Reformat minibidi.[ch] in line with my coding conventions. It was
[u/mdw/putty] / minibidi.c
1 /************************************************************************
2 * $Id$
3 *
4 * ------------
5 * Description:
6 * ------------
7 * This is an implemention of Unicode's Bidirectional Algorithm
8 * (known as UAX #9).
9 *
10 * http://www.unicode.org/reports/tr9/
11 *
12 * Author: Ahmad Khalifa
13 *
14 * -----------------
15 * Revision Details: (Updated by Revision Control System)
16 * -----------------
17 * $Date$
18 * $Author$
19 * $Revision$
20 *
21 * (www.arabeyes.org - under MIT license)
22 *
23 ************************************************************************/
24
25 /*
26 * TODO:
27 * =====
28 * - Explicit marks need to be handled (they are not 100% now)
29 * - Ligatures
30 */
31
32 #include "minibidi.h"
33
34 #define lenof(x) ( sizeof((x)) / sizeof(*(x)) )
35
36 /*
37 * Flips the text buffer, according to max level, and
38 * all higher levels
39 *
40 * Input:
41 * from: text buffer, on which to apply flipping
42 * level: resolved levels buffer
43 * max: the maximum level found in this line (should be unsigned char)
44 * count: line size in bidi_char
45 */
46 void flipThisRun(bidi_char *from, unsigned char *level, int max, int count)
47 {
48 int i, j, rcount, tlevel;
49 bidi_char temp;
50
51 j = i = 0;
52 while (i<count && j<count) {
53
54 /* find the start of the run of level=max */
55 tlevel = max;
56 i = j = findIndexOfRun(level, i, count, max);
57 /* find the end of the run */
58 while (i<count && tlevel <= level[i]) {
59 i++;
60 }
61 rcount = i-j;
62 for (; rcount>((i-j)/2); rcount--) {
63 temp = from[j+rcount-1];
64 from[j+rcount-1] = from[i-rcount];
65 from[i-rcount] = temp;
66 }
67 }
68 }
69
70 /*
71 * Finds the index of a run with level equals tlevel
72 */
73 int findIndexOfRun(unsigned char* level , int start, int count, int tlevel)
74 {
75 int i;
76 for (i=start; i<count; i++) {
77 if (tlevel == level[i]) {
78 return i;
79 }
80 }
81 return count;
82 }
83
84 /*
85 * Returns character type of ch, by calling RLE table lookup
86 * function
87 */
88 unsigned char getType(wchar_t ch)
89 {
90 return getRLE(ch);
91 }
92
93 /*
94 * The most significant 2 bits of each level are used to store
95 * Override status of each character
96 * This function sets the override bits of level according
97 * to the value in override, and reurns the new byte.
98 */
99 unsigned char setOverrideBits(unsigned char level, unsigned char override)
100 {
101 if (override == ON)
102 return level;
103 else if (override == R)
104 return level | OISR;
105 else if (override == L)
106 return level | OISL;
107 return level;
108 }
109
110 /*
111 * Find the most recent run of the same value in `level', and
112 * return the value _before_ it. Used to process U+202C POP
113 * DIRECTIONAL FORMATTING.
114 */
115 int getPreviousLevel(unsigned char* level, int from)
116 {
117 if (from > 0) {
118 unsigned char current = level[--from];
119
120 while (from >= 0 && level[from] == current)
121 from--;
122
123 if (from >= 0)
124 return level[from];
125
126 return -1;
127 } else
128 return -1;
129 }
130
131 /*
132 * Returns the first odd value greater than x
133 */
134 unsigned char leastGreaterOdd(unsigned char x)
135 {
136 if ((x % 2) == 0)
137 return x+1;
138 else
139 return x+2;
140 }
141
142 /*
143 * Returns the first even value greater than x
144 */
145 unsigned char leastGreaterEven(unsigned char x)
146 {
147 if ((x % 2) == 0)
148 return x+2;
149 else
150 return x+1;
151 }
152
153 /*
154 * Loops over the RLE_table array looking for the
155 * type of ch
156 */
157 unsigned char getRLE(wchar_t ch)
158 {
159 int offset, i;
160
161 offset = 0;
162 for (i=0; i<lenof(RLE_table); i++) {
163 offset += RLE_table[i].f;
164 if (ch < offset)
165 return RLE_table[i].d;
166 }
167 /* anything beyond the end of the table is unknown */
168 return ON;
169 }
170
171 /* The Main shaping function, and the only one to be used
172 * by the outside world.
173 *
174 * line: buffer to apply shaping to. this must be passed by doBidi() first
175 * to: output buffer for the shaped data
176 * count: number of characters in line
177 */
178 int do_shape(bidi_char *line, bidi_char *to, int count)
179 {
180 int i, tempShape, ligFlag;
181
182 for (ligFlag=i=0; i<count; i++) {
183 to[i] = line[i];
184 tempShape = STYPE(line[i].wc);
185 switch (tempShape) {
186 case SC:
187 break;
188
189 case SU:
190 break;
191
192 case SR:
193 tempShape = (i+1 < count ? STYPE(line[i+1].wc) : SU);
194 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
195 to[i].wc = SFINAL((SISOLATED(line[i].wc)));
196 else
197 to[i].wc = SISOLATED(line[i].wc);
198 break;
199
200
201 case SD:
202 /* Make Ligatures */
203 tempShape = (i+1 < count ? STYPE(line[i+1].wc) : SU);
204 if (line[i].wc == 0x644) {
205 if (i > 0) switch (line[i-1].wc) {
206 case 0x622:
207 ligFlag = 1;
208 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
209 to[i].wc = 0xFEF6;
210 else
211 to[i].wc = 0xFEF5;
212 break;
213 case 0x623:
214 ligFlag = 1;
215 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
216 to[i].wc = 0xFEF8;
217 else
218 to[i].wc = 0xFEF7;
219 break;
220 case 0x625:
221 ligFlag = 1;
222 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
223 to[i].wc = 0xFEFA;
224 else
225 to[i].wc = 0xFEF9;
226 break;
227 case 0x627:
228 ligFlag = 1;
229 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC))
230 to[i].wc = 0xFEFC;
231 else
232 to[i].wc = 0xFEFB;
233 break;
234 }
235 if (ligFlag) {
236 to[i-1].wc = 0x20;
237 ligFlag = 0;
238 break;
239 }
240 }
241
242 if ((tempShape == SL) || (tempShape == SD) || (tempShape == SC)) {
243 tempShape = (i > 0 ? STYPE(line[i-1].wc) : SU);
244 if ((tempShape == SR) || (tempShape == SD) || (tempShape == SC))
245 to[i].wc = SMEDIAL((SISOLATED(line[i].wc)));
246 else
247 to[i].wc = SFINAL((SISOLATED(line[i].wc)));
248 break;
249 }
250
251 tempShape = (i > 0 ? STYPE(line[i-1].wc) : SU);
252 if ((tempShape == SR) || (tempShape == SD) || (tempShape == SC))
253 to[i].wc = SINITIAL((SISOLATED(line[i].wc)));
254 else
255 to[i].wc = SISOLATED(line[i].wc);
256 break;
257
258
259 }
260 }
261 return 1;
262 }
263
264 /*
265 * The Main Bidi Function, and the only function that should
266 * be used by the outside world.
267 *
268 * line: a buffer of size count containing text to apply
269 * the Bidirectional algorithm to.
270 */
271
272 int do_bidi(bidi_char *line, int count)
273 {
274 unsigned char* types;
275 unsigned char* levels;
276 unsigned char paragraphLevel;
277 unsigned char currentEmbedding;
278 unsigned char currentOverride;
279 unsigned char tempType;
280 int i, j, imax, yes, bover;
281
282 /* Check the presence of R or AL types as optimization */
283 yes = 0;
284 for (i=0; i<count; i++) {
285 if (getType(line[i].wc) == R || getType(line[i].wc) == AL) {
286 yes = 1;
287 break;
288 }
289 }
290 if (yes == 0)
291 return L;
292
293 /* Initialize types, levels */
294 types = malloc(sizeof(unsigned char) * count);
295 levels = malloc(sizeof(unsigned char) * count);
296
297 /* Rule (P1) NOT IMPLEMENTED
298 * P1. Split the text into separate paragraphs. A paragraph separator is
299 * kept with the previous paragraph. Within each paragraph, apply all the
300 * other rules of this algorithm.
301 */
302
303 /* Rule (P2), (P3)
304 * P2. In each paragraph, find the first character of type L, AL, or R.
305 * P3. If a character is found in P2 and it is of type AL or R, then set
306 * the paragraph embedding level to one; otherwise, set it to zero.
307 */
308 paragraphLevel = 0;
309 for (i=0; i<count ; i++) {
310 if (getType(line[i].wc) == R || getType(line[i].wc) == AL) {
311 paragraphLevel = 1;
312 break;
313 } else if (getType(line[i].wc) == L)
314 break;
315 }
316
317 /* Rule (X1)
318 * X1. Begin by setting the current embedding level to the paragraph
319 * embedding level. Set the directional override status to neutral.
320 */
321 currentEmbedding = paragraphLevel;
322 currentOverride = ON;
323
324 /* Rule (X2), (X3), (X4), (X5), (X6), (X7), (X8)
325 * X2. With each RLE, compute the least greater odd embedding level.
326 * X3. With each LRE, compute the least greater even embedding level.
327 * X4. With each RLO, compute the least greater odd embedding level.
328 * X5. With each LRO, compute the least greater even embedding level.
329 * X6. For all types besides RLE, LRE, RLO, LRO, and PDF:
330 * a. Set the level of the current character to the current
331 * embedding level.
332 * b. Whenever the directional override status is not neutral,
333 * reset the current character type to the directional
334 * override status.
335 * X7. With each PDF, determine the matching embedding or override code.
336 * If there was a valid matching code, restore (pop) the last
337 * remembered (pushed) embedding level and directional override.
338 * X8. All explicit directional embeddings and overrides are completely
339 * terminated at the end of each paragraph. Paragraph separators are not
340 * included in the embedding. (Useless here) NOT IMPLEMENTED
341 */
342 bover = 0;
343 for (i=0; i<count; i++) {
344 tempType = getType(line[i].wc);
345 switch (tempType) {
346 case RLE:
347 currentEmbedding = levels[i] = leastGreaterOdd(currentEmbedding);
348 levels[i] = setOverrideBits(levels[i], currentOverride);
349 currentOverride = ON;
350 break;
351
352 case LRE:
353 currentEmbedding = levels[i] = leastGreaterEven(currentEmbedding);
354 levels[i] = setOverrideBits(levels[i], currentOverride);
355 currentOverride = ON;
356 break;
357
358 case RLO:
359 currentEmbedding = levels[i] = leastGreaterOdd(currentEmbedding);
360 tempType = currentOverride = R;
361 bover = 1;
362 break;
363
364 case LRO:
365 currentEmbedding = levels[i] = leastGreaterEven(currentEmbedding);
366 tempType = currentOverride = L;
367 bover = 1;
368 break;
369
370 case PDF:
371 {
372 int prevlevel = getPreviousLevel(levels, i);
373
374 if (prevlevel == -1) {
375 currentEmbedding = paragraphLevel;
376 currentOverride = ON;
377 } else {
378 currentOverride = currentEmbedding & OMASK;
379 currentEmbedding = currentEmbedding & ~OMASK;
380 }
381 }
382 levels[i] = currentEmbedding;
383 break;
384
385 /* Whitespace is treated as neutral for now */
386 case WS:
387 case S:
388 levels[i] = currentEmbedding;
389 tempType = ON;
390 if (currentOverride != ON)
391 tempType = currentOverride;
392 break;
393
394 default:
395 levels[i] = currentEmbedding;
396 if (currentOverride != ON)
397 tempType = currentOverride;
398 break;
399
400 }
401 types[i] = tempType;
402 }
403 /* this clears out all overrides, so we can use levels safely... */
404 /* checks bover first */
405 if (bover)
406 for (i=0; i<count; i++)
407 levels[i] = levels[i] & LMASK;
408
409 /* Rule (X9)
410 * X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN codes.
411 * Here, they're converted to BN.
412 */
413 for (i=0; i<count; i++) {
414 switch (types[i]) {
415 case RLE:
416 case LRE:
417 case RLO:
418 case LRO:
419 case PDF:
420 types[i] = BN;
421 break;
422 }
423 }
424
425 /* Rule (W1)
426 * W1. Examine each non-spacing mark (NSM) in the level run, and change
427 * the type of the NSM to the type of the previous character. If the NSM
428 * is at the start of the level run, it will get the type of sor.
429 */
430 if (types[0] == NSM)
431 types[0] = paragraphLevel;
432
433 for (i=1; i<count; i++) {
434 if (types[i] == NSM)
435 types[i] = types[i-1];
436 /* Is this a safe assumption?
437 * I assumed the previous, IS a character.
438 */
439 }
440
441 /* Rule (W2)
442 * W2. Search backwards from each instance of a European number until the
443 * first strong type (R, L, AL, or sor) is found. If an AL is found,
444 * change the type of the European number to Arabic number.
445 */
446 for (i=0; i<count; i++) {
447 if (types[i] == EN) {
448 j=i;
449 while (j >= 0) {
450 if (types[j] == AL) {
451 types[i] = AN;
452 break;
453 } else if (types[j] == R || types[j] == L) {
454 break;
455 }
456 j--;
457 }
458 }
459 }
460
461 /* Rule (W3)
462 * W3. Change all ALs to R.
463 *
464 * Optimization: on Rule Xn, we might set a flag on AL type
465 * to prevent this loop in L R lines only...
466 */
467 for (i=0; i<count; i++) {
468 if (types[i] == AL)
469 types[i] = R;
470 }
471
472 /* Rule (W4)
473 * W4. A single European separator between two European numbers changes
474 * to a European number. A single common separator between two numbers
475 * of the same type changes to that type.
476 */
477 for (i=1; i<(count-1); i++) {
478 if (types[i] == ES) {
479 if (types[i-1] == EN && types[i+1] == EN)
480 types[i] = EN;
481 } else if (types[i] == CS) {
482 if (types[i-1] == EN && types[i+1] == EN)
483 types[i] = EN;
484 else if (types[i-1] == AN && types[i+1] == AN)
485 types[i] = AN;
486 }
487 }
488
489 /* Rule (W5)
490 * W5. A sequence of European terminators adjacent to European numbers
491 * changes to all European numbers.
492 *
493 * Optimization: lots here... else ifs need rearrangement
494 */
495 for (i=0; i<count; i++) {
496 if (types[i] == ET) {
497 if (i > 0 && types[i-1] == EN) {
498 types[i] = EN;
499 continue;
500 } else if (i < count-1 && types[i+1] == EN) {
501 types[i] = EN;
502 continue;
503 } else if (i < count-1 && types[i+1] == ET) {
504 j=i;
505 while (j <count && types[j] == ET) {
506 j++;
507 }
508 if (types[j] == EN)
509 types[i] = EN;
510 }
511 }
512 }
513
514 /* Rule (W6)
515 * W6. Otherwise, separators and terminators change to Other Neutral:
516 */
517 for (i=0; i<count; i++) {
518 switch (types[i]) {
519 case ES:
520 case ET:
521 case CS:
522 types[i] = ON;
523 break;
524 }
525 }
526
527 /* Rule (W7)
528 * W7. Search backwards from each instance of a European number until
529 * the first strong type (R, L, or sor) is found. If an L is found,
530 * then change the type of the European number to L.
531 */
532 for (i=0; i<count; i++) {
533 if (types[i] == EN) {
534 j=i;
535 while (j >= 0) {
536 if (types[j] == L) {
537 types[i] = L;
538 break;
539 } else if (types[j] == R || types[j] == AL) {
540 break;
541 }
542 j--;
543 }
544 }
545 }
546
547 /* Rule (N1)
548 * N1. A sequence of neutrals takes the direction of the surrounding
549 * strong text if the text on both sides has the same direction. European
550 * and Arabic numbers are treated as though they were R.
551 */
552 if (count >= 2 && types[0] == ON) {
553 if ((types[1] == R) || (types[1] == EN) || (types[1] == AN))
554 types[0] = R;
555 else if (types[1] == L)
556 types[0] = L;
557 }
558 for (i=1; i<(count-1); i++) {
559 if (types[i] == ON) {
560 if (types[i-1] == L) {
561 j=i;
562 while (j<(count-1) && types[j] == ON) {
563 j++;
564 }
565 if (types[j] == L) {
566 while (i<j) {
567 types[i] = L;
568 i++;
569 }
570 }
571
572 } else if ((types[i-1] == R) ||
573 (types[i-1] == EN) ||
574 (types[i-1] == AN)) {
575 j=i;
576 while (j<(count-1) && types[j] == ON) {
577 j++;
578 }
579 if ((types[j] == R) ||
580 (types[j] == EN) ||
581 (types[j] == AN)) {
582 while (i<j) {
583 types[i] = R;
584 i++;
585 }
586 }
587 }
588 }
589 }
590 if (count >= 2 && types[count-1] == ON) {
591 if (types[count-2] == R || types[count-2] == EN || types[count-2] == AN)
592 types[count-1] = R;
593 else if (types[count-2] == L)
594 types[count-1] = L;
595 }
596
597 /* Rule (N2)
598 * N2. Any remaining neutrals take the embedding direction.
599 */
600 for (i=0; i<count; i++) {
601 if (types[i] == ON) {
602 if ((levels[i] % 2) == 0)
603 types[i] = L;
604 else
605 types[i] = R;
606 }
607 }
608
609 /* Rule (I1)
610 * I1. For all characters with an even (left-to-right) embedding
611 * direction, those of type R go up one level and those of type AN or
612 * EN go up two levels.
613 */
614 for (i=0; i<count; i++) {
615 if ((levels[i] % 2) == 0) {
616 if (types[i] == R)
617 levels[i] += 1;
618 else if (types[i] == AN || types[i] == EN)
619 levels[i] += 2;
620 }
621 }
622
623 /* Rule (I2)
624 * I2. For all characters with an odd (right-to-left) embedding direction,
625 * those of type L, EN or AN go up one level.
626 */
627 for (i=0; i<count; i++) {
628 if ((levels[i] % 2) == 1) {
629 if (types[i] == L || types[i] == EN || types[i] == AN)
630 levels[i] += 1;
631 }
632 }
633
634 /* Rule (L1)
635 * L1. On each line, reset the embedding level of the following characters
636 * to the paragraph embedding level:
637 * (1)segment separators, (2)paragraph separators,
638 * (3)any sequence of whitespace characters preceding
639 * a segment separator or paragraph separator,
640 * (4)and any sequence of white space characters
641 * at the end of the line.
642 * The types of characters used here are the original types, not those
643 * modified by the previous phase.
644 */
645 j=count-1;
646 while (j>0 && (getType(line[j].wc) == WS)) {
647 j--;
648 }
649 if (j < (count-1)) {
650 for (j++; j<count; j++)
651 levels[j] = paragraphLevel;
652 }
653 for (i=0; i<count; i++) {
654 tempType = getType(line[i].wc);
655 if (tempType == WS) {
656 j=i;
657 while (j<count && (getType(line[j].wc) == WS)) {
658 j++;
659 }
660 if (j==count || getType(line[j].wc) == B ||
661 getType(line[j].wc) == S) {
662 for (j--; j>=i ; j--) {
663 levels[j] = paragraphLevel;
664 }
665 }
666 } else if (tempType == B || tempType == S) {
667 levels[i] = paragraphLevel;
668 }
669 }
670
671 /* Rule (L4) NOT IMPLEMENTED
672 * L4. A character that possesses the mirrored property as specified by
673 * Section 4.7, Mirrored, must be depicted by a mirrored glyph if the
674 * resolved directionality of that character is R.
675 */
676 /* Note: this is implemented before L2 for efficiency */
677 for (i=0; i<count; i++)
678 if ((levels[i] % 2) == 1)
679 doMirror(&line[i].wc);
680
681 /* Rule (L2)
682 * L2. From the highest level found in the text to the lowest odd level on
683 * each line, including intermediate levels not actually present in the
684 * text, reverse any contiguous sequence of characters that are at that
685 * level or higher
686 */
687 /* we flip the character string and leave the level array */
688 imax = 0;
689 i=0;
690 tempType = levels[0];
691 while (i < count) {
692 if (levels[i] > tempType) {
693 tempType = levels[i];
694 imax=i;
695 }
696 i++;
697 }
698 /* maximum level in tempType, its index in imax. */
699 while (tempType > 0) { /* loop from highest level to the least odd, */
700 /* which i assume is 1 */
701 flipThisRun(line, levels, tempType, count);
702 tempType--;
703 }
704
705 /* Rule (L3) NOT IMPLEMENTED
706 * L3. Combining marks applied to a right-to-left base character will at
707 * this point precede their base character. If the rendering engine
708 * expects them to follow the base characters in the final display
709 * process, then the ordering of the marks and the base character must
710 * be reversed.
711 */
712 free(types);
713 free(levels);
714 return R;
715 }
716
717
718 /*
719 * Bad, Horrible function
720 * takes a pointer to a character that is checked for
721 * having a mirror glyph.
722 */
723 void doMirror(wchar_t* ch)
724 {
725 if ((*ch & 0xFF00) == 0) {
726 switch (*ch) {
727 case 0x0028: *ch = 0x0029; break;
728 case 0x0029: *ch = 0x0028; break;
729 case 0x003C: *ch = 0x003E; break;
730 case 0x003E: *ch = 0x003C; break;
731 case 0x005B: *ch = 0x005D; break;
732 case 0x005D: *ch = 0x005B; break;
733 case 0x007B: *ch = 0x007D; break;
734 case 0x007D: *ch = 0x007B; break;
735 case 0x00AB: *ch = 0x00BB; break;
736 case 0x00BB: *ch = 0x00AB; break;
737 }
738 } else if ((*ch & 0xFF00) == 0x2000) {
739 switch (*ch) {
740 case 0x2039: *ch = 0x203A; break;
741 case 0x203A: *ch = 0x2039; break;
742 case 0x2045: *ch = 0x2046; break;
743 case 0x2046: *ch = 0x2045; break;
744 case 0x207D: *ch = 0x207E; break;
745 case 0x207E: *ch = 0x207D; break;
746 case 0x208D: *ch = 0x208E; break;
747 case 0x208E: *ch = 0x208D; break;
748 }
749 } else if ((*ch & 0xFF00) == 0x2200) {
750 switch (*ch) {
751 case 0x2208: *ch = 0x220B; break;
752 case 0x2209: *ch = 0x220C; break;
753 case 0x220A: *ch = 0x220D; break;
754 case 0x220B: *ch = 0x2208; break;
755 case 0x220C: *ch = 0x2209; break;
756 case 0x220D: *ch = 0x220A; break;
757 case 0x2215: *ch = 0x29F5; break;
758 case 0x223C: *ch = 0x223D; break;
759 case 0x223D: *ch = 0x223C; break;
760 case 0x2243: *ch = 0x22CD; break;
761 case 0x2252: *ch = 0x2253; break;
762 case 0x2253: *ch = 0x2252; break;
763 case 0x2254: *ch = 0x2255; break;
764 case 0x2255: *ch = 0x2254; break;
765 case 0x2264: *ch = 0x2265; break;
766 case 0x2265: *ch = 0x2264; break;
767 case 0x2266: *ch = 0x2267; break;
768 case 0x2267: *ch = 0x2266; break;
769 case 0x2268: *ch = 0x2269; break;
770 case 0x2269: *ch = 0x2268; break;
771 case 0x226A: *ch = 0x226B; break;
772 case 0x226B: *ch = 0x226A; break;
773 case 0x226E: *ch = 0x226F; break;
774 case 0x226F: *ch = 0x226E; break;
775 case 0x2270: *ch = 0x2271; break;
776 case 0x2271: *ch = 0x2270; break;
777 case 0x2272: *ch = 0x2273; break;
778 case 0x2273: *ch = 0x2272; break;
779 case 0x2274: *ch = 0x2275; break;
780 case 0x2275: *ch = 0x2274; break;
781 case 0x2276: *ch = 0x2277; break;
782 case 0x2277: *ch = 0x2276; break;
783 case 0x2278: *ch = 0x2279; break;
784 case 0x2279: *ch = 0x2278; break;
785 case 0x227A: *ch = 0x227B; break;
786 case 0x227B: *ch = 0x227A; break;
787 case 0x227C: *ch = 0x227D; break;
788 case 0x227D: *ch = 0x227C; break;
789 case 0x227E: *ch = 0x227F; break;
790 case 0x227F: *ch = 0x227E; break;
791 case 0x2280: *ch = 0x2281; break;
792 case 0x2281: *ch = 0x2280; break;
793 case 0x2282: *ch = 0x2283; break;
794 case 0x2283: *ch = 0x2282; break;
795 case 0x2284: *ch = 0x2285; break;
796 case 0x2285: *ch = 0x2284; break;
797 case 0x2286: *ch = 0x2287; break;
798 case 0x2287: *ch = 0x2286; break;
799 case 0x2288: *ch = 0x2289; break;
800 case 0x2289: *ch = 0x2288; break;
801 case 0x228A: *ch = 0x228B; break;
802 case 0x228B: *ch = 0x228A; break;
803 case 0x228F: *ch = 0x2290; break;
804 case 0x2290: *ch = 0x228F; break;
805 case 0x2291: *ch = 0x2292; break;
806 case 0x2292: *ch = 0x2291; break;
807 case 0x2298: *ch = 0x29B8; break;
808 case 0x22A2: *ch = 0x22A3; break;
809 case 0x22A3: *ch = 0x22A2; break;
810 case 0x22A6: *ch = 0x2ADE; break;
811 case 0x22A8: *ch = 0x2AE4; break;
812 case 0x22A9: *ch = 0x2AE3; break;
813 case 0x22AB: *ch = 0x2AE5; break;
814 case 0x22B0: *ch = 0x22B1; break;
815 case 0x22B1: *ch = 0x22B0; break;
816 case 0x22B2: *ch = 0x22B3; break;
817 case 0x22B3: *ch = 0x22B2; break;
818 case 0x22B4: *ch = 0x22B5; break;
819 case 0x22B5: *ch = 0x22B4; break;
820 case 0x22B6: *ch = 0x22B7; break;
821 case 0x22B7: *ch = 0x22B6; break;
822 case 0x22C9: *ch = 0x22CA; break;
823 case 0x22CA: *ch = 0x22C9; break;
824 case 0x22CB: *ch = 0x22CC; break;
825 case 0x22CC: *ch = 0x22CB; break;
826 case 0x22CD: *ch = 0x2243; break;
827 case 0x22D0: *ch = 0x22D1; break;
828 case 0x22D1: *ch = 0x22D0; break;
829 case 0x22D6: *ch = 0x22D7; break;
830 case 0x22D7: *ch = 0x22D6; break;
831 case 0x22D8: *ch = 0x22D9; break;
832 case 0x22D9: *ch = 0x22D8; break;
833 case 0x22DA: *ch = 0x22DB; break;
834 case 0x22DB: *ch = 0x22DA; break;
835 case 0x22DC: *ch = 0x22DD; break;
836 case 0x22DD: *ch = 0x22DC; break;
837 case 0x22DE: *ch = 0x22DF; break;
838 case 0x22DF: *ch = 0x22DE; break;
839 case 0x22E0: *ch = 0x22E1; break;
840 case 0x22E1: *ch = 0x22E0; break;
841 case 0x22E2: *ch = 0x22E3; break;
842 case 0x22E3: *ch = 0x22E2; break;
843 case 0x22E4: *ch = 0x22E5; break;
844 case 0x22E5: *ch = 0x22E4; break;
845 case 0x22E6: *ch = 0x22E7; break;
846 case 0x22E7: *ch = 0x22E6; break;
847 case 0x22E8: *ch = 0x22E9; break;
848 case 0x22E9: *ch = 0x22E8; break;
849 case 0x22EA: *ch = 0x22EB; break;
850 case 0x22EB: *ch = 0x22EA; break;
851 case 0x22EC: *ch = 0x22ED; break;
852 case 0x22ED: *ch = 0x22EC; break;
853 case 0x22F0: *ch = 0x22F1; break;
854 case 0x22F1: *ch = 0x22F0; break;
855 case 0x22F2: *ch = 0x22FA; break;
856 case 0x22F3: *ch = 0x22FB; break;
857 case 0x22F4: *ch = 0x22FC; break;
858 case 0x22F6: *ch = 0x22FD; break;
859 case 0x22F7: *ch = 0x22FE; break;
860 case 0x22FA: *ch = 0x22F2; break;
861 case 0x22FB: *ch = 0x22F3; break;
862 case 0x22FC: *ch = 0x22F4; break;
863 case 0x22FD: *ch = 0x22F6; break;
864 case 0x22FE: *ch = 0x22F7; break;
865 }
866 } else if ((*ch & 0xFF00) == 0x2300) {
867 switch (*ch) {
868 case 0x2308: *ch = 0x2309; break;
869 case 0x2309: *ch = 0x2308; break;
870 case 0x230A: *ch = 0x230B; break;
871 case 0x230B: *ch = 0x230A; break;
872 case 0x2329: *ch = 0x232A; break;
873 case 0x232A: *ch = 0x2329; break;
874 }
875 } else if ((*ch & 0xFF00) == 0x2700) {
876 switch (*ch) {
877 case 0x2768: *ch = 0x2769; break;
878 case 0x2769: *ch = 0x2768; break;
879 case 0x276A: *ch = 0x276B; break;
880 case 0x276B: *ch = 0x276A; break;
881 case 0x276C: *ch = 0x276D; break;
882 case 0x276D: *ch = 0x276C; break;
883 case 0x276E: *ch = 0x276F; break;
884 case 0x276F: *ch = 0x276E; break;
885 case 0x2770: *ch = 0x2771; break;
886 case 0x2771: *ch = 0x2770; break;
887 case 0x2772: *ch = 0x2773; break;
888 case 0x2773: *ch = 0x2772; break;
889 case 0x2774: *ch = 0x2775; break;
890 case 0x2775: *ch = 0x2774; break;
891 case 0x27D5: *ch = 0x27D6; break;
892 case 0x27D6: *ch = 0x27D5; break;
893 case 0x27DD: *ch = 0x27DE; break;
894 case 0x27DE: *ch = 0x27DD; break;
895 case 0x27E2: *ch = 0x27E3; break;
896 case 0x27E3: *ch = 0x27E2; break;
897 case 0x27E4: *ch = 0x27E5; break;
898 case 0x27E5: *ch = 0x27E4; break;
899 case 0x27E6: *ch = 0x27E7; break;
900 case 0x27E7: *ch = 0x27E6; break;
901 case 0x27E8: *ch = 0x27E9; break;
902 case 0x27E9: *ch = 0x27E8; break;
903 case 0x27EA: *ch = 0x27EB; break;
904 case 0x27EB: *ch = 0x27EA; break;
905 }
906 } else if ((*ch & 0xFF00) == 0x2900) {
907 switch (*ch) {
908 case 0x2983: *ch = 0x2984; break;
909 case 0x2984: *ch = 0x2983; break;
910 case 0x2985: *ch = 0x2986; break;
911 case 0x2986: *ch = 0x2985; break;
912 case 0x2987: *ch = 0x2988; break;
913 case 0x2988: *ch = 0x2987; break;
914 case 0x2989: *ch = 0x298A; break;
915 case 0x298A: *ch = 0x2989; break;
916 case 0x298B: *ch = 0x298C; break;
917 case 0x298C: *ch = 0x298B; break;
918 case 0x298D: *ch = 0x2990; break;
919 case 0x298E: *ch = 0x298F; break;
920 case 0x298F: *ch = 0x298E; break;
921 case 0x2990: *ch = 0x298D; break;
922 case 0x2991: *ch = 0x2992; break;
923 case 0x2992: *ch = 0x2991; break;
924 case 0x2993: *ch = 0x2994; break;
925 case 0x2994: *ch = 0x2993; break;
926 case 0x2995: *ch = 0x2996; break;
927 case 0x2996: *ch = 0x2995; break;
928 case 0x2997: *ch = 0x2998; break;
929 case 0x2998: *ch = 0x2997; break;
930 case 0x29B8: *ch = 0x2298; break;
931 case 0x29C0: *ch = 0x29C1; break;
932 case 0x29C1: *ch = 0x29C0; break;
933 case 0x29C4: *ch = 0x29C5; break;
934 case 0x29C5: *ch = 0x29C4; break;
935 case 0x29CF: *ch = 0x29D0; break;
936 case 0x29D0: *ch = 0x29CF; break;
937 case 0x29D1: *ch = 0x29D2; break;
938 case 0x29D2: *ch = 0x29D1; break;
939 case 0x29D4: *ch = 0x29D5; break;
940 case 0x29D5: *ch = 0x29D4; break;
941 case 0x29D8: *ch = 0x29D9; break;
942 case 0x29D9: *ch = 0x29D8; break;
943 case 0x29DA: *ch = 0x29DB; break;
944 case 0x29DB: *ch = 0x29DA; break;
945 case 0x29F5: *ch = 0x2215; break;
946 case 0x29F8: *ch = 0x29F9; break;
947 case 0x29F9: *ch = 0x29F8; break;
948 case 0x29FC: *ch = 0x29FD; break;
949 case 0x29FD: *ch = 0x29FC; break;
950 }
951 } else if ((*ch & 0xFF00) == 0x2A00) {
952 switch (*ch) {
953 case 0x2A2B: *ch = 0x2A2C; break;
954 case 0x2A2C: *ch = 0x2A2B; break;
955 case 0x2A2D: *ch = 0x2A2C; break;
956 case 0x2A2E: *ch = 0x2A2D; break;
957 case 0x2A34: *ch = 0x2A35; break;
958 case 0x2A35: *ch = 0x2A34; break;
959 case 0x2A3C: *ch = 0x2A3D; break;
960 case 0x2A3D: *ch = 0x2A3C; break;
961 case 0x2A64: *ch = 0x2A65; break;
962 case 0x2A65: *ch = 0x2A64; break;
963 case 0x2A79: *ch = 0x2A7A; break;
964 case 0x2A7A: *ch = 0x2A79; break;
965 case 0x2A7D: *ch = 0x2A7E; break;
966 case 0x2A7E: *ch = 0x2A7D; break;
967 case 0x2A7F: *ch = 0x2A80; break;
968 case 0x2A80: *ch = 0x2A7F; break;
969 case 0x2A81: *ch = 0x2A82; break;
970 case 0x2A82: *ch = 0x2A81; break;
971 case 0x2A83: *ch = 0x2A84; break;
972 case 0x2A84: *ch = 0x2A83; break;
973 case 0x2A8B: *ch = 0x2A8C; break;
974 case 0x2A8C: *ch = 0x2A8B; break;
975 case 0x2A91: *ch = 0x2A92; break;
976 case 0x2A92: *ch = 0x2A91; break;
977 case 0x2A93: *ch = 0x2A94; break;
978 case 0x2A94: *ch = 0x2A93; break;
979 case 0x2A95: *ch = 0x2A96; break;
980 case 0x2A96: *ch = 0x2A95; break;
981 case 0x2A97: *ch = 0x2A98; break;
982 case 0x2A98: *ch = 0x2A97; break;
983 case 0x2A99: *ch = 0x2A9A; break;
984 case 0x2A9A: *ch = 0x2A99; break;
985 case 0x2A9B: *ch = 0x2A9C; break;
986 case 0x2A9C: *ch = 0x2A9B; break;
987 case 0x2AA1: *ch = 0x2AA2; break;
988 case 0x2AA2: *ch = 0x2AA1; break;
989 case 0x2AA6: *ch = 0x2AA7; break;
990 case 0x2AA7: *ch = 0x2AA6; break;
991 case 0x2AA8: *ch = 0x2AA9; break;
992 case 0x2AA9: *ch = 0x2AA8; break;
993 case 0x2AAA: *ch = 0x2AAB; break;
994 case 0x2AAB: *ch = 0x2AAA; break;
995 case 0x2AAC: *ch = 0x2AAD; break;
996 case 0x2AAD: *ch = 0x2AAC; break;
997 case 0x2AAF: *ch = 0x2AB0; break;
998 case 0x2AB0: *ch = 0x2AAF; break;
999 case 0x2AB3: *ch = 0x2AB4; break;
1000 case 0x2AB4: *ch = 0x2AB3; break;
1001 case 0x2ABB: *ch = 0x2ABC; break;
1002 case 0x2ABC: *ch = 0x2ABB; break;
1003 case 0x2ABD: *ch = 0x2ABE; break;
1004 case 0x2ABE: *ch = 0x2ABD; break;
1005 case 0x2ABF: *ch = 0x2AC0; break;
1006 case 0x2AC0: *ch = 0x2ABF; break;
1007 case 0x2AC1: *ch = 0x2AC2; break;
1008 case 0x2AC2: *ch = 0x2AC1; break;
1009 case 0x2AC3: *ch = 0x2AC4; break;
1010 case 0x2AC4: *ch = 0x2AC3; break;
1011 case 0x2AC5: *ch = 0x2AC6; break;
1012 case 0x2AC6: *ch = 0x2AC5; break;
1013 case 0x2ACD: *ch = 0x2ACE; break;
1014 case 0x2ACE: *ch = 0x2ACD; break;
1015 case 0x2ACF: *ch = 0x2AD0; break;
1016 case 0x2AD0: *ch = 0x2ACF; break;
1017 case 0x2AD1: *ch = 0x2AD2; break;
1018 case 0x2AD2: *ch = 0x2AD1; break;
1019 case 0x2AD3: *ch = 0x2AD4; break;
1020 case 0x2AD4: *ch = 0x2AD3; break;
1021 case 0x2AD5: *ch = 0x2AD6; break;
1022 case 0x2AD6: *ch = 0x2AD5; break;
1023 case 0x2ADE: *ch = 0x22A6; break;
1024 case 0x2AE3: *ch = 0x22A9; break;
1025 case 0x2AE4: *ch = 0x22A8; break;
1026 case 0x2AE5: *ch = 0x22AB; break;
1027 case 0x2AEC: *ch = 0x2AED; break;
1028 case 0x2AED: *ch = 0x2AEC; break;
1029 case 0x2AF7: *ch = 0x2AF8; break;
1030 case 0x2AF8: *ch = 0x2AF7; break;
1031 case 0x2AF9: *ch = 0x2AFA; break;
1032 case 0x2AFA: *ch = 0x2AF9; break;
1033 }
1034 } else if ((*ch & 0xFF00) == 0x3000) {
1035 switch (*ch) {
1036 case 0x3008: *ch = 0x3009; break;
1037 case 0x3009: *ch = 0x3008; break;
1038 case 0x300A: *ch = 0x300B; break;
1039 case 0x300B: *ch = 0x300A; break;
1040 case 0x300C: *ch = 0x300D; break;
1041 case 0x300D: *ch = 0x300C; break;
1042 case 0x300E: *ch = 0x300F; break;
1043 case 0x300F: *ch = 0x300E; break;
1044 case 0x3010: *ch = 0x3011; break;
1045 case 0x3011: *ch = 0x3010; break;
1046 case 0x3014: *ch = 0x3015; break;
1047 case 0x3015: *ch = 0x3014; break;
1048 case 0x3016: *ch = 0x3017; break;
1049 case 0x3017: *ch = 0x3016; break;
1050 case 0x3018: *ch = 0x3019; break;
1051 case 0x3019: *ch = 0x3018; break;
1052 case 0x301A: *ch = 0x301B; break;
1053 case 0x301B: *ch = 0x301A; break;
1054 }
1055 } else if ((*ch & 0xFF00) == 0xFF00) {
1056 switch (*ch) {
1057 case 0xFF08: *ch = 0xFF09; break;
1058 case 0xFF09: *ch = 0xFF08; break;
1059 case 0xFF1C: *ch = 0xFF1E; break;
1060 case 0xFF1E: *ch = 0xFF1C; break;
1061 case 0xFF3B: *ch = 0xFF3D; break;
1062 case 0xFF3D: *ch = 0xFF3B; break;
1063 case 0xFF5B: *ch = 0xFF5D; break;
1064 case 0xFF5D: *ch = 0xFF5B; break;
1065 case 0xFF5F: *ch = 0xFF60; break;
1066 case 0xFF60: *ch = 0xFF5F; break;
1067 case 0xFF62: *ch = 0xFF63; break;
1068 case 0xFF63: *ch = 0xFF62; break;
1069 }
1070 }
1071 }