)p[0]; j++)
1106 n[plen - j] = p[j];
1107
1108 /* Main computation */
1109 internal_mod(n, plen, m, mlen, quotient, mshift);
1110
1111 /* Fixup result in case the modulus was shifted */
1112 if (mshift) {
1113 for (i = plen - mlen - 1; i < plen - 1; i++)
1114 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
1115 n[plen - 1] = n[plen - 1] << mshift;
1116 internal_mod(n, plen, m, mlen, quotient, 0);
1117 for (i = plen - 1; i >= plen - mlen; i--)
1118 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
1119 }
1120
1121 /* Copy result to buffer */
1122 if (result) {
1123 for (i = 1; i <= (int)result[0]; i++) {
1124 int j = plen - i;
1125 result[i] = j >= 0 ? n[j] : 0;
1126 }
1127 }
1128
1129 /* Free temporary arrays */
1130 for (i = 0; i < mlen; i++)
1131 m[i] = 0;
1132 sfree(m);
1133 for (i = 0; i < plen; i++)
1134 n[i] = 0;
1135 sfree(n);
1136 }
1137
1138 /*
1139 * Decrement a number.
1140 */
1141 void decbn(Bignum bn)
1142 {
1143 int i = 1;
1144 while (i < (int)bn[0] && bn[i] == 0)
1145 bn[i++] = BIGNUM_INT_MASK;
1146 bn[i]--;
1147 }
1148
1149 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1150 {
1151 Bignum result;
1152 int w, i;
1153
1154 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1155
1156 result = newbn(w);
1157 for (i = 1; i <= w; i++)
1158 result[i] = 0;
1159 for (i = nbytes; i--;) {
1160 unsigned char byte = *data++;
1161 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1162 }
1163
1164 while (result[0] > 1 && result[result[0]] == 0)
1165 result[0]--;
1166 return result;
1167 }
1168
1169 /*
1170 * Read an SSH-1-format bignum from a data buffer. Return the number
1171 * of bytes consumed, or -1 if there wasn't enough data.
1172 */
1173 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1174 {
1175 const unsigned char *p = data;
1176 int i;
1177 int w, b;
1178
1179 if (len < 2)
1180 return -1;
1181
1182 w = 0;
1183 for (i = 0; i < 2; i++)
1184 w = (w << 8) + *p++;
1185 b = (w + 7) / 8; /* bits -> bytes */
1186
1187 if (len < b+2)
1188 return -1;
1189
1190 if (!result) /* just return length */
1191 return b + 2;
1192
1193 *result = bignum_from_bytes(p, b);
1194
1195 return p + b - data;
1196 }
1197
1198 /*
1199 * Return the bit count of a bignum, for SSH-1 encoding.
1200 */
1201 int bignum_bitcount(Bignum bn)
1202 {
1203 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1204 while (bitcount >= 0
1205 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1206 return bitcount + 1;
1207 }
1208
1209 /*
1210 * Return the byte length of a bignum when SSH-1 encoded.
1211 */
1212 int ssh1_bignum_length(Bignum bn)
1213 {
1214 return 2 + (bignum_bitcount(bn) + 7) / 8;
1215 }
1216
1217 /*
1218 * Return the byte length of a bignum when SSH-2 encoded.
1219 */
1220 int ssh2_bignum_length(Bignum bn)
1221 {
1222 return 4 + (bignum_bitcount(bn) + 8) / 8;
1223 }
1224
1225 /*
1226 * Return a byte from a bignum; 0 is least significant, etc.
1227 */
1228 int bignum_byte(Bignum bn, int i)
1229 {
1230 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1231 return 0; /* beyond the end */
1232 else
1233 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1234 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1235 }
1236
1237 /*
1238 * Return a bit from a bignum; 0 is least significant, etc.
1239 */
1240 int bignum_bit(Bignum bn, int i)
1241 {
1242 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1243 return 0; /* beyond the end */
1244 else
1245 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1246 }
1247
1248 /*
1249 * Set a bit in a bignum; 0 is least significant, etc.
1250 */
1251 void bignum_set_bit(Bignum bn, int bitnum, int value)
1252 {
1253 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1254 abort(); /* beyond the end */
1255 else {
1256 int v = bitnum / BIGNUM_INT_BITS + 1;
1257 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1258 if (value)
1259 bn[v] |= mask;
1260 else
1261 bn[v] &= ~mask;
1262 }
1263 }
1264
1265 /*
1266 * Write a SSH-1-format bignum into a buffer. It is assumed the
1267 * buffer is big enough. Returns the number of bytes used.
1268 */
1269 int ssh1_write_bignum(void *data, Bignum bn)
1270 {
1271 unsigned char *p = data;
1272 int len = ssh1_bignum_length(bn);
1273 int i;
1274 int bitc = bignum_bitcount(bn);
1275
1276 *p++ = (bitc >> 8) & 0xFF;
1277 *p++ = (bitc) & 0xFF;
1278 for (i = len - 2; i--;)
1279 *p++ = bignum_byte(bn, i);
1280 return len;
1281 }
1282
1283 /*
1284 * Compare two bignums. Returns like strcmp.
1285 */
1286 int bignum_cmp(Bignum a, Bignum b)
1287 {
1288 int amax = a[0], bmax = b[0];
1289 int i = (amax > bmax ? amax : bmax);
1290 while (i) {
1291 BignumInt aval = (i > amax ? 0 : a[i]);
1292 BignumInt bval = (i > bmax ? 0 : b[i]);
1293 if (aval < bval)
1294 return -1;
1295 if (aval > bval)
1296 return +1;
1297 i--;
1298 }
1299 return 0;
1300 }
1301
1302 /*
1303 * Right-shift one bignum to form another.
1304 */
1305 Bignum bignum_rshift(Bignum a, int shift)
1306 {
1307 Bignum ret;
1308 int i, shiftw, shiftb, shiftbb, bits;
1309 BignumInt ai, ai1;
1310
1311 bits = bignum_bitcount(a) - shift;
1312 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1313
1314 if (ret) {
1315 shiftw = shift / BIGNUM_INT_BITS;
1316 shiftb = shift % BIGNUM_INT_BITS;
1317 shiftbb = BIGNUM_INT_BITS - shiftb;
1318
1319 ai1 = a[shiftw + 1];
1320 for (i = 1; i <= (int)ret[0]; i++) {
1321 ai = ai1;
1322 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1323 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1324 }
1325 }
1326
1327 return ret;
1328 }
1329
1330 /*
1331 * Non-modular multiplication and addition.
1332 */
1333 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1334 {
1335 int alen = a[0], blen = b[0];
1336 int mlen = (alen > blen ? alen : blen);
1337 int rlen, i, maxspot;
1338 BignumInt *workspace;
1339 Bignum ret;
1340
1341 /* mlen space for a, mlen space for b, 2*mlen for result */
1342 workspace = snewn(mlen * 4, BignumInt);
1343 for (i = 0; i < mlen; i++) {
1344 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1345 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
1346 }
1347
1348 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1349 workspace + 2 * mlen, mlen);
1350
1351 /* now just copy the result back */
1352 rlen = alen + blen + 1;
1353 if (addend && rlen <= (int)addend[0])
1354 rlen = addend[0] + 1;
1355 ret = newbn(rlen);
1356 maxspot = 0;
1357 for (i = 1; i <= (int)ret[0]; i++) {
1358 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1359 if (ret[i] != 0)
1360 maxspot = i;
1361 }
1362 ret[0] = maxspot;
1363
1364 /* now add in the addend, if any */
1365 if (addend) {
1366 BignumDblInt carry = 0;
1367 for (i = 1; i <= rlen; i++) {
1368 carry += (i <= (int)ret[0] ? ret[i] : 0);
1369 carry += (i <= (int)addend[0] ? addend[i] : 0);
1370 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1371 carry >>= BIGNUM_INT_BITS;
1372 if (ret[i] != 0 && i > maxspot)
1373 maxspot = i;
1374 }
1375 }
1376 ret[0] = maxspot;
1377
1378 sfree(workspace);
1379 return ret;
1380 }
1381
1382 /*
1383 * Non-modular multiplication.
1384 */
1385 Bignum bigmul(Bignum a, Bignum b)
1386 {
1387 return bigmuladd(a, b, NULL);
1388 }
1389
1390 /*
1391 * Simple addition.
1392 */
1393 Bignum bigadd(Bignum a, Bignum b)
1394 {
1395 int alen = a[0], blen = b[0];
1396 int rlen = (alen > blen ? alen : blen) + 1;
1397 int i, maxspot;
1398 Bignum ret;
1399 BignumDblInt carry;
1400
1401 ret = newbn(rlen);
1402
1403 carry = 0;
1404 maxspot = 0;
1405 for (i = 1; i <= rlen; i++) {
1406 carry += (i <= (int)a[0] ? a[i] : 0);
1407 carry += (i <= (int)b[0] ? b[i] : 0);
1408 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1409 carry >>= BIGNUM_INT_BITS;
1410 if (ret[i] != 0 && i > maxspot)
1411 maxspot = i;
1412 }
1413 ret[0] = maxspot;
1414
1415 return ret;
1416 }
1417
1418 /*
1419 * Subtraction. Returns a-b, or NULL if the result would come out
1420 * negative (recall that this entire bignum module only handles
1421 * positive numbers).
1422 */
1423 Bignum bigsub(Bignum a, Bignum b)
1424 {
1425 int alen = a[0], blen = b[0];
1426 int rlen = (alen > blen ? alen : blen);
1427 int i, maxspot;
1428 Bignum ret;
1429 BignumDblInt carry;
1430
1431 ret = newbn(rlen);
1432
1433 carry = 1;
1434 maxspot = 0;
1435 for (i = 1; i <= rlen; i++) {
1436 carry += (i <= (int)a[0] ? a[i] : 0);
1437 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1438 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1439 carry >>= BIGNUM_INT_BITS;
1440 if (ret[i] != 0 && i > maxspot)
1441 maxspot = i;
1442 }
1443 ret[0] = maxspot;
1444
1445 if (!carry) {
1446 freebn(ret);
1447 return NULL;
1448 }
1449
1450 return ret;
1451 }
1452
1453 /*
1454 * Create a bignum which is the bitmask covering another one. That
1455 * is, the smallest integer which is >= N and is also one less than
1456 * a power of two.
1457 */
1458 Bignum bignum_bitmask(Bignum n)
1459 {
1460 Bignum ret = copybn(n);
1461 int i;
1462 BignumInt j;
1463
1464 i = ret[0];
1465 while (n[i] == 0 && i > 0)
1466 i--;
1467 if (i <= 0)
1468 return ret; /* input was zero */
1469 j = 1;
1470 while (j < n[i])
1471 j = 2 * j + 1;
1472 ret[i] = j;
1473 while (--i > 0)
1474 ret[i] = BIGNUM_INT_MASK;
1475 return ret;
1476 }
1477
1478 /*
1479 * Convert a (max 32-bit) long into a bignum.
1480 */
1481 Bignum bignum_from_long(unsigned long nn)
1482 {
1483 Bignum ret;
1484 BignumDblInt n = nn;
1485
1486 ret = newbn(3);
1487 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1488 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1489 ret[3] = 0;
1490 ret[0] = (ret[2] ? 2 : 1);
1491 return ret;
1492 }
1493
1494 /*
1495 * Add a long to a bignum.
1496 */
1497 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1498 {
1499 Bignum ret = newbn(number[0] + 1);
1500 int i, maxspot = 0;
1501 BignumDblInt carry = 0, addend = addendx;
1502
1503 for (i = 1; i <= (int)ret[0]; i++) {
1504 carry += addend & BIGNUM_INT_MASK;
1505 carry += (i <= (int)number[0] ? number[i] : 0);
1506 addend >>= BIGNUM_INT_BITS;
1507 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1508 carry >>= BIGNUM_INT_BITS;
1509 if (ret[i] != 0)
1510 maxspot = i;
1511 }
1512 ret[0] = maxspot;
1513 return ret;
1514 }
1515
1516 /*
1517 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1518 */
1519 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1520 {
1521 BignumDblInt mod, r;
1522 int i;
1523
1524 r = 0;
1525 mod = modulus;
1526 for (i = number[0]; i > 0; i--)
1527 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1528 return (unsigned short) r;
1529 }
1530
1531 #ifdef DEBUG
1532 void diagbn(char *prefix, Bignum md)
1533 {
1534 int i, nibbles, morenibbles;
1535 static const char hex[] = "0123456789ABCDEF";
1536
1537 debug(("%s0x", prefix ? prefix : ""));
1538
1539 nibbles = (3 + bignum_bitcount(md)) / 4;
1540 if (nibbles < 1)
1541 nibbles = 1;
1542 morenibbles = 4 * md[0] - nibbles;
1543 for (i = 0; i < morenibbles; i++)
1544 debug(("-"));
1545 for (i = nibbles; i--;)
1546 debug(("%c",
1547 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1548
1549 if (prefix)
1550 debug(("\n"));
1551 }
1552 #endif
1553
1554 /*
1555 * Simple division.
1556 */
1557 Bignum bigdiv(Bignum a, Bignum b)
1558 {
1559 Bignum q = newbn(a[0]);
1560 bigdivmod(a, b, NULL, q);
1561 return q;
1562 }
1563
1564 /*
1565 * Simple remainder.
1566 */
1567 Bignum bigmod(Bignum a, Bignum b)
1568 {
1569 Bignum r = newbn(b[0]);
1570 bigdivmod(a, b, r, NULL);
1571 return r;
1572 }
1573
1574 /*
1575 * Greatest common divisor.
1576 */
1577 Bignum biggcd(Bignum av, Bignum bv)
1578 {
1579 Bignum a = copybn(av);
1580 Bignum b = copybn(bv);
1581
1582 while (bignum_cmp(b, Zero) != 0) {
1583 Bignum t = newbn(b[0]);
1584 bigdivmod(a, b, t, NULL);
1585 while (t[0] > 1 && t[t[0]] == 0)
1586 t[0]--;
1587 freebn(a);
1588 a = b;
1589 b = t;
1590 }
1591
1592 freebn(b);
1593 return a;
1594 }
1595
1596 /*
1597 * Modular inverse, using Euclid's extended algorithm.
1598 */
1599 Bignum modinv(Bignum number, Bignum modulus)
1600 {
1601 Bignum a = copybn(modulus);
1602 Bignum b = copybn(number);
1603 Bignum xp = copybn(Zero);
1604 Bignum x = copybn(One);
1605 int sign = +1;
1606
1607 while (bignum_cmp(b, One) != 0) {
1608 Bignum t = newbn(b[0]);
1609 Bignum q = newbn(a[0]);
1610 bigdivmod(a, b, t, q);
1611 while (t[0] > 1 && t[t[0]] == 0)
1612 t[0]--;
1613 freebn(a);
1614 a = b;
1615 b = t;
1616 t = xp;
1617 xp = x;
1618 x = bigmuladd(q, xp, t);
1619 sign = -sign;
1620 freebn(t);
1621 freebn(q);
1622 }
1623
1624 freebn(b);
1625 freebn(a);
1626 freebn(xp);
1627
1628 /* now we know that sign * x == 1, and that x < modulus */
1629 if (sign < 0) {
1630 /* set a new x to be modulus - x */
1631 Bignum newx = newbn(modulus[0]);
1632 BignumInt carry = 0;
1633 int maxspot = 1;
1634 int i;
1635
1636 for (i = 1; i <= (int)newx[0]; i++) {
1637 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1638 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1639 newx[i] = aword - bword - carry;
1640 bword = ~bword;
1641 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1642 if (newx[i] != 0)
1643 maxspot = i;
1644 }
1645 newx[0] = maxspot;
1646 freebn(x);
1647 x = newx;
1648 }
1649
1650 /* and return. */
1651 return x;
1652 }
1653
1654 /*
1655 * Render a bignum into decimal. Return a malloced string holding
1656 * the decimal representation.
1657 */
1658 char *bignum_decimal(Bignum x)
1659 {
1660 int ndigits, ndigit;
1661 int i, iszero;
1662 BignumDblInt carry;
1663 char *ret;
1664 BignumInt *workspace;
1665
1666 /*
1667 * First, estimate the number of digits. Since log(10)/log(2)
1668 * is just greater than 93/28 (the joys of continued fraction
1669 * approximations...) we know that for every 93 bits, we need
1670 * at most 28 digits. This will tell us how much to malloc.
1671 *
1672 * Formally: if x has i bits, that means x is strictly less
1673 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1674 * 10^(28i/93). We need an integer power of ten, so we must
1675 * round up (rounding down might make it less than x again).
1676 * Therefore if we multiply the bit count by 28/93, rounding
1677 * up, we will have enough digits.
1678 *
1679 * i=0 (i.e., x=0) is an irritating special case.
1680 */
1681 i = bignum_bitcount(x);
1682 if (!i)
1683 ndigits = 1; /* x = 0 */
1684 else
1685 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1686 ndigits++; /* allow for trailing \0 */
1687 ret = snewn(ndigits, char);
1688
1689 /*
1690 * Now allocate some workspace to hold the binary form as we
1691 * repeatedly divide it by ten. Initialise this to the
1692 * big-endian form of the number.
1693 */
1694 workspace = snewn(x[0], BignumInt);
1695 for (i = 0; i < (int)x[0]; i++)
1696 workspace[i] = x[x[0] - i];
1697
1698 /*
1699 * Next, write the decimal number starting with the last digit.
1700 * We use ordinary short division, dividing 10 into the
1701 * workspace.
1702 */
1703 ndigit = ndigits - 1;
1704 ret[ndigit] = '\0';
1705 do {
1706 iszero = 1;
1707 carry = 0;
1708 for (i = 0; i < (int)x[0]; i++) {
1709 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1710 workspace[i] = (BignumInt) (carry / 10);
1711 if (workspace[i])
1712 iszero = 0;
1713 carry %= 10;
1714 }
1715 ret[--ndigit] = (char) (carry + '0');
1716 } while (!iszero);
1717
1718 /*
1719 * There's a chance we've fallen short of the start of the
1720 * string. Correct if so.
1721 */
1722 if (ndigit > 0)
1723 memmove(ret, ret + ndigit, ndigits - ndigit);
1724
1725 /*
1726 * Done.
1727 */
1728 sfree(workspace);
1729 return ret;
1730 }
1731
1732 #ifdef TESTBN
1733
1734 #include <stdio.h>
1735 #include <stdlib.h>
1736 #include <ctype.h>
1737
1738 /*
1739 * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset
1740 *
1741 * Then feed to this program's standard input the output of
1742 * testdata/bignum.py .
1743 */
1744
1745 void modalfatalbox(char *p, ...)
1746 {
1747 va_list ap;
1748 fprintf(stderr, "FATAL ERROR: ");
1749 va_start(ap, p);
1750 vfprintf(stderr, p, ap);
1751 va_end(ap);
1752 fputc('\n', stderr);
1753 exit(1);
1754 }
1755
1756 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1757
1758 int main(int argc, char **argv)
1759 {
1760 char *buf;
1761 int line = 0;
1762 int passes = 0, fails = 0;
1763
1764 while ((buf = fgetline(stdin)) != NULL) {
1765 int maxlen = strlen(buf);
1766 unsigned char *data = snewn(maxlen, unsigned char);
1767 unsigned char *ptrs[5], *q;
1768 int ptrnum;
1769 char *bufp = buf;
1770
1771 line++;
1772
1773 q = data;
1774 ptrnum = 0;
1775
1776 while (*bufp && !isspace((unsigned char)*bufp))
1777 bufp++;
1778 if (bufp)
1779 *bufp++ = '\0';
1780
1781 while (*bufp) {
1782 char *start, *end;
1783 int i;
1784
1785 while (*bufp && !isxdigit((unsigned char)*bufp))
1786 bufp++;
1787 start = bufp;
1788
1789 if (!*bufp)
1790 break;
1791
1792 while (*bufp && isxdigit((unsigned char)*bufp))
1793 bufp++;
1794 end = bufp;
1795
1796 if (ptrnum >= lenof(ptrs))
1797 break;
1798 ptrs[ptrnum++] = q;
1799
1800 for (i = -((end - start) & 1); i < end-start; i += 2) {
1801 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1802 val = val * 16 + fromxdigit(start[i+1]);
1803 *q++ = val;
1804 }
1805
1806 ptrs[ptrnum] = q;
1807 }
1808
1809 if (!strcmp(buf, "mul")) {
1810 Bignum a, b, c, p;
1811
1812 if (ptrnum != 3) {
1813 printf("%d: mul with %d parameters, expected 3\n", line);
1814 exit(1);
1815 }
1816 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1817 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1818 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1819 p = bigmul(a, b);
1820
1821 if (bignum_cmp(c, p) == 0) {
1822 passes++;
1823 } else {
1824 char *as = bignum_decimal(a);
1825 char *bs = bignum_decimal(b);
1826 char *cs = bignum_decimal(c);
1827 char *ps = bignum_decimal(p);
1828
1829 printf("%d: fail: %s * %s gave %s expected %s\n",
1830 line, as, bs, ps, cs);
1831 fails++;
1832
1833 sfree(as);
1834 sfree(bs);
1835 sfree(cs);
1836 sfree(ps);
1837 }
1838 freebn(a);
1839 freebn(b);
1840 freebn(c);
1841 freebn(p);
1842 } else if (!strcmp(buf, "pow")) {
1843 Bignum base, expt, modulus, expected, answer;
1844
1845 if (ptrnum != 4) {
1846 printf("%d: mul with %d parameters, expected 3\n", line);
1847 exit(1);
1848 }
1849
1850 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1851 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1852 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1853 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1854 answer = modpow(base, expt, modulus);
1855
1856 if (bignum_cmp(expected, answer) == 0) {
1857 passes++;
1858 } else {
1859 char *as = bignum_decimal(base);
1860 char *bs = bignum_decimal(expt);
1861 char *cs = bignum_decimal(modulus);
1862 char *ds = bignum_decimal(answer);
1863 char *ps = bignum_decimal(expected);
1864
1865 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1866 line, as, bs, cs, ds, ps);
1867 fails++;
1868
1869 sfree(as);
1870 sfree(bs);
1871 sfree(cs);
1872 sfree(ds);
1873 sfree(ps);
1874 }
1875 freebn(base);
1876 freebn(expt);
1877 freebn(modulus);
1878 freebn(expected);
1879 freebn(answer);
1880 } else {
1881 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1882 exit(1);
1883 }
1884
1885 sfree(buf);
1886 sfree(data);
1887 }
1888
1889 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1890 return fails != 0;
1891 }
1892
1893 #endif