Fix a couple of code paths on which, if fxp_readdir returned an error,
[u/mdw/putty] / sshdss.c
1 /*
2 * Digital Signature Standard implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8
9 #include "ssh.h"
10 #include "misc.h"
11
12 static void sha_mpint(SHA_State * s, Bignum b)
13 {
14 unsigned char lenbuf[4];
15 int len;
16 len = (bignum_bitcount(b) + 8) / 8;
17 PUT_32BIT(lenbuf, len);
18 SHA_Bytes(s, lenbuf, 4);
19 while (len-- > 0) {
20 lenbuf[0] = bignum_byte(b, len);
21 SHA_Bytes(s, lenbuf, 1);
22 }
23 smemclr(lenbuf, sizeof(lenbuf));
24 }
25
26 static void sha512_mpint(SHA512_State * s, Bignum b)
27 {
28 unsigned char lenbuf[4];
29 int len;
30 len = (bignum_bitcount(b) + 8) / 8;
31 PUT_32BIT(lenbuf, len);
32 SHA512_Bytes(s, lenbuf, 4);
33 while (len-- > 0) {
34 lenbuf[0] = bignum_byte(b, len);
35 SHA512_Bytes(s, lenbuf, 1);
36 }
37 smemclr(lenbuf, sizeof(lenbuf));
38 }
39
40 static void getstring(char **data, int *datalen, char **p, int *length)
41 {
42 *p = NULL;
43 if (*datalen < 4)
44 return;
45 *length = GET_32BIT(*data);
46 if (*length < 0)
47 return;
48 *datalen -= 4;
49 *data += 4;
50 if (*datalen < *length)
51 return;
52 *p = *data;
53 *data += *length;
54 *datalen -= *length;
55 }
56 static Bignum getmp(char **data, int *datalen)
57 {
58 char *p;
59 int length;
60 Bignum b;
61
62 getstring(data, datalen, &p, &length);
63 if (!p)
64 return NULL;
65 if (p[0] & 0x80)
66 return NULL; /* negative mp */
67 b = bignum_from_bytes((unsigned char *)p, length);
68 return b;
69 }
70
71 static Bignum get160(char **data, int *datalen)
72 {
73 Bignum b;
74
75 b = bignum_from_bytes((unsigned char *)*data, 20);
76 *data += 20;
77 *datalen -= 20;
78
79 return b;
80 }
81
82 static void *dss_newkey(char *data, int len)
83 {
84 char *p;
85 int slen;
86 struct dss_key *dss;
87
88 dss = snew(struct dss_key);
89 if (!dss)
90 return NULL;
91 getstring(&data, &len, &p, &slen);
92
93 #ifdef DEBUG_DSS
94 {
95 int i;
96 printf("key:");
97 for (i = 0; i < len; i++)
98 printf(" %02x", (unsigned char) (data[i]));
99 printf("\n");
100 }
101 #endif
102
103 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
104 sfree(dss);
105 return NULL;
106 }
107 dss->p = getmp(&data, &len);
108 dss->q = getmp(&data, &len);
109 dss->g = getmp(&data, &len);
110 dss->y = getmp(&data, &len);
111
112 return dss;
113 }
114
115 static void dss_freekey(void *key)
116 {
117 struct dss_key *dss = (struct dss_key *) key;
118 freebn(dss->p);
119 freebn(dss->q);
120 freebn(dss->g);
121 freebn(dss->y);
122 sfree(dss);
123 }
124
125 static char *dss_fmtkey(void *key)
126 {
127 struct dss_key *dss = (struct dss_key *) key;
128 char *p;
129 int len, i, pos, nibbles;
130 static const char hex[] = "0123456789abcdef";
131 if (!dss->p)
132 return NULL;
133 len = 8 + 4 + 1; /* 4 x "0x", punctuation, \0 */
134 len += 4 * (bignum_bitcount(dss->p) + 15) / 16;
135 len += 4 * (bignum_bitcount(dss->q) + 15) / 16;
136 len += 4 * (bignum_bitcount(dss->g) + 15) / 16;
137 len += 4 * (bignum_bitcount(dss->y) + 15) / 16;
138 p = snewn(len, char);
139 if (!p)
140 return NULL;
141
142 pos = 0;
143 pos += sprintf(p + pos, "0x");
144 nibbles = (3 + bignum_bitcount(dss->p)) / 4;
145 if (nibbles < 1)
146 nibbles = 1;
147 for (i = nibbles; i--;)
148 p[pos++] =
149 hex[(bignum_byte(dss->p, i / 2) >> (4 * (i % 2))) & 0xF];
150 pos += sprintf(p + pos, ",0x");
151 nibbles = (3 + bignum_bitcount(dss->q)) / 4;
152 if (nibbles < 1)
153 nibbles = 1;
154 for (i = nibbles; i--;)
155 p[pos++] =
156 hex[(bignum_byte(dss->q, i / 2) >> (4 * (i % 2))) & 0xF];
157 pos += sprintf(p + pos, ",0x");
158 nibbles = (3 + bignum_bitcount(dss->g)) / 4;
159 if (nibbles < 1)
160 nibbles = 1;
161 for (i = nibbles; i--;)
162 p[pos++] =
163 hex[(bignum_byte(dss->g, i / 2) >> (4 * (i % 2))) & 0xF];
164 pos += sprintf(p + pos, ",0x");
165 nibbles = (3 + bignum_bitcount(dss->y)) / 4;
166 if (nibbles < 1)
167 nibbles = 1;
168 for (i = nibbles; i--;)
169 p[pos++] =
170 hex[(bignum_byte(dss->y, i / 2) >> (4 * (i % 2))) & 0xF];
171 p[pos] = '\0';
172 return p;
173 }
174
175 static char *dss_fingerprint(void *key)
176 {
177 struct dss_key *dss = (struct dss_key *) key;
178 struct MD5Context md5c;
179 unsigned char digest[16], lenbuf[4];
180 char buffer[16 * 3 + 40];
181 char *ret;
182 int numlen, i;
183
184 MD5Init(&md5c);
185 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-dss", 11);
186
187 #define ADD_BIGNUM(bignum) \
188 numlen = (bignum_bitcount(bignum)+8)/8; \
189 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
190 for (i = numlen; i-- ;) { \
191 unsigned char c = bignum_byte(bignum, i); \
192 MD5Update(&md5c, &c, 1); \
193 }
194 ADD_BIGNUM(dss->p);
195 ADD_BIGNUM(dss->q);
196 ADD_BIGNUM(dss->g);
197 ADD_BIGNUM(dss->y);
198 #undef ADD_BIGNUM
199
200 MD5Final(digest, &md5c);
201
202 sprintf(buffer, "ssh-dss %d ", bignum_bitcount(dss->p));
203 for (i = 0; i < 16; i++)
204 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
205 digest[i]);
206 ret = snewn(strlen(buffer) + 1, char);
207 if (ret)
208 strcpy(ret, buffer);
209 return ret;
210 }
211
212 static int dss_verifysig(void *key, char *sig, int siglen,
213 char *data, int datalen)
214 {
215 struct dss_key *dss = (struct dss_key *) key;
216 char *p;
217 int slen;
218 char hash[20];
219 Bignum r, s, w, gu1p, yu2p, gu1yu2p, u1, u2, sha, v;
220 int ret;
221
222 if (!dss->p)
223 return 0;
224
225 #ifdef DEBUG_DSS
226 {
227 int i;
228 printf("sig:");
229 for (i = 0; i < siglen; i++)
230 printf(" %02x", (unsigned char) (sig[i]));
231 printf("\n");
232 }
233 #endif
234 /*
235 * Commercial SSH (2.0.13) and OpenSSH disagree over the format
236 * of a DSA signature. OpenSSH is in line with RFC 4253:
237 * it uses a string "ssh-dss", followed by a 40-byte string
238 * containing two 160-bit integers end-to-end. Commercial SSH
239 * can't be bothered with the header bit, and considers a DSA
240 * signature blob to be _just_ the 40-byte string containing
241 * the two 160-bit integers. We tell them apart by measuring
242 * the length: length 40 means the commercial-SSH bug, anything
243 * else is assumed to be RFC-compliant.
244 */
245 if (siglen != 40) { /* bug not present; read admin fields */
246 getstring(&sig, &siglen, &p, &slen);
247 if (!p || slen != 7 || memcmp(p, "ssh-dss", 7)) {
248 return 0;
249 }
250 sig += 4, siglen -= 4; /* skip yet another length field */
251 }
252 r = get160(&sig, &siglen);
253 s = get160(&sig, &siglen);
254 if (!r || !s)
255 return 0;
256
257 /*
258 * Step 1. w <- s^-1 mod q.
259 */
260 w = modinv(s, dss->q);
261
262 /*
263 * Step 2. u1 <- SHA(message) * w mod q.
264 */
265 SHA_Simple(data, datalen, (unsigned char *)hash);
266 p = hash;
267 slen = 20;
268 sha = get160(&p, &slen);
269 u1 = modmul(sha, w, dss->q);
270
271 /*
272 * Step 3. u2 <- r * w mod q.
273 */
274 u2 = modmul(r, w, dss->q);
275
276 /*
277 * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
278 */
279 gu1p = modpow(dss->g, u1, dss->p);
280 yu2p = modpow(dss->y, u2, dss->p);
281 gu1yu2p = modmul(gu1p, yu2p, dss->p);
282 v = modmul(gu1yu2p, One, dss->q);
283
284 /*
285 * Step 5. v should now be equal to r.
286 */
287
288 ret = !bignum_cmp(v, r);
289
290 freebn(w);
291 freebn(sha);
292 freebn(gu1p);
293 freebn(yu2p);
294 freebn(gu1yu2p);
295 freebn(v);
296 freebn(r);
297 freebn(s);
298
299 return ret;
300 }
301
302 static unsigned char *dss_public_blob(void *key, int *len)
303 {
304 struct dss_key *dss = (struct dss_key *) key;
305 int plen, qlen, glen, ylen, bloblen;
306 int i;
307 unsigned char *blob, *p;
308
309 plen = (bignum_bitcount(dss->p) + 8) / 8;
310 qlen = (bignum_bitcount(dss->q) + 8) / 8;
311 glen = (bignum_bitcount(dss->g) + 8) / 8;
312 ylen = (bignum_bitcount(dss->y) + 8) / 8;
313
314 /*
315 * string "ssh-dss", mpint p, mpint q, mpint g, mpint y. Total
316 * 27 + sum of lengths. (five length fields, 20+7=27).
317 */
318 bloblen = 27 + plen + qlen + glen + ylen;
319 blob = snewn(bloblen, unsigned char);
320 p = blob;
321 PUT_32BIT(p, 7);
322 p += 4;
323 memcpy(p, "ssh-dss", 7);
324 p += 7;
325 PUT_32BIT(p, plen);
326 p += 4;
327 for (i = plen; i--;)
328 *p++ = bignum_byte(dss->p, i);
329 PUT_32BIT(p, qlen);
330 p += 4;
331 for (i = qlen; i--;)
332 *p++ = bignum_byte(dss->q, i);
333 PUT_32BIT(p, glen);
334 p += 4;
335 for (i = glen; i--;)
336 *p++ = bignum_byte(dss->g, i);
337 PUT_32BIT(p, ylen);
338 p += 4;
339 for (i = ylen; i--;)
340 *p++ = bignum_byte(dss->y, i);
341 assert(p == blob + bloblen);
342 *len = bloblen;
343 return blob;
344 }
345
346 static unsigned char *dss_private_blob(void *key, int *len)
347 {
348 struct dss_key *dss = (struct dss_key *) key;
349 int xlen, bloblen;
350 int i;
351 unsigned char *blob, *p;
352
353 xlen = (bignum_bitcount(dss->x) + 8) / 8;
354
355 /*
356 * mpint x, string[20] the SHA of p||q||g. Total 4 + xlen.
357 */
358 bloblen = 4 + xlen;
359 blob = snewn(bloblen, unsigned char);
360 p = blob;
361 PUT_32BIT(p, xlen);
362 p += 4;
363 for (i = xlen; i--;)
364 *p++ = bignum_byte(dss->x, i);
365 assert(p == blob + bloblen);
366 *len = bloblen;
367 return blob;
368 }
369
370 static void *dss_createkey(unsigned char *pub_blob, int pub_len,
371 unsigned char *priv_blob, int priv_len)
372 {
373 struct dss_key *dss;
374 char *pb = (char *) priv_blob;
375 char *hash;
376 int hashlen;
377 SHA_State s;
378 unsigned char digest[20];
379 Bignum ytest;
380
381 dss = dss_newkey((char *) pub_blob, pub_len);
382 dss->x = getmp(&pb, &priv_len);
383
384 /*
385 * Check the obsolete hash in the old DSS key format.
386 */
387 hashlen = -1;
388 getstring(&pb, &priv_len, &hash, &hashlen);
389 if (hashlen == 20) {
390 SHA_Init(&s);
391 sha_mpint(&s, dss->p);
392 sha_mpint(&s, dss->q);
393 sha_mpint(&s, dss->g);
394 SHA_Final(&s, digest);
395 if (0 != memcmp(hash, digest, 20)) {
396 dss_freekey(dss);
397 return NULL;
398 }
399 }
400
401 /*
402 * Now ensure g^x mod p really is y.
403 */
404 ytest = modpow(dss->g, dss->x, dss->p);
405 if (0 != bignum_cmp(ytest, dss->y)) {
406 dss_freekey(dss);
407 return NULL;
408 }
409 freebn(ytest);
410
411 return dss;
412 }
413
414 static void *dss_openssh_createkey(unsigned char **blob, int *len)
415 {
416 char **b = (char **) blob;
417 struct dss_key *dss;
418
419 dss = snew(struct dss_key);
420 if (!dss)
421 return NULL;
422
423 dss->p = getmp(b, len);
424 dss->q = getmp(b, len);
425 dss->g = getmp(b, len);
426 dss->y = getmp(b, len);
427 dss->x = getmp(b, len);
428
429 if (!dss->p || !dss->q || !dss->g || !dss->y || !dss->x) {
430 sfree(dss->p);
431 sfree(dss->q);
432 sfree(dss->g);
433 sfree(dss->y);
434 sfree(dss->x);
435 sfree(dss);
436 return NULL;
437 }
438
439 return dss;
440 }
441
442 static int dss_openssh_fmtkey(void *key, unsigned char *blob, int len)
443 {
444 struct dss_key *dss = (struct dss_key *) key;
445 int bloblen, i;
446
447 bloblen =
448 ssh2_bignum_length(dss->p) +
449 ssh2_bignum_length(dss->q) +
450 ssh2_bignum_length(dss->g) +
451 ssh2_bignum_length(dss->y) +
452 ssh2_bignum_length(dss->x);
453
454 if (bloblen > len)
455 return bloblen;
456
457 bloblen = 0;
458 #define ENC(x) \
459 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
460 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
461 ENC(dss->p);
462 ENC(dss->q);
463 ENC(dss->g);
464 ENC(dss->y);
465 ENC(dss->x);
466
467 return bloblen;
468 }
469
470 static int dss_pubkey_bits(void *blob, int len)
471 {
472 struct dss_key *dss;
473 int ret;
474
475 dss = dss_newkey((char *) blob, len);
476 ret = bignum_bitcount(dss->p);
477 dss_freekey(dss);
478
479 return ret;
480 }
481
482 static unsigned char *dss_sign(void *key, char *data, int datalen, int *siglen)
483 {
484 /*
485 * The basic DSS signing algorithm is:
486 *
487 * - invent a random k between 1 and q-1 (exclusive).
488 * - Compute r = (g^k mod p) mod q.
489 * - Compute s = k^-1 * (hash + x*r) mod q.
490 *
491 * This has the dangerous properties that:
492 *
493 * - if an attacker in possession of the public key _and_ the
494 * signature (for example, the host you just authenticated
495 * to) can guess your k, he can reverse the computation of s
496 * and work out x = r^-1 * (s*k - hash) mod q. That is, he
497 * can deduce the private half of your key, and masquerade
498 * as you for as long as the key is still valid.
499 *
500 * - since r is a function purely of k and the public key, if
501 * the attacker only has a _range of possibilities_ for k
502 * it's easy for him to work through them all and check each
503 * one against r; he'll never be unsure of whether he's got
504 * the right one.
505 *
506 * - if you ever sign two different hashes with the same k, it
507 * will be immediately obvious because the two signatures
508 * will have the same r, and moreover an attacker in
509 * possession of both signatures (and the public key of
510 * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
511 * and from there deduce x as before.
512 *
513 * - the Bleichenbacher attack on DSA makes use of methods of
514 * generating k which are significantly non-uniformly
515 * distributed; in particular, generating a 160-bit random
516 * number and reducing it mod q is right out.
517 *
518 * For this reason we must be pretty careful about how we
519 * generate our k. Since this code runs on Windows, with no
520 * particularly good system entropy sources, we can't trust our
521 * RNG itself to produce properly unpredictable data. Hence, we
522 * use a totally different scheme instead.
523 *
524 * What we do is to take a SHA-512 (_big_) hash of the private
525 * key x, and then feed this into another SHA-512 hash that
526 * also includes the message hash being signed. That is:
527 *
528 * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
529 *
530 * This number is 512 bits long, so reducing it mod q won't be
531 * noticeably non-uniform. So
532 *
533 * k = proto_k mod q
534 *
535 * This has the interesting property that it's _deterministic_:
536 * signing the same hash twice with the same key yields the
537 * same signature.
538 *
539 * Despite this determinism, it's still not predictable to an
540 * attacker, because in order to repeat the SHA-512
541 * construction that created it, the attacker would have to
542 * know the private key value x - and by assumption he doesn't,
543 * because if he knew that he wouldn't be attacking k!
544 *
545 * (This trick doesn't, _per se_, protect against reuse of k.
546 * Reuse of k is left to chance; all it does is prevent
547 * _excessively high_ chances of reuse of k due to entropy
548 * problems.)
549 *
550 * Thanks to Colin Plumb for the general idea of using x to
551 * ensure k is hard to guess, and to the Cambridge University
552 * Computer Security Group for helping to argue out all the
553 * fine details.
554 */
555 struct dss_key *dss = (struct dss_key *) key;
556 SHA512_State ss;
557 unsigned char digest[20], digest512[64];
558 Bignum proto_k, k, gkp, hash, kinv, hxr, r, s;
559 unsigned char *bytes;
560 int nbytes, i;
561
562 SHA_Simple(data, datalen, digest);
563
564 /*
565 * Hash some identifying text plus x.
566 */
567 SHA512_Init(&ss);
568 SHA512_Bytes(&ss, "DSA deterministic k generator", 30);
569 sha512_mpint(&ss, dss->x);
570 SHA512_Final(&ss, digest512);
571
572 /*
573 * Now hash that digest plus the message hash.
574 */
575 SHA512_Init(&ss);
576 SHA512_Bytes(&ss, digest512, sizeof(digest512));
577 SHA512_Bytes(&ss, digest, sizeof(digest));
578 SHA512_Final(&ss, digest512);
579
580 smemclr(&ss, sizeof(ss));
581
582 /*
583 * Now convert the result into a bignum, and reduce it mod q.
584 */
585 proto_k = bignum_from_bytes(digest512, 64);
586 k = bigmod(proto_k, dss->q);
587 freebn(proto_k);
588
589 smemclr(digest512, sizeof(digest512));
590
591 /*
592 * Now we have k, so just go ahead and compute the signature.
593 */
594 gkp = modpow(dss->g, k, dss->p); /* g^k mod p */
595 r = bigmod(gkp, dss->q); /* r = (g^k mod p) mod q */
596 freebn(gkp);
597
598 hash = bignum_from_bytes(digest, 20);
599 kinv = modinv(k, dss->q); /* k^-1 mod q */
600 hxr = bigmuladd(dss->x, r, hash); /* hash + x*r */
601 s = modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash + x*r) mod q */
602 freebn(hxr);
603 freebn(kinv);
604 freebn(hash);
605
606 /*
607 * Signature blob is
608 *
609 * string "ssh-dss"
610 * string two 20-byte numbers r and s, end to end
611 *
612 * i.e. 4+7 + 4+40 bytes.
613 */
614 nbytes = 4 + 7 + 4 + 40;
615 bytes = snewn(nbytes, unsigned char);
616 PUT_32BIT(bytes, 7);
617 memcpy(bytes + 4, "ssh-dss", 7);
618 PUT_32BIT(bytes + 4 + 7, 40);
619 for (i = 0; i < 20; i++) {
620 bytes[4 + 7 + 4 + i] = bignum_byte(r, 19 - i);
621 bytes[4 + 7 + 4 + 20 + i] = bignum_byte(s, 19 - i);
622 }
623 freebn(r);
624 freebn(s);
625
626 *siglen = nbytes;
627 return bytes;
628 }
629
630 const struct ssh_signkey ssh_dss = {
631 dss_newkey,
632 dss_freekey,
633 dss_fmtkey,
634 dss_public_blob,
635 dss_private_blob,
636 dss_createkey,
637 dss_openssh_createkey,
638 dss_openssh_fmtkey,
639 dss_pubkey_bits,
640 dss_fingerprint,
641 dss_verifysig,
642 dss_sign,
643 "ssh-dss",
644 "dss"
645 };