Avoid potential memory leak.
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18
19 #define DEFINE_PLUG_METHOD_MACROS
20 #include "putty.h"
21 #include "network.h"
22 #include "tree234.h"
23
24 struct Socket_tag {
25 struct socket_function_table *fn;
26 /* the above variable absolutely *must* be the first in this structure */
27 char *error;
28 int s;
29 Plug plug;
30 void *private_ptr;
31 bufchain output_data;
32 int connected;
33 int writable;
34 int frozen; /* this causes readability notifications to be ignored */
35 int frozen_readable; /* this means we missed at least one readability
36 * notification while we were frozen */
37 int localhost_only; /* for listening sockets */
38 char oobdata[1];
39 int sending_oob;
40 int oobpending; /* is there OOB data available to read? */
41 int oobinline;
42 int pending_error; /* in case send() returns error */
43 int listener;
44 };
45
46 /*
47 * We used to typedef struct Socket_tag *Socket.
48 *
49 * Since we have made the networking abstraction slightly more
50 * abstract, Socket no longer means a tcp socket (it could mean
51 * an ssl socket). So now we must use Actual_Socket when we know
52 * we are talking about a tcp socket.
53 */
54 typedef struct Socket_tag *Actual_Socket;
55
56 struct SockAddr_tag {
57 char *error;
58 /* address family this belongs to, AF_INET for IPv4, AF_INET6 for IPv6. */
59 int family;
60 unsigned long address; /* Address IPv4 style. */
61 #ifdef IPV6
62 struct addrinfo *ai; /* Address IPv6 style. */
63 #endif
64 };
65
66 static tree234 *sktree;
67
68 static int cmpfortree(void *av, void *bv)
69 {
70 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
71 int as = a->s, bs = b->s;
72 if (as < bs)
73 return -1;
74 if (as > bs)
75 return +1;
76 return 0;
77 }
78
79 static int cmpforsearch(void *av, void *bv)
80 {
81 Actual_Socket b = (Actual_Socket) bv;
82 int as = (int) av, bs = b->s;
83 if (as < bs)
84 return -1;
85 if (as > bs)
86 return +1;
87 return 0;
88 }
89
90 void sk_init(void)
91 {
92 sktree = newtree234(cmpfortree);
93 }
94
95 void sk_cleanup(void)
96 {
97 Actual_Socket s;
98 int i;
99
100 if (sktree) {
101 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
102 close(s->s);
103 }
104 }
105 }
106
107 char *error_string(int error)
108 {
109 return strerror(error);
110 }
111
112 SockAddr sk_namelookup(char *host, char **canonicalname)
113 {
114 SockAddr ret = smalloc(sizeof(struct SockAddr_tag));
115 unsigned long a;
116 struct hostent *h = NULL;
117 char realhost[8192];
118
119 /* Clear the structure and default to IPv4. */
120 memset(ret, 0, sizeof(struct SockAddr_tag));
121 ret->family = 0; /* We set this one when we have resolved the host. */
122 *realhost = '\0';
123 ret->error = NULL;
124
125 if ((a = inet_addr(host)) == (unsigned long) INADDR_NONE) {
126 #ifdef IPV6
127 if (getaddrinfo(host, NULL, NULL, &ret->ai) == 0) {
128 ret->family = ret->ai->ai_family;
129 } else
130 #endif
131 {
132 /*
133 * Otherwise use the IPv4-only gethostbyname... (NOTE:
134 * we don't use gethostbyname as a fallback!)
135 */
136 if (ret->family == 0) {
137 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
138 if ( (h = gethostbyname(host)) )
139 ret->family = AF_INET;
140 }
141 if (ret->family == 0) {
142 ret->error = (h_errno == HOST_NOT_FOUND ||
143 h_errno == NO_DATA ||
144 h_errno == NO_ADDRESS ? "Host does not exist" :
145 h_errno == TRY_AGAIN ?
146 "Temporary name service failure" :
147 "gethostbyname: unknown error");
148 return ret;
149 }
150 }
151
152 #ifdef IPV6
153 /* If we got an address info use that... */
154 if (ret->ai) {
155
156 /* Are we in IPv4 fallback mode? */
157 /* We put the IPv4 address into the a variable so we can further-on use the IPv4 code... */
158 if (ret->family == AF_INET)
159 memcpy(&a,
160 (char *) &((struct sockaddr_in *) ret->ai->
161 ai_addr)->sin_addr, sizeof(a));
162
163 /* Now let's find that canonicalname... */
164 if (getnameinfo((struct sockaddr *) ret->ai->ai_addr,
165 ret->family ==
166 AF_INET ? sizeof(struct sockaddr_in) :
167 sizeof(struct sockaddr_in6), realhost,
168 sizeof(realhost), NULL, 0, 0) != 0) {
169 strncpy(realhost, host, sizeof(realhost));
170 }
171 }
172 /* We used the IPv4-only gethostbyname()... */
173 else
174 #endif
175 {
176 memcpy(&a, h->h_addr, sizeof(a));
177 /* This way we are always sure the h->h_name is valid :) */
178 strncpy(realhost, h->h_name, sizeof(realhost));
179 }
180 } else {
181 /*
182 * This must be a numeric IPv4 address because it caused a
183 * success return from inet_addr.
184 */
185 ret->family = AF_INET;
186 strncpy(realhost, host, sizeof(realhost));
187 }
188 ret->address = ntohl(a);
189 realhost[lenof(realhost)-1] = '\0';
190 *canonicalname = smalloc(1+strlen(realhost));
191 strcpy(*canonicalname, realhost);
192 return ret;
193 }
194
195 void sk_getaddr(SockAddr addr, char *buf, int buflen)
196 {
197 #ifdef IPV6
198 if (addr->family == AF_INET) {
199 #endif
200 struct in_addr a;
201 a.s_addr = htonl(addr->address);
202 strncpy(buf, inet_ntoa(a), buflen);
203 #ifdef IPV6
204 } else {
205 FIXME; /* I don't know how to get a text form of an IPv6 address. */
206 }
207 #endif
208 }
209
210 int sk_addrtype(SockAddr addr)
211 {
212 return (addr->family == AF_INET ? ADDRTYPE_IPV4 : ADDRTYPE_IPV6);
213 }
214
215 void sk_addrcopy(SockAddr addr, char *buf)
216 {
217 #ifdef IPV6
218 if (addr->family == AF_INET) {
219 #endif
220 struct in_addr a;
221 a.s_addr = htonl(addr->address);
222 memcpy(buf, (char*) &a.s_addr, 4);
223 #ifdef IPV6
224 } else {
225 memcpy(buf, (char*) addr->ai, 16);
226 }
227 #endif
228 }
229
230 void sk_addr_free(SockAddr addr)
231 {
232 sfree(addr);
233 }
234
235 static Plug sk_tcp_plug(Socket sock, Plug p)
236 {
237 Actual_Socket s = (Actual_Socket) sock;
238 Plug ret = s->plug;
239 if (p)
240 s->plug = p;
241 return ret;
242 }
243
244 static void sk_tcp_flush(Socket s)
245 {
246 /*
247 * We send data to the socket as soon as we can anyway,
248 * so we don't need to do anything here. :-)
249 */
250 }
251
252 static void sk_tcp_close(Socket s);
253 static int sk_tcp_write(Socket s, char *data, int len);
254 static int sk_tcp_write_oob(Socket s, char *data, int len);
255 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
256 static void *sk_tcp_get_private_ptr(Socket s);
257 static void sk_tcp_set_frozen(Socket s, int is_frozen);
258 static char *sk_tcp_socket_error(Socket s);
259
260 Socket sk_register(void *sock, Plug plug)
261 {
262 static struct socket_function_table fn_table = {
263 sk_tcp_plug,
264 sk_tcp_close,
265 sk_tcp_write,
266 sk_tcp_write_oob,
267 sk_tcp_flush,
268 sk_tcp_set_private_ptr,
269 sk_tcp_get_private_ptr,
270 sk_tcp_set_frozen,
271 sk_tcp_socket_error
272 };
273
274 Actual_Socket ret;
275
276 /*
277 * Create Socket structure.
278 */
279 ret = smalloc(sizeof(struct Socket_tag));
280 ret->fn = &fn_table;
281 ret->error = NULL;
282 ret->plug = plug;
283 bufchain_init(&ret->output_data);
284 ret->writable = 1; /* to start with */
285 ret->sending_oob = 0;
286 ret->frozen = 1;
287 ret->frozen_readable = 0;
288 ret->localhost_only = 0; /* unused, but best init anyway */
289 ret->pending_error = 0;
290 ret->oobpending = FALSE;
291 ret->listener = 0;
292
293 ret->s = (int)sock;
294
295 if (ret->s < 0) {
296 ret->error = error_string(errno);
297 return (Socket) ret;
298 }
299
300 ret->oobinline = 0;
301
302 add234(sktree, ret);
303
304 return (Socket) ret;
305 }
306
307 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
308 int nodelay, Plug plug)
309 {
310 static struct socket_function_table fn_table = {
311 sk_tcp_plug,
312 sk_tcp_close,
313 sk_tcp_write,
314 sk_tcp_write_oob,
315 sk_tcp_flush,
316 sk_tcp_set_private_ptr,
317 sk_tcp_get_private_ptr,
318 sk_tcp_set_frozen,
319 sk_tcp_socket_error
320 };
321
322 int s;
323 #ifdef IPV6
324 struct sockaddr_in6 a6;
325 #endif
326 struct sockaddr_in a;
327 int err;
328 Actual_Socket ret;
329 short localport;
330
331 /*
332 * Create Socket structure.
333 */
334 ret = smalloc(sizeof(struct Socket_tag));
335 ret->fn = &fn_table;
336 ret->error = NULL;
337 ret->plug = plug;
338 bufchain_init(&ret->output_data);
339 ret->connected = 0; /* to start with */
340 ret->writable = 0; /* to start with */
341 ret->sending_oob = 0;
342 ret->frozen = 0;
343 ret->frozen_readable = 0;
344 ret->localhost_only = 0; /* unused, but best init anyway */
345 ret->pending_error = 0;
346 ret->oobpending = FALSE;
347 ret->listener = 0;
348
349 /*
350 * Open socket.
351 */
352 s = socket(addr->family, SOCK_STREAM, 0);
353 ret->s = s;
354
355 if (s < 0) {
356 ret->error = error_string(errno);
357 return (Socket) ret;
358 }
359
360 ret->oobinline = oobinline;
361 if (oobinline) {
362 int b = TRUE;
363 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
364 }
365
366 if (nodelay) {
367 int b = TRUE;
368 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
369 }
370
371 /*
372 * Bind to local address.
373 */
374 if (privport)
375 localport = 1023; /* count from 1023 downwards */
376 else
377 localport = 0; /* just use port 0 (ie kernel picks) */
378
379 /* Loop round trying to bind */
380 while (1) {
381 int retcode;
382
383 #ifdef IPV6
384 if (addr->family == AF_INET6) {
385 memset(&a6, 0, sizeof(a6));
386 a6.sin6_family = AF_INET6;
387 /*a6.sin6_addr = in6addr_any; *//* == 0 */
388 a6.sin6_port = htons(localport);
389 } else
390 #endif
391 {
392 a.sin_family = AF_INET;
393 a.sin_addr.s_addr = htonl(INADDR_ANY);
394 a.sin_port = htons(localport);
395 }
396 #ifdef IPV6
397 retcode = bind(s, (addr->family == AF_INET6 ?
398 (struct sockaddr *) &a6 :
399 (struct sockaddr *) &a),
400 (addr->family ==
401 AF_INET6 ? sizeof(a6) : sizeof(a)));
402 #else
403 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
404 #endif
405 if (retcode >= 0) {
406 err = 0;
407 break; /* done */
408 } else {
409 err = errno;
410 if (err != EADDRINUSE) /* failed, for a bad reason */
411 break;
412 }
413
414 if (localport == 0)
415 break; /* we're only looping once */
416 localport--;
417 if (localport == 0)
418 break; /* we might have got to the end */
419 }
420
421 if (err) {
422 ret->error = error_string(err);
423 return (Socket) ret;
424 }
425
426 /*
427 * Connect to remote address.
428 */
429 #ifdef IPV6
430 if (addr->family == AF_INET6) {
431 memset(&a, 0, sizeof(a));
432 a6.sin6_family = AF_INET6;
433 a6.sin6_port = htons((short) port);
434 a6.sin6_addr =
435 ((struct sockaddr_in6 *) addr->ai->ai_addr)->sin6_addr;
436 } else
437 #endif
438 {
439 a.sin_family = AF_INET;
440 a.sin_addr.s_addr = htonl(addr->address);
441 a.sin_port = htons((short) port);
442 }
443
444 if ((
445 #ifdef IPV6
446 connect(s, ((addr->family == AF_INET6) ?
447 (struct sockaddr *) &a6 : (struct sockaddr *) &a),
448 (addr->family == AF_INET6) ? sizeof(a6) : sizeof(a))
449 #else
450 connect(s, (struct sockaddr *) &a, sizeof(a))
451 #endif
452 ) < 0) {
453 /*
454 * FIXME: We are prepared to receive EWOULDBLOCK here,
455 * because we might want the connection to be made
456 * asynchronously; but how do we actually arrange this in
457 * Unix? I forget.
458 */
459 if ( errno != EWOULDBLOCK ) {
460 ret->error = error_string(errno);
461 return (Socket) ret;
462 }
463 } else {
464 /*
465 * If we _don't_ get EWOULDBLOCK, the connect has completed
466 * and we should set the socket as connected and writable.
467 */
468 ret->connected = 1;
469 ret->writable = 1;
470 }
471
472 add234(sktree, ret);
473
474 return (Socket) ret;
475 }
476
477 Socket sk_newlistener(int port, Plug plug, int local_host_only)
478 {
479 static struct socket_function_table fn_table = {
480 sk_tcp_plug,
481 sk_tcp_close,
482 sk_tcp_write,
483 sk_tcp_write_oob,
484 sk_tcp_flush,
485 sk_tcp_set_private_ptr,
486 sk_tcp_get_private_ptr,
487 sk_tcp_set_frozen,
488 sk_tcp_socket_error
489 };
490
491 int s;
492 #ifdef IPV6
493 struct sockaddr_in6 a6;
494 #endif
495 struct sockaddr_in a;
496 int err;
497 Actual_Socket ret;
498 int retcode;
499 int on = 1;
500
501 /*
502 * Create Socket structure.
503 */
504 ret = smalloc(sizeof(struct Socket_tag));
505 ret->fn = &fn_table;
506 ret->error = NULL;
507 ret->plug = plug;
508 bufchain_init(&ret->output_data);
509 ret->writable = 0; /* to start with */
510 ret->sending_oob = 0;
511 ret->frozen = 0;
512 ret->frozen_readable = 0;
513 ret->localhost_only = local_host_only;
514 ret->pending_error = 0;
515 ret->oobpending = FALSE;
516 ret->listener = 1;
517
518 /*
519 * Open socket.
520 */
521 s = socket(AF_INET, SOCK_STREAM, 0);
522 ret->s = s;
523
524 if (s < 0) {
525 ret->error = error_string(errno);
526 return (Socket) ret;
527 }
528
529 ret->oobinline = 0;
530
531 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
532
533 #ifdef IPV6
534 if (addr->family == AF_INET6) {
535 memset(&a6, 0, sizeof(a6));
536 a6.sin6_family = AF_INET6;
537 if (local_host_only)
538 a6.sin6_addr = in6addr_loopback;
539 else
540 a6.sin6_addr = in6addr_any;
541 a6.sin6_port = htons(port);
542 } else
543 #endif
544 {
545 a.sin_family = AF_INET;
546 if (local_host_only)
547 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
548 else
549 a.sin_addr.s_addr = htonl(INADDR_ANY);
550 a.sin_port = htons((short)port);
551 }
552 #ifdef IPV6
553 retcode = bind(s, (addr->family == AF_INET6 ?
554 (struct sockaddr *) &a6 :
555 (struct sockaddr *) &a),
556 (addr->family ==
557 AF_INET6 ? sizeof(a6) : sizeof(a)));
558 #else
559 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
560 #endif
561 if (retcode >= 0) {
562 err = 0;
563 } else {
564 err = errno;
565 }
566
567 if (err) {
568 ret->error = error_string(err);
569 return (Socket) ret;
570 }
571
572
573 if (listen(s, SOMAXCONN) < 0) {
574 close(s);
575 ret->error = error_string(errno);
576 return (Socket) ret;
577 }
578
579 add234(sktree, ret);
580
581 return (Socket) ret;
582 }
583
584 static void sk_tcp_close(Socket sock)
585 {
586 Actual_Socket s = (Actual_Socket) sock;
587
588 del234(sktree, s);
589 close(s->s);
590 sfree(s);
591 }
592
593 /*
594 * The function which tries to send on a socket once it's deemed
595 * writable.
596 */
597 void try_send(Actual_Socket s)
598 {
599 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
600 int nsent;
601 int err;
602 void *data;
603 int len, urgentflag;
604
605 if (s->sending_oob) {
606 urgentflag = MSG_OOB;
607 len = s->sending_oob;
608 data = &s->oobdata;
609 } else {
610 urgentflag = 0;
611 bufchain_prefix(&s->output_data, &data, &len);
612 }
613 nsent = send(s->s, data, len, urgentflag);
614 noise_ultralight(nsent);
615 if (nsent <= 0) {
616 err = (nsent < 0 ? errno : 0);
617 if (err == EWOULDBLOCK) {
618 /*
619 * Perfectly normal: we've sent all we can for the moment.
620 */
621 s->writable = FALSE;
622 return;
623 } else if (nsent == 0 ||
624 err == ECONNABORTED || err == ECONNRESET) {
625 /*
626 * If send() returns CONNABORTED or CONNRESET, we
627 * unfortunately can't just call plug_closing(),
628 * because it's quite likely that we're currently
629 * _in_ a call from the code we'd be calling back
630 * to, so we'd have to make half the SSH code
631 * reentrant. Instead we flag a pending error on
632 * the socket, to be dealt with (by calling
633 * plug_closing()) at some suitable future moment.
634 */
635 s->pending_error = err;
636 return;
637 } else {
638 /* We're inside the Unix frontend here, so we know
639 * that the frontend handle is unnecessary. */
640 logevent(NULL, error_string(err));
641 fatalbox("%s", error_string(err));
642 }
643 } else {
644 if (s->sending_oob) {
645 if (nsent < len) {
646 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
647 s->sending_oob = len - nsent;
648 } else {
649 s->sending_oob = 0;
650 }
651 } else {
652 bufchain_consume(&s->output_data, nsent);
653 }
654 }
655 }
656 }
657
658 static int sk_tcp_write(Socket sock, char *buf, int len)
659 {
660 Actual_Socket s = (Actual_Socket) sock;
661
662 /*
663 * Add the data to the buffer list on the socket.
664 */
665 bufchain_add(&s->output_data, buf, len);
666
667 /*
668 * Now try sending from the start of the buffer list.
669 */
670 if (s->writable)
671 try_send(s);
672
673 return bufchain_size(&s->output_data);
674 }
675
676 static int sk_tcp_write_oob(Socket sock, char *buf, int len)
677 {
678 Actual_Socket s = (Actual_Socket) sock;
679
680 /*
681 * Replace the buffer list on the socket with the data.
682 */
683 bufchain_clear(&s->output_data);
684 assert(len <= sizeof(s->oobdata));
685 memcpy(s->oobdata, buf, len);
686 s->sending_oob = len;
687
688 /*
689 * Now try sending from the start of the buffer list.
690 */
691 if (s->writable)
692 try_send(s);
693
694 return s->sending_oob;
695 }
696
697 int select_result(int fd, int event)
698 {
699 int ret;
700 int err;
701 char buf[20480]; /* nice big buffer for plenty of speed */
702 Actual_Socket s;
703 u_long atmark;
704
705 /* Find the Socket structure */
706 s = find234(sktree, (void *) fd, cmpforsearch);
707 if (!s)
708 return 1; /* boggle */
709
710 noise_ultralight(event);
711
712 switch (event) {
713 #ifdef FIXME_NONBLOCKING_CONNECTIONS
714 case FIXME: /* connected */
715 s->connected = s->writable = 1;
716 break;
717 #endif
718 case 4: /* exceptional */
719 if (!s->oobinline) {
720 /*
721 * On a non-oobinline socket, this indicates that we
722 * can immediately perform an OOB read and get back OOB
723 * data, which we will send to the back end with
724 * type==2 (urgent data).
725 */
726 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
727 noise_ultralight(ret);
728 if (ret <= 0) {
729 char *str = (ret == 0 ? "Internal networking trouble" :
730 error_string(errno));
731 /* We're inside the Unix frontend here, so we know
732 * that the frontend handle is unnecessary. */
733 logevent(NULL, str);
734 fatalbox("%s", str);
735 } else {
736 return plug_receive(s->plug, 2, buf, ret);
737 }
738 break;
739 }
740
741 /*
742 * If we reach here, this is an oobinline socket, which
743 * means we should set s->oobpending and then deal with it
744 * when we get called for the readability event (which
745 * should also occur).
746 */
747 s->oobpending = TRUE;
748 break;
749 case 1: /* readable; also acceptance */
750 if (s->listener) {
751 /*
752 * On a listening socket, the readability event means a
753 * connection is ready to be accepted.
754 */
755 struct sockaddr_in isa;
756 int addrlen = sizeof(struct sockaddr_in);
757 int t; /* socket of connection */
758
759 memset(&isa, 0, sizeof(struct sockaddr_in));
760 err = 0;
761 t = accept(s->s,(struct sockaddr *)&isa,&addrlen);
762 if (t < 0) {
763 break;
764 }
765
766 if (s->localhost_only &&
767 ntohl(isa.sin_addr.s_addr) != INADDR_LOOPBACK) {
768 close(t); /* someone let nonlocal through?! */
769 } else if (plug_accepting(s->plug, (void*)t)) {
770 close(t); /* denied or error */
771 }
772 break;
773 }
774
775 /*
776 * If we reach here, this is not a listening socket, so
777 * readability really means readability.
778 */
779
780 /* In the case the socket is still frozen, we don't even bother */
781 if (s->frozen) {
782 s->frozen_readable = 1;
783 break;
784 }
785
786 /*
787 * We have received data on the socket. For an oobinline
788 * socket, this might be data _before_ an urgent pointer,
789 * in which case we send it to the back end with type==1
790 * (data prior to urgent).
791 */
792 if (s->oobinline && s->oobpending) {
793 atmark = 1;
794 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
795 s->oobpending = FALSE; /* clear this indicator */
796 } else
797 atmark = 1;
798
799 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
800 noise_ultralight(ret);
801 if (ret < 0) {
802 if (errno == EWOULDBLOCK) {
803 break;
804 }
805 }
806 if (ret < 0) {
807 return plug_closing(s->plug, error_string(errno), errno, 0);
808 } else if (0 == ret) {
809 return plug_closing(s->plug, NULL, 0, 0);
810 } else {
811 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
812 }
813 break;
814 case 2: /* writable */
815 {
816 int bufsize_before, bufsize_after;
817 s->writable = 1;
818 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
819 try_send(s);
820 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
821 if (bufsize_after < bufsize_before)
822 plug_sent(s->plug, bufsize_after);
823 }
824 break;
825 }
826
827 return 1;
828 }
829
830 /*
831 * Deal with socket errors detected in try_send().
832 */
833 void net_pending_errors(void)
834 {
835 int i;
836 Actual_Socket s;
837
838 /*
839 * This might be a fiddly business, because it's just possible
840 * that handling a pending error on one socket might cause
841 * others to be closed. (I can't think of any reason this might
842 * happen in current SSH implementation, but to maintain
843 * generality of this network layer I'll assume the worst.)
844 *
845 * So what we'll do is search the socket list for _one_ socket
846 * with a pending error, and then handle it, and then search
847 * the list again _from the beginning_. Repeat until we make a
848 * pass with no socket errors present. That way we are
849 * protected against the socket list changing under our feet.
850 */
851
852 do {
853 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
854 if (s->pending_error) {
855 /*
856 * An error has occurred on this socket. Pass it to the
857 * plug.
858 */
859 plug_closing(s->plug, error_string(s->pending_error),
860 s->pending_error, 0);
861 break;
862 }
863 }
864 } while (s);
865 }
866
867 /*
868 * Each socket abstraction contains a `void *' private field in
869 * which the client can keep state.
870 */
871 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
872 {
873 Actual_Socket s = (Actual_Socket) sock;
874 s->private_ptr = ptr;
875 }
876
877 static void *sk_tcp_get_private_ptr(Socket sock)
878 {
879 Actual_Socket s = (Actual_Socket) sock;
880 return s->private_ptr;
881 }
882
883 /*
884 * Special error values are returned from sk_namelookup and sk_new
885 * if there's a problem. These functions extract an error message,
886 * or return NULL if there's no problem.
887 */
888 char *sk_addr_error(SockAddr addr)
889 {
890 return addr->error;
891 }
892 static char *sk_tcp_socket_error(Socket sock)
893 {
894 Actual_Socket s = (Actual_Socket) sock;
895 return s->error;
896 }
897
898 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
899 {
900 Actual_Socket s = (Actual_Socket) sock;
901 if (s->frozen == is_frozen)
902 return;
903 s->frozen = is_frozen;
904 if (!is_frozen && s->frozen_readable) {
905 char c;
906 recv(s->s, &c, 1, MSG_PEEK);
907 }
908 s->frozen_readable = 0;
909 }
910
911 /*
912 * For Unix select()-based frontends: enumerate all sockets
913 * currently active, and state whether we currently wish to receive
914 * select events on them for reading, writing and exceptional
915 * status.
916 */
917 static void set_rwx(Actual_Socket s, int *rwx)
918 {
919 int val = 0;
920 if (s->connected && !s->frozen)
921 val |= 1 | 4; /* read, except */
922 if (bufchain_size(&s->output_data))
923 val |= 2; /* write */
924 if (s->listener)
925 val |= 1; /* read == accept */
926 *rwx = val;
927 }
928
929 int first_socket(int *state, int *rwx)
930 {
931 Actual_Socket s;
932 *state = 0;
933 s = index234(sktree, (*state)++);
934 if (s)
935 set_rwx(s, rwx);
936 return s ? s->s : -1;
937 }
938
939 int next_socket(int *state, int *rwx)
940 {
941 Actual_Socket s = index234(sktree, (*state)++);
942 if (s)
943 set_rwx(s, rwx);
944 return s ? s->s : -1;
945 }
946
947 int net_service_lookup(char *service)
948 {
949 struct servent *se;
950 se = getservbyname(service, NULL);
951 if (se != NULL)
952 return ntohs(se->s_port);
953 else
954 return 0;
955 }