Check for <sys/sockio.h> and include it in uxnet.c if we find it. It's
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18 #include <sys/un.h>
19
20 #define DEFINE_PLUG_METHOD_MACROS
21 #include "putty.h"
22 #include "network.h"
23 #include "tree234.h"
24
25 /* Solaris needs <sys/sockio.h> for SIOCATMARK. */
26 #ifdef HAVE_SYS_SOCKIO_H
27 #include <sys/sockio.h>
28 #endif
29
30 #ifndef X11_UNIX_PATH
31 # define X11_UNIX_PATH "/tmp/.X11-unix/X"
32 #endif
33
34 struct Socket_tag {
35 struct socket_function_table *fn;
36 /* the above variable absolutely *must* be the first in this structure */
37 const char *error;
38 int s;
39 Plug plug;
40 void *private_ptr;
41 bufchain output_data;
42 int connected; /* irrelevant for listening sockets */
43 int writable;
44 int frozen; /* this causes readability notifications to be ignored */
45 int frozen_readable; /* this means we missed at least one readability
46 * notification while we were frozen */
47 int localhost_only; /* for listening sockets */
48 char oobdata[1];
49 int sending_oob;
50 int oobpending; /* is there OOB data available to read? */
51 int oobinline;
52 int pending_error; /* in case send() returns error */
53 int listener;
54 int nodelay, keepalive; /* for connect()-type sockets */
55 int privport, port; /* and again */
56 SockAddr addr;
57 };
58
59 /*
60 * We used to typedef struct Socket_tag *Socket.
61 *
62 * Since we have made the networking abstraction slightly more
63 * abstract, Socket no longer means a tcp socket (it could mean
64 * an ssl socket). So now we must use Actual_Socket when we know
65 * we are talking about a tcp socket.
66 */
67 typedef struct Socket_tag *Actual_Socket;
68
69 struct SockAddr_tag {
70 const char *error;
71 /*
72 * Which address family this address belongs to. AF_INET for
73 * IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
74 * resolution has not been done and a simple host name is held
75 * in this SockAddr structure.
76 */
77 int family;
78 #ifndef NO_IPV6
79 struct addrinfo *ais; /* Addresses IPv6 style. */
80 struct addrinfo *ai; /* steps along the linked list */
81 #else
82 unsigned long *addresses; /* Addresses IPv4 style. */
83 int naddresses, curraddr;
84 #endif
85 char hostname[512]; /* Store an unresolved host name. */
86 };
87
88 static tree234 *sktree;
89
90 static void uxsel_tell(Actual_Socket s);
91
92 static int cmpfortree(void *av, void *bv)
93 {
94 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
95 int as = a->s, bs = b->s;
96 if (as < bs)
97 return -1;
98 if (as > bs)
99 return +1;
100 return 0;
101 }
102
103 static int cmpforsearch(void *av, void *bv)
104 {
105 Actual_Socket b = (Actual_Socket) bv;
106 int as = *(int *)av, bs = b->s;
107 if (as < bs)
108 return -1;
109 if (as > bs)
110 return +1;
111 return 0;
112 }
113
114 void sk_init(void)
115 {
116 sktree = newtree234(cmpfortree);
117 }
118
119 void sk_cleanup(void)
120 {
121 Actual_Socket s;
122 int i;
123
124 if (sktree) {
125 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
126 close(s->s);
127 }
128 }
129 }
130
131 SockAddr sk_namelookup(const char *host, char **canonicalname, int address_family)
132 {
133 SockAddr ret = snew(struct SockAddr_tag);
134 #ifndef NO_IPV6
135 struct addrinfo hints;
136 int err;
137 #else
138 unsigned long a;
139 struct hostent *h = NULL;
140 int n;
141 #endif
142 char realhost[8192];
143
144 /* Clear the structure and default to IPv4. */
145 memset(ret, 0, sizeof(struct SockAddr_tag));
146 ret->family = 0; /* We set this one when we have resolved the host. */
147 *realhost = '\0';
148 ret->error = NULL;
149
150 #ifndef NO_IPV6
151 hints.ai_flags = AI_CANONNAME;
152 hints.ai_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
153 address_family == ADDRTYPE_IPV6 ? AF_INET6 :
154 AF_UNSPEC);
155 hints.ai_socktype = SOCK_STREAM;
156 hints.ai_protocol = 0;
157 hints.ai_addrlen = 0;
158 hints.ai_addr = NULL;
159 hints.ai_canonname = NULL;
160 hints.ai_next = NULL;
161 err = getaddrinfo(host, NULL, &hints, &ret->ais);
162 ret->ai = ret->ais;
163 if (err != 0) {
164 ret->error = gai_strerror(err);
165 return ret;
166 }
167 ret->family = ret->ai->ai_family;
168 *realhost = '\0';
169 if (ret->ai->ai_canonname != NULL)
170 strncat(realhost, ret->ai->ai_canonname, sizeof(realhost) - 1);
171 else
172 strncat(realhost, host, sizeof(realhost) - 1);
173 #else
174 if ((a = inet_addr(host)) == (unsigned long)(in_addr_t)(-1)) {
175 /*
176 * Otherwise use the IPv4-only gethostbyname... (NOTE:
177 * we don't use gethostbyname as a fallback!)
178 */
179 if (ret->family == 0) {
180 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
181 if ( (h = gethostbyname(host)) )
182 ret->family = AF_INET;
183 }
184 if (ret->family == 0) {
185 ret->error = (h_errno == HOST_NOT_FOUND ||
186 h_errno == NO_DATA ||
187 h_errno == NO_ADDRESS ? "Host does not exist" :
188 h_errno == TRY_AGAIN ?
189 "Temporary name service failure" :
190 "gethostbyname: unknown error");
191 return ret;
192 }
193 /* This way we are always sure the h->h_name is valid :) */
194 strncpy(realhost, h->h_name, sizeof(realhost));
195 for (n = 0; h->h_addr_list[n]; n++);
196 ret->addresses = snewn(n, unsigned long);
197 ret->naddresses = n;
198 for (n = 0; n < ret->naddresses; n++) {
199 memcpy(&a, h->h_addr_list[n], sizeof(a));
200 ret->addresses[n] = ntohl(a);
201 }
202 } else {
203 /*
204 * This must be a numeric IPv4 address because it caused a
205 * success return from inet_addr.
206 */
207 ret->family = AF_INET;
208 strncpy(realhost, host, sizeof(realhost));
209 ret->addresses = snew(unsigned long);
210 ret->naddresses = 1;
211 ret->addresses[0] = ntohl(a);
212 ret->curraddr = 0;
213 }
214 #endif
215 realhost[lenof(realhost)-1] = '\0';
216 *canonicalname = snewn(1+strlen(realhost), char);
217 strcpy(*canonicalname, realhost);
218 return ret;
219 }
220
221 SockAddr sk_nonamelookup(const char *host)
222 {
223 SockAddr ret = snew(struct SockAddr_tag);
224 ret->error = NULL;
225 ret->family = AF_UNSPEC;
226 strncpy(ret->hostname, host, lenof(ret->hostname));
227 ret->hostname[lenof(ret->hostname)-1] = '\0';
228 #ifndef NO_IPV6
229 ret->ais = NULL;
230 #else
231 ret->addresses = NULL;
232 #endif
233 return ret;
234 }
235
236 static int sk_nextaddr(SockAddr addr)
237 {
238 #ifndef NO_IPV6
239 if (addr->ai->ai_next) {
240 addr->ai = addr->ai->ai_next;
241 addr->family = addr->ai->ai_family;
242 return TRUE;
243 } else
244 return FALSE;
245 #else
246 if (addr->curraddr+1 < addr->naddresses) {
247 addr->curraddr++;
248 return TRUE;
249 } else {
250 return FALSE;
251 }
252 #endif
253 }
254
255 void sk_getaddr(SockAddr addr, char *buf, int buflen)
256 {
257
258 if (addr->family == AF_UNSPEC) {
259 strncpy(buf, addr->hostname, buflen);
260 buf[buflen-1] = '\0';
261 } else {
262 #ifndef NO_IPV6
263 if (getnameinfo(addr->ai->ai_addr, addr->ai->ai_addrlen, buf, buflen,
264 NULL, 0, NI_NUMERICHOST) != 0) {
265 buf[0] = '\0';
266 strncat(buf, "<unknown>", buflen - 1);
267 }
268 #else
269 struct in_addr a;
270 assert(addr->family == AF_INET);
271 a.s_addr = htonl(addr->addresses[addr->curraddr]);
272 strncpy(buf, inet_ntoa(a), buflen);
273 buf[buflen-1] = '\0';
274 #endif
275 }
276 }
277
278 int sk_hostname_is_local(char *name)
279 {
280 return !strcmp(name, "localhost");
281 }
282
283 #define ipv4_is_loopback(addr) \
284 (((addr).s_addr & htonl(0xff000000)) == htonl(0x7f000000))
285
286 static int sockaddr_is_loopback(struct sockaddr *sa)
287 {
288 struct sockaddr_in *sin;
289 #ifndef NO_IPV6
290 struct sockaddr_in6 *sin6;
291 #endif
292
293 switch (sa->sa_family) {
294 case AF_INET:
295 sin = (struct sockaddr_in *)sa;
296 return ipv4_is_loopback(sin->sin_addr);
297 #ifndef NO_IPV6
298 case AF_INET6:
299 sin6 = (struct sockaddr_in6 *)sa;
300 return IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr);
301 #endif
302 case AF_UNIX:
303 return TRUE;
304 default:
305 return FALSE;
306 }
307 }
308
309 int sk_address_is_local(SockAddr addr)
310 {
311
312 if (addr->family == AF_UNSPEC)
313 return 0; /* we don't know; assume not */
314 else {
315 #ifndef NO_IPV6
316 return sockaddr_is_loopback(addr->ai->ai_addr);
317 #else
318 struct in_addr a;
319 assert(addr->family == AF_INET);
320 a.s_addr = htonl(addr->addresses[addr->curraddr]);
321 return ipv4_is_loopback(a);
322 #endif
323 }
324 }
325
326 int sk_addrtype(SockAddr addr)
327 {
328 return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
329 #ifndef NO_IPV6
330 addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
331 #endif
332 ADDRTYPE_NAME);
333 }
334
335 void sk_addrcopy(SockAddr addr, char *buf)
336 {
337
338 #ifndef NO_IPV6
339 if (addr->family == AF_INET)
340 memcpy(buf, &((struct sockaddr_in *)addr->ai->ai_addr)->sin_addr,
341 sizeof(struct in_addr));
342 else if (addr->family == AF_INET6)
343 memcpy(buf, &((struct sockaddr_in6 *)addr->ai->ai_addr)->sin6_addr,
344 sizeof(struct in6_addr));
345 else
346 assert(FALSE);
347 #else
348 struct in_addr a;
349
350 assert(addr->family == AF_INET);
351 a.s_addr = htonl(addr->addresses[addr->curraddr]);
352 memcpy(buf, (char*) &a.s_addr, 4);
353 #endif
354 }
355
356 void sk_addr_free(SockAddr addr)
357 {
358
359 #ifndef NO_IPV6
360 if (addr->ais != NULL)
361 freeaddrinfo(addr->ais);
362 #else
363 sfree(addr->addresses);
364 #endif
365 sfree(addr);
366 }
367
368 static Plug sk_tcp_plug(Socket sock, Plug p)
369 {
370 Actual_Socket s = (Actual_Socket) sock;
371 Plug ret = s->plug;
372 if (p)
373 s->plug = p;
374 return ret;
375 }
376
377 static void sk_tcp_flush(Socket s)
378 {
379 /*
380 * We send data to the socket as soon as we can anyway,
381 * so we don't need to do anything here. :-)
382 */
383 }
384
385 static void sk_tcp_close(Socket s);
386 static int sk_tcp_write(Socket s, const char *data, int len);
387 static int sk_tcp_write_oob(Socket s, const char *data, int len);
388 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
389 static void *sk_tcp_get_private_ptr(Socket s);
390 static void sk_tcp_set_frozen(Socket s, int is_frozen);
391 static const char *sk_tcp_socket_error(Socket s);
392
393 static struct socket_function_table tcp_fn_table = {
394 sk_tcp_plug,
395 sk_tcp_close,
396 sk_tcp_write,
397 sk_tcp_write_oob,
398 sk_tcp_flush,
399 sk_tcp_set_private_ptr,
400 sk_tcp_get_private_ptr,
401 sk_tcp_set_frozen,
402 sk_tcp_socket_error
403 };
404
405 Socket sk_register(OSSocket sockfd, Plug plug)
406 {
407 Actual_Socket ret;
408
409 /*
410 * Create Socket structure.
411 */
412 ret = snew(struct Socket_tag);
413 ret->fn = &tcp_fn_table;
414 ret->error = NULL;
415 ret->plug = plug;
416 bufchain_init(&ret->output_data);
417 ret->writable = 1; /* to start with */
418 ret->sending_oob = 0;
419 ret->frozen = 1;
420 ret->frozen_readable = 0;
421 ret->localhost_only = 0; /* unused, but best init anyway */
422 ret->pending_error = 0;
423 ret->oobpending = FALSE;
424 ret->listener = 0;
425 ret->addr = NULL;
426 ret->connected = 1;
427
428 ret->s = sockfd;
429
430 if (ret->s < 0) {
431 ret->error = strerror(errno);
432 return (Socket) ret;
433 }
434
435 ret->oobinline = 0;
436
437 uxsel_tell(ret);
438 add234(sktree, ret);
439
440 return (Socket) ret;
441 }
442
443 static int try_connect(Actual_Socket sock)
444 {
445 int s;
446 #ifndef NO_IPV6
447 struct sockaddr_in6 a6;
448 #endif
449 struct sockaddr_in a;
450 struct sockaddr_un au;
451 const struct sockaddr *sa;
452 int err = 0;
453 short localport;
454 int fl, salen;
455
456 if (sock->s >= 0)
457 close(sock->s);
458
459 plug_log(sock->plug, 0, sock->addr, sock->port, NULL, 0);
460
461 /*
462 * Open socket.
463 */
464 assert(sock->addr->family != AF_UNSPEC);
465 s = socket(sock->addr->family, SOCK_STREAM, 0);
466 sock->s = s;
467
468 if (s < 0) {
469 err = errno;
470 goto ret;
471 }
472
473 if (sock->oobinline) {
474 int b = TRUE;
475 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
476 }
477
478 if (sock->nodelay) {
479 int b = TRUE;
480 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
481 }
482
483 if (sock->keepalive) {
484 int b = TRUE;
485 setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, (void *) &b, sizeof(b));
486 }
487
488 /*
489 * Bind to local address.
490 */
491 if (sock->privport)
492 localport = 1023; /* count from 1023 downwards */
493 else
494 localport = 0; /* just use port 0 (ie kernel picks) */
495
496 /* BSD IP stacks need sockaddr_in zeroed before filling in */
497 memset(&a,'\0',sizeof(struct sockaddr_in));
498 #ifndef NO_IPV6
499 memset(&a6,'\0',sizeof(struct sockaddr_in6));
500 #endif
501
502 /* We don't try to bind to a local address for UNIX domain sockets. (Why
503 * do we bother doing the bind when localport == 0 anyway?) */
504 if(sock->addr->family != AF_UNIX) {
505 /* Loop round trying to bind */
506 while (1) {
507 int retcode;
508
509 #ifndef NO_IPV6
510 if (sock->addr->family == AF_INET6) {
511 /* XXX use getaddrinfo to get a local address? */
512 a6.sin6_family = AF_INET6;
513 a6.sin6_addr = in6addr_any;
514 a6.sin6_port = htons(localport);
515 retcode = bind(s, (struct sockaddr *) &a6, sizeof(a6));
516 } else
517 #endif
518 {
519 assert(sock->addr->family == AF_INET);
520 a.sin_family = AF_INET;
521 a.sin_addr.s_addr = htonl(INADDR_ANY);
522 a.sin_port = htons(localport);
523 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
524 }
525 if (retcode >= 0) {
526 err = 0;
527 break; /* done */
528 } else {
529 err = errno;
530 if (err != EADDRINUSE) /* failed, for a bad reason */
531 break;
532 }
533
534 if (localport == 0)
535 break; /* we're only looping once */
536 localport--;
537 if (localport == 0)
538 break; /* we might have got to the end */
539 }
540
541 if (err)
542 goto ret;
543 }
544
545 /*
546 * Connect to remote address.
547 */
548 switch(sock->addr->family) {
549 #ifndef NO_IPV6
550 case AF_INET:
551 /* XXX would be better to have got getaddrinfo() to fill in the port. */
552 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
553 htons(sock->port);
554 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
555 salen = sock->addr->ai->ai_addrlen;
556 break;
557 case AF_INET6:
558 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
559 htons(sock->port);
560 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
561 salen = sock->addr->ai->ai_addrlen;
562 break;
563 #else
564 case AF_INET:
565 a.sin_family = AF_INET;
566 a.sin_addr.s_addr = htonl(sock->addr->addresses[sock->addr->curraddr]);
567 a.sin_port = htons((short) sock->port);
568 sa = (const struct sockaddr *)&a;
569 salen = sizeof a;
570 break;
571 #endif
572 case AF_UNIX:
573 assert(sock->port == 0); /* to catch confused people */
574 assert(strlen(sock->addr->hostname) < sizeof au.sun_path);
575 memset(&au, 0, sizeof au);
576 au.sun_family = AF_UNIX;
577 strcpy(au.sun_path, sock->addr->hostname);
578 sa = (const struct sockaddr *)&au;
579 salen = sizeof au;
580 break;
581
582 default:
583 assert(0 && "unknown address family");
584 exit(1); /* XXX: GCC doesn't understand assert() on some systems. */
585 }
586
587 fl = fcntl(s, F_GETFL);
588 if (fl != -1)
589 fcntl(s, F_SETFL, fl | O_NONBLOCK);
590
591 if ((connect(s, sa, salen)) < 0) {
592 if ( errno != EINPROGRESS ) {
593 err = errno;
594 goto ret;
595 }
596 } else {
597 /*
598 * If we _don't_ get EWOULDBLOCK, the connect has completed
599 * and we should set the socket as connected and writable.
600 */
601 sock->connected = 1;
602 sock->writable = 1;
603 }
604
605 uxsel_tell(sock);
606 add234(sktree, sock);
607
608 ret:
609 if (err)
610 plug_log(sock->plug, 1, sock->addr, sock->port, strerror(err), err);
611 return err;
612 }
613
614 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
615 int nodelay, int keepalive, Plug plug)
616 {
617 Actual_Socket ret;
618 int err;
619
620 /*
621 * Create Socket structure.
622 */
623 ret = snew(struct Socket_tag);
624 ret->fn = &tcp_fn_table;
625 ret->error = NULL;
626 ret->plug = plug;
627 bufchain_init(&ret->output_data);
628 ret->connected = 0; /* to start with */
629 ret->writable = 0; /* to start with */
630 ret->sending_oob = 0;
631 ret->frozen = 0;
632 ret->frozen_readable = 0;
633 ret->localhost_only = 0; /* unused, but best init anyway */
634 ret->pending_error = 0;
635 ret->oobpending = FALSE;
636 ret->listener = 0;
637 ret->addr = addr;
638 ret->s = -1;
639 ret->oobinline = oobinline;
640 ret->nodelay = nodelay;
641 ret->keepalive = keepalive;
642 ret->privport = privport;
643 ret->port = port;
644
645 err = 0;
646 do {
647 err = try_connect(ret);
648 } while (err && sk_nextaddr(ret->addr));
649
650 if (err)
651 ret->error = strerror(err);
652
653 return (Socket) ret;
654 }
655
656 Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only, int address_family)
657 {
658 int s;
659 #ifndef NO_IPV6
660 struct addrinfo hints, *ai;
661 char portstr[6];
662 struct sockaddr_in6 a6;
663 #endif
664 struct sockaddr *addr;
665 int addrlen;
666 struct sockaddr_in a;
667 Actual_Socket ret;
668 int retcode;
669 int on = 1;
670
671 /*
672 * Create Socket structure.
673 */
674 ret = snew(struct Socket_tag);
675 ret->fn = &tcp_fn_table;
676 ret->error = NULL;
677 ret->plug = plug;
678 bufchain_init(&ret->output_data);
679 ret->writable = 0; /* to start with */
680 ret->sending_oob = 0;
681 ret->frozen = 0;
682 ret->frozen_readable = 0;
683 ret->localhost_only = local_host_only;
684 ret->pending_error = 0;
685 ret->oobpending = FALSE;
686 ret->listener = 1;
687 ret->addr = NULL;
688
689 /*
690 * Translate address_family from platform-independent constants
691 * into local reality.
692 */
693 address_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
694 address_family == ADDRTYPE_IPV6 ? AF_INET6 : AF_UNSPEC);
695
696 #ifndef NO_IPV6
697 /* Let's default to IPv6.
698 * If the stack doesn't support IPv6, we will fall back to IPv4. */
699 if (address_family == AF_UNSPEC) address_family = AF_INET6;
700 #else
701 /* No other choice, default to IPv4 */
702 if (address_family == AF_UNSPEC) address_family = AF_INET;
703 #endif
704
705 /*
706 * Open socket.
707 */
708 s = socket(address_family, SOCK_STREAM, 0);
709
710 /* If the host doesn't support IPv6 try fallback to IPv4. */
711 if (s < 0 && address_family == AF_INET6) {
712 address_family = AF_INET;
713 s = socket(address_family, SOCK_STREAM, 0);
714 }
715
716 if (s < 0) {
717 ret->error = strerror(errno);
718 return (Socket) ret;
719 }
720
721 ret->oobinline = 0;
722
723 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
724
725 retcode = -1;
726 addr = NULL; addrlen = -1; /* placate optimiser */
727
728 if (srcaddr != NULL) {
729 #ifndef NO_IPV6
730 hints.ai_flags = AI_NUMERICHOST;
731 hints.ai_family = address_family;
732 hints.ai_socktype = SOCK_STREAM;
733 hints.ai_protocol = 0;
734 hints.ai_addrlen = 0;
735 hints.ai_addr = NULL;
736 hints.ai_canonname = NULL;
737 hints.ai_next = NULL;
738 assert(port >= 0 && port <= 99999);
739 sprintf(portstr, "%d", port);
740 retcode = getaddrinfo(srcaddr, portstr, &hints, &ai);
741 if (retcode == 0) {
742 addr = ai->ai_addr;
743 addrlen = ai->ai_addrlen;
744 }
745 #else
746 memset(&a,'\0',sizeof(struct sockaddr_in));
747 a.sin_family = AF_INET;
748 a.sin_port = htons(port);
749 a.sin_addr.s_addr = inet_addr(srcaddr);
750 if (a.sin_addr.s_addr != (in_addr_t)(-1)) {
751 /* Override localhost_only with specified listen addr. */
752 ret->localhost_only = ipv4_is_loopback(a.sin_addr);
753 }
754 addr = (struct sockaddr *)&a;
755 addrlen = sizeof(a);
756 retcode = 0;
757 #endif
758 }
759
760 if (retcode != 0) {
761 #ifndef NO_IPV6
762 if (address_family == AF_INET6) {
763 memset(&a6,'\0',sizeof(struct sockaddr_in6));
764 a6.sin6_family = AF_INET6;
765 a6.sin6_port = htons(port);
766 if (local_host_only)
767 a6.sin6_addr = in6addr_loopback;
768 else
769 a6.sin6_addr = in6addr_any;
770 addr = (struct sockaddr *)&a6;
771 addrlen = sizeof(a6);
772 } else
773 #endif
774 {
775 memset(&a,'\0',sizeof(struct sockaddr_in));
776 a.sin_family = AF_INET;
777 a.sin_port = htons(port);
778 if (local_host_only)
779 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
780 else
781 a.sin_addr.s_addr = htonl(INADDR_ANY);
782 addr = (struct sockaddr *)&a;
783 addrlen = sizeof(a);
784 }
785 }
786
787 retcode = bind(s, addr, addrlen);
788 if (retcode < 0) {
789 close(s);
790 ret->error = strerror(errno);
791 return (Socket) ret;
792 }
793
794 if (listen(s, SOMAXCONN) < 0) {
795 close(s);
796 ret->error = strerror(errno);
797 return (Socket) ret;
798 }
799
800 ret->s = s;
801
802 uxsel_tell(ret);
803 add234(sktree, ret);
804
805 return (Socket) ret;
806 }
807
808 static void sk_tcp_close(Socket sock)
809 {
810 Actual_Socket s = (Actual_Socket) sock;
811
812 uxsel_del(s->s);
813 del234(sktree, s);
814 close(s->s);
815 if (s->addr)
816 sk_addr_free(s->addr);
817 sfree(s);
818 }
819
820 void *sk_getxdmdata(void *sock, int *lenp)
821 {
822 Actual_Socket s = (Actual_Socket) sock;
823 #ifdef NO_IPV6
824 struct sockaddr_in addr;
825 #else
826 struct sockaddr_storage addr;
827 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&addr;
828 #endif
829 struct sockaddr *sa = (struct sockaddr *)&addr;
830 struct sockaddr_in *sin = (struct sockaddr_in *)&addr;
831 socklen_t addrlen;
832 char *buf;
833 static unsigned int unix_addr = 0xFFFFFFFF;
834
835 /*
836 * We must check that this socket really _is_ an Actual_Socket.
837 */
838 if (s->fn != &tcp_fn_table)
839 return NULL; /* failure */
840
841 addrlen = sizeof(addr);
842 if (getsockname(s->s, sa, &addrlen) < 0)
843 return NULL;
844 switch(sa->sa_family) {
845 case AF_INET:
846 *lenp = 6;
847 buf = snewn(*lenp, char);
848 PUT_32BIT_MSB_FIRST(buf, ntohl(sin->sin_addr.s_addr));
849 PUT_16BIT_MSB_FIRST(buf+4, ntohs(sin->sin_port));
850 break;
851 #ifndef NO_IPV6
852 case AF_INET6:
853 *lenp = 6;
854 buf = snewn(*lenp, char);
855 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
856 memcpy(buf, sin6->sin6_addr.s6_addr + 12, 4);
857 PUT_16BIT_MSB_FIRST(buf+4, ntohs(sin6->sin6_port));
858 } else
859 /* This is stupid, but it's what XLib does. */
860 memset(buf, 0, 6);
861 break;
862 #endif
863 case AF_UNIX:
864 *lenp = 6;
865 buf = snewn(*lenp, char);
866 PUT_32BIT_MSB_FIRST(buf, unix_addr--);
867 PUT_16BIT_MSB_FIRST(buf+4, getpid());
868 break;
869
870 /* XXX IPV6 */
871
872 default:
873 return NULL;
874 }
875
876 return buf;
877 }
878
879 /*
880 * The function which tries to send on a socket once it's deemed
881 * writable.
882 */
883 void try_send(Actual_Socket s)
884 {
885 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
886 int nsent;
887 int err;
888 void *data;
889 int len, urgentflag;
890
891 if (s->sending_oob) {
892 urgentflag = MSG_OOB;
893 len = s->sending_oob;
894 data = &s->oobdata;
895 } else {
896 urgentflag = 0;
897 bufchain_prefix(&s->output_data, &data, &len);
898 }
899 nsent = send(s->s, data, len, urgentflag);
900 noise_ultralight(nsent);
901 if (nsent <= 0) {
902 err = (nsent < 0 ? errno : 0);
903 if (err == EWOULDBLOCK) {
904 /*
905 * Perfectly normal: we've sent all we can for the moment.
906 */
907 s->writable = FALSE;
908 return;
909 } else {
910 /*
911 * We unfortunately can't just call plug_closing(),
912 * because it's quite likely that we're currently
913 * _in_ a call from the code we'd be calling back
914 * to, so we'd have to make half the SSH code
915 * reentrant. Instead we flag a pending error on
916 * the socket, to be dealt with (by calling
917 * plug_closing()) at some suitable future moment.
918 */
919 s->pending_error = err;
920 return;
921 }
922 } else {
923 if (s->sending_oob) {
924 if (nsent < len) {
925 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
926 s->sending_oob = len - nsent;
927 } else {
928 s->sending_oob = 0;
929 }
930 } else {
931 bufchain_consume(&s->output_data, nsent);
932 }
933 }
934 }
935 uxsel_tell(s);
936 }
937
938 static int sk_tcp_write(Socket sock, const char *buf, int len)
939 {
940 Actual_Socket s = (Actual_Socket) sock;
941
942 /*
943 * Add the data to the buffer list on the socket.
944 */
945 bufchain_add(&s->output_data, buf, len);
946
947 /*
948 * Now try sending from the start of the buffer list.
949 */
950 if (s->writable)
951 try_send(s);
952
953 /*
954 * Update the select() status to correctly reflect whether or
955 * not we should be selecting for write.
956 */
957 uxsel_tell(s);
958
959 return bufchain_size(&s->output_data);
960 }
961
962 static int sk_tcp_write_oob(Socket sock, const char *buf, int len)
963 {
964 Actual_Socket s = (Actual_Socket) sock;
965
966 /*
967 * Replace the buffer list on the socket with the data.
968 */
969 bufchain_clear(&s->output_data);
970 assert(len <= sizeof(s->oobdata));
971 memcpy(s->oobdata, buf, len);
972 s->sending_oob = len;
973
974 /*
975 * Now try sending from the start of the buffer list.
976 */
977 if (s->writable)
978 try_send(s);
979
980 /*
981 * Update the select() status to correctly reflect whether or
982 * not we should be selecting for write.
983 */
984 uxsel_tell(s);
985
986 return s->sending_oob;
987 }
988
989 static int net_select_result(int fd, int event)
990 {
991 int ret;
992 char buf[20480]; /* nice big buffer for plenty of speed */
993 Actual_Socket s;
994 u_long atmark;
995
996 /* Find the Socket structure */
997 s = find234(sktree, &fd, cmpforsearch);
998 if (!s)
999 return 1; /* boggle */
1000
1001 noise_ultralight(event);
1002
1003 switch (event) {
1004 case 4: /* exceptional */
1005 if (!s->oobinline) {
1006 /*
1007 * On a non-oobinline socket, this indicates that we
1008 * can immediately perform an OOB read and get back OOB
1009 * data, which we will send to the back end with
1010 * type==2 (urgent data).
1011 */
1012 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
1013 noise_ultralight(ret);
1014 if (ret <= 0) {
1015 return plug_closing(s->plug,
1016 ret == 0 ? "Internal networking trouble" :
1017 strerror(errno), errno, 0);
1018 } else {
1019 /*
1020 * Receiving actual data on a socket means we can
1021 * stop falling back through the candidate
1022 * addresses to connect to.
1023 */
1024 if (s->addr) {
1025 sk_addr_free(s->addr);
1026 s->addr = NULL;
1027 }
1028 return plug_receive(s->plug, 2, buf, ret);
1029 }
1030 break;
1031 }
1032
1033 /*
1034 * If we reach here, this is an oobinline socket, which
1035 * means we should set s->oobpending and then deal with it
1036 * when we get called for the readability event (which
1037 * should also occur).
1038 */
1039 s->oobpending = TRUE;
1040 break;
1041 case 1: /* readable; also acceptance */
1042 if (s->listener) {
1043 /*
1044 * On a listening socket, the readability event means a
1045 * connection is ready to be accepted.
1046 */
1047 #ifdef NO_IPV6
1048 struct sockaddr_in ss;
1049 #else
1050 struct sockaddr_storage ss;
1051 #endif
1052 socklen_t addrlen = sizeof(ss);
1053 int t; /* socket of connection */
1054
1055 memset(&ss, 0, addrlen);
1056 t = accept(s->s, (struct sockaddr *)&ss, &addrlen);
1057 if (t < 0) {
1058 break;
1059 }
1060
1061 if (s->localhost_only &&
1062 !sockaddr_is_loopback((struct sockaddr *)&ss)) {
1063 close(t); /* someone let nonlocal through?! */
1064 } else if (plug_accepting(s->plug, t)) {
1065 close(t); /* denied or error */
1066 }
1067 break;
1068 }
1069
1070 /*
1071 * If we reach here, this is not a listening socket, so
1072 * readability really means readability.
1073 */
1074
1075 /* In the case the socket is still frozen, we don't even bother */
1076 if (s->frozen) {
1077 s->frozen_readable = 1;
1078 break;
1079 }
1080
1081 /*
1082 * We have received data on the socket. For an oobinline
1083 * socket, this might be data _before_ an urgent pointer,
1084 * in which case we send it to the back end with type==1
1085 * (data prior to urgent).
1086 */
1087 if (s->oobinline && s->oobpending) {
1088 atmark = 1;
1089 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
1090 s->oobpending = FALSE; /* clear this indicator */
1091 } else
1092 atmark = 1;
1093
1094 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
1095 noise_ultralight(ret);
1096 if (ret < 0) {
1097 if (errno == EWOULDBLOCK) {
1098 break;
1099 }
1100 }
1101 if (ret < 0) {
1102 /*
1103 * An error at this point _might_ be an error reported
1104 * by a non-blocking connect(). So before we return a
1105 * panic status to the user, let's just see whether
1106 * that's the case.
1107 */
1108 int err = errno;
1109 if (s->addr) {
1110 plug_log(s->plug, 1, s->addr, s->port, strerror(err), err);
1111 while (s->addr && sk_nextaddr(s->addr)) {
1112 err = try_connect(s);
1113 }
1114 }
1115 if (err != 0)
1116 return plug_closing(s->plug, strerror(err), err, 0);
1117 } else if (0 == ret) {
1118 return plug_closing(s->plug, NULL, 0, 0);
1119 } else {
1120 /*
1121 * Receiving actual data on a socket means we can
1122 * stop falling back through the candidate
1123 * addresses to connect to.
1124 */
1125 if (s->addr) {
1126 sk_addr_free(s->addr);
1127 s->addr = NULL;
1128 }
1129 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
1130 }
1131 break;
1132 case 2: /* writable */
1133 if (!s->connected) {
1134 /*
1135 * select() reports a socket as _writable_ when an
1136 * asynchronous connection is completed.
1137 */
1138 s->connected = s->writable = 1;
1139 uxsel_tell(s);
1140 break;
1141 } else {
1142 int bufsize_before, bufsize_after;
1143 s->writable = 1;
1144 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
1145 try_send(s);
1146 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
1147 if (bufsize_after < bufsize_before)
1148 plug_sent(s->plug, bufsize_after);
1149 }
1150 break;
1151 }
1152
1153 return 1;
1154 }
1155
1156 /*
1157 * Deal with socket errors detected in try_send().
1158 */
1159 void net_pending_errors(void)
1160 {
1161 int i;
1162 Actual_Socket s;
1163
1164 /*
1165 * This might be a fiddly business, because it's just possible
1166 * that handling a pending error on one socket might cause
1167 * others to be closed. (I can't think of any reason this might
1168 * happen in current SSH implementation, but to maintain
1169 * generality of this network layer I'll assume the worst.)
1170 *
1171 * So what we'll do is search the socket list for _one_ socket
1172 * with a pending error, and then handle it, and then search
1173 * the list again _from the beginning_. Repeat until we make a
1174 * pass with no socket errors present. That way we are
1175 * protected against the socket list changing under our feet.
1176 */
1177
1178 do {
1179 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
1180 if (s->pending_error) {
1181 /*
1182 * An error has occurred on this socket. Pass it to the
1183 * plug.
1184 */
1185 plug_closing(s->plug, strerror(s->pending_error),
1186 s->pending_error, 0);
1187 break;
1188 }
1189 }
1190 } while (s);
1191 }
1192
1193 /*
1194 * Each socket abstraction contains a `void *' private field in
1195 * which the client can keep state.
1196 */
1197 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
1198 {
1199 Actual_Socket s = (Actual_Socket) sock;
1200 s->private_ptr = ptr;
1201 }
1202
1203 static void *sk_tcp_get_private_ptr(Socket sock)
1204 {
1205 Actual_Socket s = (Actual_Socket) sock;
1206 return s->private_ptr;
1207 }
1208
1209 /*
1210 * Special error values are returned from sk_namelookup and sk_new
1211 * if there's a problem. These functions extract an error message,
1212 * or return NULL if there's no problem.
1213 */
1214 const char *sk_addr_error(SockAddr addr)
1215 {
1216 return addr->error;
1217 }
1218 static const char *sk_tcp_socket_error(Socket sock)
1219 {
1220 Actual_Socket s = (Actual_Socket) sock;
1221 return s->error;
1222 }
1223
1224 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
1225 {
1226 Actual_Socket s = (Actual_Socket) sock;
1227 if (s->frozen == is_frozen)
1228 return;
1229 s->frozen = is_frozen;
1230 if (!is_frozen && s->frozen_readable) {
1231 char c;
1232 recv(s->s, &c, 1, MSG_PEEK);
1233 }
1234 s->frozen_readable = 0;
1235 uxsel_tell(s);
1236 }
1237
1238 static void uxsel_tell(Actual_Socket s)
1239 {
1240 int rwx = 0;
1241 if (s->listener) {
1242 rwx |= 1; /* read == accept */
1243 } else {
1244 if (!s->connected)
1245 rwx |= 2; /* write == connect */
1246 if (s->connected && !s->frozen)
1247 rwx |= 1 | 4; /* read, except */
1248 if (bufchain_size(&s->output_data))
1249 rwx |= 2; /* write */
1250 }
1251 uxsel_set(s->s, rwx, net_select_result);
1252 }
1253
1254 int net_service_lookup(char *service)
1255 {
1256 struct servent *se;
1257 se = getservbyname(service, NULL);
1258 if (se != NULL)
1259 return ntohs(se->s_port);
1260 else
1261 return 0;
1262 }
1263
1264 SockAddr platform_get_x11_unix_address(int displaynum, char **canonicalname)
1265 {
1266 SockAddr ret = snew(struct SockAddr_tag);
1267 int n;
1268
1269 memset(ret, 0, sizeof *ret);
1270 ret->family = AF_UNIX;
1271 n = snprintf(ret->hostname, sizeof ret->hostname,
1272 "%s%d", X11_UNIX_PATH, displaynum);
1273 if(n < 0)
1274 ret->error = "snprintf failed";
1275 else if(n >= sizeof ret->hostname)
1276 ret->error = "X11 UNIX name too long";
1277 else
1278 *canonicalname = dupstr(ret->hostname);
1279 #ifndef NO_IPV6
1280 ret->ais = NULL;
1281 #else
1282 ret->addresses = NULL;
1283 #endif
1284 return ret;
1285 }