c0e8232d9dbab20a41de3a108a974d4240963256
[u/mdw/putty] / windows / winhandl.c
1 /*
2 * winhandl.c: Module to give Windows front ends the general
3 * ability to deal with consoles, pipes, serial ports, or any other
4 * type of data stream accessed through a Windows API HANDLE rather
5 * than a WinSock SOCKET.
6 *
7 * We do this by spawning a subthread to continuously try to read
8 * from the handle. Every time a read successfully returns some
9 * data, the subthread sets an event object which is picked up by
10 * the main thread, and the main thread then sets an event in
11 * return to instruct the subthread to resume reading.
12 *
13 * Output works precisely the other way round, in a second
14 * subthread. The output subthread should not be attempting to
15 * write all the time, because it hasn't always got data _to_
16 * write; so the output thread waits for an event object notifying
17 * it to _attempt_ a write, and then it sets an event in return
18 * when one completes.
19 *
20 * (It's terribly annoying having to spawn a subthread for each
21 * direction of each handle. Technically it isn't necessary for
22 * serial ports, since we could use overlapped I/O within the main
23 * thread and wait directly on the event objects in the OVERLAPPED
24 * structures. However, we can't use this trick for some types of
25 * file handle at all - for some reason Windows restricts use of
26 * OVERLAPPED to files which were opened with the overlapped flag -
27 * and so we must use threads for those. This being the case, it's
28 * simplest just to use threads for everything rather than trying
29 * to keep track of multiple completely separate mechanisms.)
30 */
31
32 #include <assert.h>
33
34 #include "putty.h"
35
36 /* ----------------------------------------------------------------------
37 * Generic definitions.
38 */
39
40 /*
41 * Maximum amount of backlog we will allow to build up on an input
42 * handle before we stop reading from it.
43 */
44 #define MAX_BACKLOG 32768
45
46 struct handle_generic {
47 /*
48 * Initial fields common to both handle_input and handle_output
49 * structures.
50 *
51 * The three HANDLEs are set up at initialisation time and are
52 * thereafter read-only to both main thread and subthread.
53 * `moribund' is only used by the main thread; `done' is
54 * written by the main thread before signalling to the
55 * subthread. `defunct' and `busy' are used only by the main
56 * thread.
57 */
58 HANDLE h; /* the handle itself */
59 HANDLE ev_to_main; /* event used to signal main thread */
60 HANDLE ev_from_main; /* event used to signal back to us */
61 int moribund; /* are we going to kill this soon? */
62 int done; /* request subthread to terminate */
63 int defunct; /* has the subthread already gone? */
64 int busy; /* operation currently in progress? */
65 void *privdata; /* for client to remember who they are */
66 };
67
68 /* ----------------------------------------------------------------------
69 * Input threads.
70 */
71
72 /*
73 * Data required by an input thread.
74 */
75 struct handle_input {
76 /*
77 * Copy of the handle_generic structure.
78 */
79 HANDLE h; /* the handle itself */
80 HANDLE ev_to_main; /* event used to signal main thread */
81 HANDLE ev_from_main; /* event used to signal back to us */
82 int moribund; /* are we going to kill this soon? */
83 int done; /* request subthread to terminate */
84 int defunct; /* has the subthread already gone? */
85 int busy; /* operation currently in progress? */
86 void *privdata; /* for client to remember who they are */
87
88 /*
89 * Data set at initialisation and then read-only.
90 */
91 int flags;
92
93 /*
94 * Data set by the input thread before signalling ev_to_main,
95 * and read by the main thread after receiving that signal.
96 */
97 char buffer[4096]; /* the data read from the handle */
98 DWORD len; /* how much data that was */
99 int readerr; /* lets us know about read errors */
100
101 /*
102 * Callback function called by this module when data arrives on
103 * an input handle.
104 */
105 handle_inputfn_t gotdata;
106 };
107
108 /*
109 * The actual thread procedure for an input thread.
110 */
111 static DWORD WINAPI handle_input_threadfunc(void *param)
112 {
113 struct handle_input *ctx = (struct handle_input *) param;
114 OVERLAPPED ovl, *povl;
115 HANDLE oev;
116 int readret, readlen;
117
118 if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
119 povl = &ovl;
120 oev = CreateEvent(NULL, TRUE, FALSE, NULL);
121 } else {
122 povl = NULL;
123 }
124
125 if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
126 readlen = 1;
127 else
128 readlen = sizeof(ctx->buffer);
129
130 while (1) {
131 if (povl) {
132 memset(povl, 0, sizeof(OVERLAPPED));
133 povl->hEvent = oev;
134 }
135 readret = ReadFile(ctx->h, ctx->buffer,readlen, &ctx->len, povl);
136 if (!readret)
137 ctx->readerr = GetLastError();
138 else
139 ctx->readerr = 0;
140 if (povl && !readret && ctx->readerr == ERROR_IO_PENDING) {
141 WaitForSingleObject(povl->hEvent, INFINITE);
142 readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
143 if (!readret)
144 ctx->readerr = GetLastError();
145 else
146 ctx->readerr = 0;
147 }
148
149 if (!readret) {
150 /*
151 * Windows apparently sends ERROR_BROKEN_PIPE when a
152 * pipe we're reading from is closed normally from the
153 * writing end. This is ludicrous; if that situation
154 * isn't a natural EOF, _nothing_ is. So if we get that
155 * particular error, we pretend it's EOF.
156 */
157 if (ctx->readerr == ERROR_BROKEN_PIPE)
158 ctx->readerr = 0;
159 ctx->len = 0;
160 }
161
162 if (readret && ctx->len == 0 &&
163 (ctx->flags & HANDLE_FLAG_IGNOREEOF))
164 continue;
165
166 SetEvent(ctx->ev_to_main);
167
168 if (!ctx->len)
169 break;
170
171 WaitForSingleObject(ctx->ev_from_main, INFINITE);
172 if (ctx->done)
173 break; /* main thread told us to shut down */
174 }
175
176 if (povl)
177 CloseHandle(oev);
178
179 return 0;
180 }
181
182 /*
183 * This is called after a succcessful read, or from the
184 * `unthrottle' function. It decides whether or not to begin a new
185 * read operation.
186 */
187 static void handle_throttle(struct handle_input *ctx, int backlog)
188 {
189 if (ctx->defunct)
190 return;
191
192 /*
193 * If there's a read operation already in progress, do nothing:
194 * when that completes, we'll come back here and be in a
195 * position to make a better decision.
196 */
197 if (ctx->busy)
198 return;
199
200 /*
201 * Otherwise, we must decide whether to start a new read based
202 * on the size of the backlog.
203 */
204 if (backlog < MAX_BACKLOG) {
205 SetEvent(ctx->ev_from_main);
206 ctx->busy = TRUE;
207 }
208 }
209
210 /* ----------------------------------------------------------------------
211 * Output threads.
212 */
213
214 /*
215 * Data required by an output thread.
216 */
217 struct handle_output {
218 /*
219 * Copy of the handle_generic structure.
220 */
221 HANDLE h; /* the handle itself */
222 HANDLE ev_to_main; /* event used to signal main thread */
223 HANDLE ev_from_main; /* event used to signal back to us */
224 int moribund; /* are we going to kill this soon? */
225 int done; /* request subthread to terminate */
226 int defunct; /* has the subthread already gone? */
227 int busy; /* operation currently in progress? */
228 void *privdata; /* for client to remember who they are */
229
230 /*
231 * Data set at initialisation and then read-only.
232 */
233 int flags;
234
235 /*
236 * Data set by the main thread before signalling ev_from_main,
237 * and read by the input thread after receiving that signal.
238 */
239 char *buffer; /* the data to write */
240 DWORD len; /* how much data there is */
241
242 /*
243 * Data set by the input thread before signalling ev_to_main,
244 * and read by the main thread after receiving that signal.
245 */
246 DWORD lenwritten; /* how much data we actually wrote */
247 int writeerr; /* return value from WriteFile */
248
249 /*
250 * Data only ever read or written by the main thread.
251 */
252 bufchain queued_data; /* data still waiting to be written */
253
254 /*
255 * Callback function called when the backlog in the bufchain
256 * drops.
257 */
258 handle_outputfn_t sentdata;
259 };
260
261 static DWORD WINAPI handle_output_threadfunc(void *param)
262 {
263 struct handle_output *ctx = (struct handle_output *) param;
264 OVERLAPPED ovl, *povl;
265 HANDLE oev;
266 int writeret;
267
268 if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
269 povl = &ovl;
270 oev = CreateEvent(NULL, TRUE, FALSE, NULL);
271 } else {
272 povl = NULL;
273 }
274
275 while (1) {
276 WaitForSingleObject(ctx->ev_from_main, INFINITE);
277 if (ctx->done) {
278 SetEvent(ctx->ev_to_main);
279 break;
280 }
281 if (povl) {
282 memset(povl, 0, sizeof(OVERLAPPED));
283 povl->hEvent = oev;
284 }
285
286 writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
287 &ctx->lenwritten, povl);
288 if (!writeret)
289 ctx->writeerr = GetLastError();
290 else
291 ctx->writeerr = 0;
292 if (povl && !writeret && GetLastError() == ERROR_IO_PENDING) {
293 writeret = GetOverlappedResult(ctx->h, povl,
294 &ctx->lenwritten, TRUE);
295 if (!writeret)
296 ctx->writeerr = GetLastError();
297 else
298 ctx->writeerr = 0;
299 }
300
301 SetEvent(ctx->ev_to_main);
302 if (!writeret)
303 break;
304 }
305
306 if (povl)
307 CloseHandle(oev);
308
309 return 0;
310 }
311
312 static void handle_try_output(struct handle_output *ctx)
313 {
314 void *senddata;
315 int sendlen;
316
317 if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
318 bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
319 ctx->buffer = senddata;
320 ctx->len = sendlen;
321 SetEvent(ctx->ev_from_main);
322 ctx->busy = TRUE;
323 }
324 }
325
326 /* ----------------------------------------------------------------------
327 * Unified code handling both input and output threads.
328 */
329
330 struct handle {
331 int output;
332 union {
333 struct handle_generic g;
334 struct handle_input i;
335 struct handle_output o;
336 } u;
337 };
338
339 static tree234 *handles_by_evtomain;
340
341 static int handle_cmp_evtomain(void *av, void *bv)
342 {
343 struct handle *a = (struct handle *)av;
344 struct handle *b = (struct handle *)bv;
345
346 if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
347 return -1;
348 else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
349 return +1;
350 else
351 return 0;
352 }
353
354 static int handle_find_evtomain(void *av, void *bv)
355 {
356 HANDLE *a = (HANDLE *)av;
357 struct handle *b = (struct handle *)bv;
358
359 if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
360 return -1;
361 else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
362 return +1;
363 else
364 return 0;
365 }
366
367 struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
368 void *privdata, int flags)
369 {
370 struct handle *h = snew(struct handle);
371 DWORD in_threadid; /* required for Win9x */
372
373 h->output = FALSE;
374 h->u.i.h = handle;
375 h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
376 h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
377 h->u.i.gotdata = gotdata;
378 h->u.i.defunct = FALSE;
379 h->u.i.moribund = FALSE;
380 h->u.i.done = FALSE;
381 h->u.i.privdata = privdata;
382 h->u.i.flags = flags;
383
384 if (!handles_by_evtomain)
385 handles_by_evtomain = newtree234(handle_cmp_evtomain);
386 add234(handles_by_evtomain, h);
387
388 CreateThread(NULL, 0, handle_input_threadfunc,
389 &h->u.i, 0, &in_threadid);
390 h->u.i.busy = TRUE;
391
392 return h;
393 }
394
395 struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
396 void *privdata, int flags)
397 {
398 struct handle *h = snew(struct handle);
399 DWORD out_threadid; /* required for Win9x */
400
401 h->output = TRUE;
402 h->u.o.h = handle;
403 h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
404 h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
405 h->u.o.busy = FALSE;
406 h->u.o.defunct = FALSE;
407 h->u.o.moribund = FALSE;
408 h->u.o.done = FALSE;
409 h->u.o.privdata = privdata;
410 bufchain_init(&h->u.o.queued_data);
411 h->u.o.sentdata = sentdata;
412 h->u.o.flags = flags;
413
414 if (!handles_by_evtomain)
415 handles_by_evtomain = newtree234(handle_cmp_evtomain);
416 add234(handles_by_evtomain, h);
417
418 CreateThread(NULL, 0, handle_output_threadfunc,
419 &h->u.o, 0, &out_threadid);
420
421 return h;
422 }
423
424 int handle_write(struct handle *h, const void *data, int len)
425 {
426 assert(h->output);
427 bufchain_add(&h->u.o.queued_data, data, len);
428 handle_try_output(&h->u.o);
429 return bufchain_size(&h->u.o.queued_data);
430 }
431
432 HANDLE *handle_get_events(int *nevents)
433 {
434 HANDLE *ret;
435 struct handle *h;
436 int i, n, size;
437
438 /*
439 * Go through our tree counting the handle objects currently
440 * engaged in useful activity.
441 */
442 ret = NULL;
443 n = size = 0;
444 if (handles_by_evtomain) {
445 for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
446 if (h->u.g.busy) {
447 if (n >= size) {
448 size += 32;
449 ret = sresize(ret, size, HANDLE);
450 }
451 ret[n++] = h->u.g.ev_to_main;
452 }
453 }
454 }
455
456 *nevents = n;
457 return ret;
458 }
459
460 static void handle_destroy(struct handle *h)
461 {
462 if (h->output)
463 bufchain_clear(&h->u.o.queued_data);
464 CloseHandle(h->u.g.ev_from_main);
465 CloseHandle(h->u.g.ev_to_main);
466 del234(handles_by_evtomain, h);
467 sfree(h);
468 }
469
470 void handle_free(struct handle *h)
471 {
472 /*
473 * If the handle is currently busy, we cannot immediately free
474 * it. Instead we must wait until it's finished its current
475 * operation, because otherwise the subthread will write to
476 * invalid memory after we free its context from under it.
477 */
478 assert(h && !h->u.g.moribund);
479 if (h->u.g.busy) {
480 /*
481 * Just set the moribund flag, which will be noticed next
482 * time an operation completes.
483 */
484 h->u.g.moribund = TRUE;
485 } else if (h->u.g.defunct) {
486 /*
487 * There isn't even a subthread; we can go straight to
488 * handle_destroy.
489 */
490 handle_destroy(h);
491 } else {
492 /*
493 * The subthread is alive but not busy, so we now signal it
494 * to die. Set the moribund flag to indicate that it will
495 * want destroying after that.
496 */
497 h->u.g.moribund = TRUE;
498 h->u.g.done = TRUE;
499 h->u.g.busy = TRUE;
500 SetEvent(h->u.g.ev_from_main);
501 }
502 }
503
504 void handle_got_event(HANDLE event)
505 {
506 struct handle *h;
507
508 assert(handles_by_evtomain);
509 h = find234(handles_by_evtomain, &event, handle_find_evtomain);
510 if (!h) {
511 /*
512 * This isn't an error condition. If two or more event
513 * objects were signalled during the same select operation,
514 * and processing of the first caused the second handle to
515 * be closed, then it will sometimes happen that we receive
516 * an event notification here for a handle which is already
517 * deceased. In that situation we simply do nothing.
518 */
519 return;
520 }
521
522 if (h->u.g.moribund) {
523 /*
524 * A moribund handle is already treated as dead from the
525 * external user's point of view, so do nothing with the
526 * actual event. Just signal the thread to die if
527 * necessary, or destroy the handle if not.
528 */
529 if (h->u.g.done) {
530 handle_destroy(h);
531 } else {
532 h->u.g.done = TRUE;
533 h->u.g.busy = TRUE;
534 SetEvent(h->u.g.ev_from_main);
535 }
536 return;
537 }
538
539 if (!h->output) {
540 int backlog;
541
542 h->u.i.busy = FALSE;
543
544 /*
545 * A signal on an input handle means data has arrived.
546 */
547 if (h->u.i.len == 0) {
548 /*
549 * EOF, or (nearly equivalently) read error.
550 */
551 h->u.i.gotdata(h, NULL, -h->u.i.readerr);
552 h->u.i.defunct = TRUE;
553 } else {
554 backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
555 handle_throttle(&h->u.i, backlog);
556 }
557 } else {
558 h->u.o.busy = FALSE;
559
560 /*
561 * A signal on an output handle means we have completed a
562 * write. Call the callback to indicate that the output
563 * buffer size has decreased, or to indicate an error.
564 */
565 if (h->u.o.writeerr) {
566 /*
567 * Write error. Send a negative value to the callback,
568 * and mark the thread as defunct (because the output
569 * thread is terminating by now).
570 */
571 h->u.o.sentdata(h, -h->u.o.writeerr);
572 h->u.o.defunct = TRUE;
573 } else {
574 bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
575 h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
576 handle_try_output(&h->u.o);
577 }
578 }
579 }
580
581 void handle_unthrottle(struct handle *h, int backlog)
582 {
583 assert(!h->output);
584 handle_throttle(&h->u.i, backlog);
585 }
586
587 int handle_backlog(struct handle *h)
588 {
589 assert(h->output);
590 return bufchain_size(&h->u.o.queued_data);
591 }
592
593 void *handle_get_privdata(struct handle *h)
594 {
595 return h->u.g.privdata;
596 }