Support for doing DNS at the proxy end. I've invented a new type of
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18
19 #define DEFINE_PLUG_METHOD_MACROS
20 #include "putty.h"
21 #include "network.h"
22 #include "tree234.h"
23
24 #define ipv4_is_loopback(addr) (inet_netof(addr) == IN_LOOPBACKNET)
25
26 struct Socket_tag {
27 struct socket_function_table *fn;
28 /* the above variable absolutely *must* be the first in this structure */
29 char *error;
30 int s;
31 Plug plug;
32 void *private_ptr;
33 bufchain output_data;
34 int connected;
35 int writable;
36 int frozen; /* this causes readability notifications to be ignored */
37 int frozen_readable; /* this means we missed at least one readability
38 * notification while we were frozen */
39 int localhost_only; /* for listening sockets */
40 char oobdata[1];
41 int sending_oob;
42 int oobpending; /* is there OOB data available to read? */
43 int oobinline;
44 int pending_error; /* in case send() returns error */
45 int listener;
46 };
47
48 /*
49 * We used to typedef struct Socket_tag *Socket.
50 *
51 * Since we have made the networking abstraction slightly more
52 * abstract, Socket no longer means a tcp socket (it could mean
53 * an ssl socket). So now we must use Actual_Socket when we know
54 * we are talking about a tcp socket.
55 */
56 typedef struct Socket_tag *Actual_Socket;
57
58 struct SockAddr_tag {
59 char *error;
60 /*
61 * Which address family this address belongs to. AF_INET for
62 * IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
63 * resolution has not been done and a simple host name is held
64 * in this SockAddr structure.
65 */
66 int family;
67 unsigned long address; /* Address IPv4 style. */
68 #ifdef IPV6
69 struct addrinfo *ai; /* Address IPv6 style. */
70 #endif
71 char hostname[512]; /* Store an unresolved host name. */
72 };
73
74 static tree234 *sktree;
75
76 static int cmpfortree(void *av, void *bv)
77 {
78 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
79 int as = a->s, bs = b->s;
80 if (as < bs)
81 return -1;
82 if (as > bs)
83 return +1;
84 return 0;
85 }
86
87 static int cmpforsearch(void *av, void *bv)
88 {
89 Actual_Socket b = (Actual_Socket) bv;
90 int as = (int) av, bs = b->s;
91 if (as < bs)
92 return -1;
93 if (as > bs)
94 return +1;
95 return 0;
96 }
97
98 void sk_init(void)
99 {
100 sktree = newtree234(cmpfortree);
101 }
102
103 void sk_cleanup(void)
104 {
105 Actual_Socket s;
106 int i;
107
108 if (sktree) {
109 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
110 close(s->s);
111 }
112 }
113 }
114
115 char *error_string(int error)
116 {
117 return strerror(error);
118 }
119
120 SockAddr sk_namelookup(char *host, char **canonicalname)
121 {
122 SockAddr ret = smalloc(sizeof(struct SockAddr_tag));
123 unsigned long a;
124 struct hostent *h = NULL;
125 char realhost[8192];
126
127 /* Clear the structure and default to IPv4. */
128 memset(ret, 0, sizeof(struct SockAddr_tag));
129 ret->family = 0; /* We set this one when we have resolved the host. */
130 *realhost = '\0';
131 ret->error = NULL;
132
133 if ((a = inet_addr(host)) == (unsigned long) INADDR_NONE) {
134 #ifdef IPV6
135 if (getaddrinfo(host, NULL, NULL, &ret->ai) == 0) {
136 ret->family = ret->ai->ai_family;
137 } else
138 #endif
139 {
140 /*
141 * Otherwise use the IPv4-only gethostbyname... (NOTE:
142 * we don't use gethostbyname as a fallback!)
143 */
144 if (ret->family == 0) {
145 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
146 if ( (h = gethostbyname(host)) )
147 ret->family = AF_INET;
148 }
149 if (ret->family == 0) {
150 ret->error = (h_errno == HOST_NOT_FOUND ||
151 h_errno == NO_DATA ||
152 h_errno == NO_ADDRESS ? "Host does not exist" :
153 h_errno == TRY_AGAIN ?
154 "Temporary name service failure" :
155 "gethostbyname: unknown error");
156 return ret;
157 }
158 }
159
160 #ifdef IPV6
161 /* If we got an address info use that... */
162 if (ret->ai) {
163
164 /* Are we in IPv4 fallback mode? */
165 /* We put the IPv4 address into the a variable so we can further-on use the IPv4 code... */
166 if (ret->family == AF_INET)
167 memcpy(&a,
168 (char *) &((struct sockaddr_in *) ret->ai->
169 ai_addr)->sin_addr, sizeof(a));
170
171 /* Now let's find that canonicalname... */
172 if (getnameinfo((struct sockaddr *) ret->ai->ai_addr,
173 ret->family ==
174 AF_INET ? sizeof(struct sockaddr_in) :
175 sizeof(struct sockaddr_in6), realhost,
176 sizeof(realhost), NULL, 0, 0) != 0) {
177 strncpy(realhost, host, sizeof(realhost));
178 }
179 }
180 /* We used the IPv4-only gethostbyname()... */
181 else
182 #endif
183 {
184 memcpy(&a, h->h_addr, sizeof(a));
185 /* This way we are always sure the h->h_name is valid :) */
186 strncpy(realhost, h->h_name, sizeof(realhost));
187 }
188 } else {
189 /*
190 * This must be a numeric IPv4 address because it caused a
191 * success return from inet_addr.
192 */
193 ret->family = AF_INET;
194 strncpy(realhost, host, sizeof(realhost));
195 }
196 ret->address = ntohl(a);
197 realhost[lenof(realhost)-1] = '\0';
198 *canonicalname = smalloc(1+strlen(realhost));
199 strcpy(*canonicalname, realhost);
200 return ret;
201 }
202
203 SockAddr sk_nonamelookup(char *host)
204 {
205 SockAddr ret = smalloc(sizeof(struct SockAddr_tag));
206 ret->family = AF_UNSPEC;
207 strncpy(ret->hostname, host, lenof(ret->hostname));
208 ret->hostname[lenof(ret->hostname)-1] = '\0';
209 return ret;
210 }
211
212 void sk_getaddr(SockAddr addr, char *buf, int buflen)
213 {
214 #ifdef IPV6
215 if (addr->family == AF_INET6) {
216 FIXME; /* I don't know how to get a text form of an IPv6 address. */
217 } else
218 #endif
219 if (addr->family == AF_INET) {
220 struct in_addr a;
221 a.s_addr = htonl(addr->address);
222 strncpy(buf, inet_ntoa(a), buflen);
223 buf[buflen-1] = '\0';
224 } else {
225 assert(addr->family == AF_UNSPEC);
226 strncpy(buf, addr->hostname, buflen);
227 buf[buflen-1] = '\0';
228 }
229 }
230
231 int sk_hostname_is_local(char *name)
232 {
233 return !strcmp(name, "localhost");
234 }
235
236 int sk_address_is_local(SockAddr addr)
237 {
238 #ifdef IPV6
239 if (addr->family == AF_INET6) {
240 FIXME; /* someone who can compile for IPV6 had better do this bit */
241 } else
242 #endif
243 if (addr->family == AF_INET) {
244 struct in_addr a;
245 a.s_addr = htonl(addr->address);
246 return ipv4_is_loopback(a);
247 } else {
248 assert(addr->family == AF_UNSPEC);
249 return 0; /* we don't know; assume not */
250 }
251 }
252
253 int sk_addrtype(SockAddr addr)
254 {
255 return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
256 #ifdef IPV6
257 addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
258 #endif
259 ADDRTYPE_NAME);
260 }
261
262 void sk_addrcopy(SockAddr addr, char *buf)
263 {
264 assert(addr->family != AF_UNSPEC);
265 #ifdef IPV6
266 if (addr->family == AF_INET6) {
267 memcpy(buf, (char*) addr->ai, 16);
268 } else
269 #endif
270 if (addr->family == AF_INET) {
271 struct in_addr a;
272 a.s_addr = htonl(addr->address);
273 memcpy(buf, (char*) &a.s_addr, 4);
274 }
275 }
276
277 void sk_addr_free(SockAddr addr)
278 {
279 sfree(addr);
280 }
281
282 static Plug sk_tcp_plug(Socket sock, Plug p)
283 {
284 Actual_Socket s = (Actual_Socket) sock;
285 Plug ret = s->plug;
286 if (p)
287 s->plug = p;
288 return ret;
289 }
290
291 static void sk_tcp_flush(Socket s)
292 {
293 /*
294 * We send data to the socket as soon as we can anyway,
295 * so we don't need to do anything here. :-)
296 */
297 }
298
299 static void sk_tcp_close(Socket s);
300 static int sk_tcp_write(Socket s, char *data, int len);
301 static int sk_tcp_write_oob(Socket s, char *data, int len);
302 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
303 static void *sk_tcp_get_private_ptr(Socket s);
304 static void sk_tcp_set_frozen(Socket s, int is_frozen);
305 static char *sk_tcp_socket_error(Socket s);
306
307 Socket sk_register(void *sock, Plug plug)
308 {
309 static struct socket_function_table fn_table = {
310 sk_tcp_plug,
311 sk_tcp_close,
312 sk_tcp_write,
313 sk_tcp_write_oob,
314 sk_tcp_flush,
315 sk_tcp_set_private_ptr,
316 sk_tcp_get_private_ptr,
317 sk_tcp_set_frozen,
318 sk_tcp_socket_error
319 };
320
321 Actual_Socket ret;
322
323 /*
324 * Create Socket structure.
325 */
326 ret = smalloc(sizeof(struct Socket_tag));
327 ret->fn = &fn_table;
328 ret->error = NULL;
329 ret->plug = plug;
330 bufchain_init(&ret->output_data);
331 ret->writable = 1; /* to start with */
332 ret->sending_oob = 0;
333 ret->frozen = 1;
334 ret->frozen_readable = 0;
335 ret->localhost_only = 0; /* unused, but best init anyway */
336 ret->pending_error = 0;
337 ret->oobpending = FALSE;
338 ret->listener = 0;
339
340 ret->s = (int)sock;
341
342 if (ret->s < 0) {
343 ret->error = error_string(errno);
344 return (Socket) ret;
345 }
346
347 ret->oobinline = 0;
348
349 add234(sktree, ret);
350
351 return (Socket) ret;
352 }
353
354 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
355 int nodelay, Plug plug)
356 {
357 static struct socket_function_table fn_table = {
358 sk_tcp_plug,
359 sk_tcp_close,
360 sk_tcp_write,
361 sk_tcp_write_oob,
362 sk_tcp_flush,
363 sk_tcp_set_private_ptr,
364 sk_tcp_get_private_ptr,
365 sk_tcp_set_frozen,
366 sk_tcp_socket_error
367 };
368
369 int s;
370 #ifdef IPV6
371 struct sockaddr_in6 a6;
372 #endif
373 struct sockaddr_in a;
374 int err;
375 Actual_Socket ret;
376 short localport;
377
378 /*
379 * Create Socket structure.
380 */
381 ret = smalloc(sizeof(struct Socket_tag));
382 ret->fn = &fn_table;
383 ret->error = NULL;
384 ret->plug = plug;
385 bufchain_init(&ret->output_data);
386 ret->connected = 0; /* to start with */
387 ret->writable = 0; /* to start with */
388 ret->sending_oob = 0;
389 ret->frozen = 0;
390 ret->frozen_readable = 0;
391 ret->localhost_only = 0; /* unused, but best init anyway */
392 ret->pending_error = 0;
393 ret->oobpending = FALSE;
394 ret->listener = 0;
395
396 /*
397 * Open socket.
398 */
399 assert(addr->family != AF_UNSPEC);
400 s = socket(addr->family, SOCK_STREAM, 0);
401 ret->s = s;
402
403 if (s < 0) {
404 ret->error = error_string(errno);
405 return (Socket) ret;
406 }
407
408 ret->oobinline = oobinline;
409 if (oobinline) {
410 int b = TRUE;
411 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
412 }
413
414 if (nodelay) {
415 int b = TRUE;
416 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
417 }
418
419 /*
420 * Bind to local address.
421 */
422 if (privport)
423 localport = 1023; /* count from 1023 downwards */
424 else
425 localport = 0; /* just use port 0 (ie kernel picks) */
426
427 /* Loop round trying to bind */
428 while (1) {
429 int retcode;
430
431 #ifdef IPV6
432 if (addr->family == AF_INET6) {
433 memset(&a6, 0, sizeof(a6));
434 a6.sin6_family = AF_INET6;
435 /*a6.sin6_addr = in6addr_any; *//* == 0 */
436 a6.sin6_port = htons(localport);
437 } else
438 #endif
439 {
440 a.sin_family = AF_INET;
441 a.sin_addr.s_addr = htonl(INADDR_ANY);
442 a.sin_port = htons(localport);
443 }
444 #ifdef IPV6
445 retcode = bind(s, (addr->family == AF_INET6 ?
446 (struct sockaddr *) &a6 :
447 (struct sockaddr *) &a),
448 (addr->family ==
449 AF_INET6 ? sizeof(a6) : sizeof(a)));
450 #else
451 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
452 #endif
453 if (retcode >= 0) {
454 err = 0;
455 break; /* done */
456 } else {
457 err = errno;
458 if (err != EADDRINUSE) /* failed, for a bad reason */
459 break;
460 }
461
462 if (localport == 0)
463 break; /* we're only looping once */
464 localport--;
465 if (localport == 0)
466 break; /* we might have got to the end */
467 }
468
469 if (err) {
470 ret->error = error_string(err);
471 return (Socket) ret;
472 }
473
474 /*
475 * Connect to remote address.
476 */
477 #ifdef IPV6
478 if (addr->family == AF_INET6) {
479 memset(&a, 0, sizeof(a));
480 a6.sin6_family = AF_INET6;
481 a6.sin6_port = htons((short) port);
482 a6.sin6_addr =
483 ((struct sockaddr_in6 *) addr->ai->ai_addr)->sin6_addr;
484 } else
485 #endif
486 {
487 a.sin_family = AF_INET;
488 a.sin_addr.s_addr = htonl(addr->address);
489 a.sin_port = htons((short) port);
490 }
491
492 if ((
493 #ifdef IPV6
494 connect(s, ((addr->family == AF_INET6) ?
495 (struct sockaddr *) &a6 : (struct sockaddr *) &a),
496 (addr->family == AF_INET6) ? sizeof(a6) : sizeof(a))
497 #else
498 connect(s, (struct sockaddr *) &a, sizeof(a))
499 #endif
500 ) < 0) {
501 /*
502 * FIXME: We are prepared to receive EWOULDBLOCK here,
503 * because we might want the connection to be made
504 * asynchronously; but how do we actually arrange this in
505 * Unix? I forget.
506 */
507 if ( errno != EWOULDBLOCK ) {
508 ret->error = error_string(errno);
509 return (Socket) ret;
510 }
511 } else {
512 /*
513 * If we _don't_ get EWOULDBLOCK, the connect has completed
514 * and we should set the socket as connected and writable.
515 */
516 ret->connected = 1;
517 ret->writable = 1;
518 }
519
520 add234(sktree, ret);
521
522 return (Socket) ret;
523 }
524
525 Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only)
526 {
527 static struct socket_function_table fn_table = {
528 sk_tcp_plug,
529 sk_tcp_close,
530 sk_tcp_write,
531 sk_tcp_write_oob,
532 sk_tcp_flush,
533 sk_tcp_set_private_ptr,
534 sk_tcp_get_private_ptr,
535 sk_tcp_set_frozen,
536 sk_tcp_socket_error
537 };
538
539 int s;
540 #ifdef IPV6
541 struct sockaddr_in6 a6;
542 #endif
543 struct sockaddr_in a;
544 int err;
545 Actual_Socket ret;
546 int retcode;
547 int on = 1;
548
549 /*
550 * Create Socket structure.
551 */
552 ret = smalloc(sizeof(struct Socket_tag));
553 ret->fn = &fn_table;
554 ret->error = NULL;
555 ret->plug = plug;
556 bufchain_init(&ret->output_data);
557 ret->writable = 0; /* to start with */
558 ret->sending_oob = 0;
559 ret->frozen = 0;
560 ret->frozen_readable = 0;
561 ret->localhost_only = local_host_only;
562 ret->pending_error = 0;
563 ret->oobpending = FALSE;
564 ret->listener = 1;
565
566 /*
567 * Open socket.
568 */
569 s = socket(AF_INET, SOCK_STREAM, 0);
570 ret->s = s;
571
572 if (s < 0) {
573 ret->error = error_string(errno);
574 return (Socket) ret;
575 }
576
577 ret->oobinline = 0;
578
579 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
580
581 #ifdef IPV6
582 if (addr->family == AF_INET6) {
583 memset(&a6, 0, sizeof(a6));
584 a6.sin6_family = AF_INET6;
585 /* FIXME: srcaddr is ignored for IPv6, because I (SGT) don't
586 * know how to do it. :-) */
587 if (local_host_only)
588 a6.sin6_addr = in6addr_loopback;
589 else
590 a6.sin6_addr = in6addr_any;
591 a6.sin6_port = htons(port);
592 } else
593 #endif
594 {
595 int got_addr = 0;
596 a.sin_family = AF_INET;
597
598 /*
599 * Bind to source address. First try an explicitly
600 * specified one...
601 */
602 if (srcaddr) {
603 a.sin_addr.s_addr = inet_addr(srcaddr);
604 if (a.sin_addr.s_addr != INADDR_NONE) {
605 /* Override localhost_only with specified listen addr. */
606 ret->localhost_only = ipv4_is_loopback(a.sin_addr);
607 got_addr = 1;
608 }
609 }
610
611 /*
612 * ... and failing that, go with one of the standard ones.
613 */
614 if (!got_addr) {
615 if (local_host_only)
616 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
617 else
618 a.sin_addr.s_addr = htonl(INADDR_ANY);
619 }
620
621 a.sin_port = htons((short)port);
622 }
623 #ifdef IPV6
624 retcode = bind(s, (addr->family == AF_INET6 ?
625 (struct sockaddr *) &a6 :
626 (struct sockaddr *) &a),
627 (addr->family ==
628 AF_INET6 ? sizeof(a6) : sizeof(a)));
629 #else
630 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
631 #endif
632 if (retcode >= 0) {
633 err = 0;
634 } else {
635 err = errno;
636 }
637
638 if (err) {
639 ret->error = error_string(err);
640 return (Socket) ret;
641 }
642
643
644 if (listen(s, SOMAXCONN) < 0) {
645 close(s);
646 ret->error = error_string(errno);
647 return (Socket) ret;
648 }
649
650 add234(sktree, ret);
651
652 return (Socket) ret;
653 }
654
655 static void sk_tcp_close(Socket sock)
656 {
657 Actual_Socket s = (Actual_Socket) sock;
658
659 del234(sktree, s);
660 close(s->s);
661 sfree(s);
662 }
663
664 /*
665 * The function which tries to send on a socket once it's deemed
666 * writable.
667 */
668 void try_send(Actual_Socket s)
669 {
670 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
671 int nsent;
672 int err;
673 void *data;
674 int len, urgentflag;
675
676 if (s->sending_oob) {
677 urgentflag = MSG_OOB;
678 len = s->sending_oob;
679 data = &s->oobdata;
680 } else {
681 urgentflag = 0;
682 bufchain_prefix(&s->output_data, &data, &len);
683 }
684 nsent = send(s->s, data, len, urgentflag);
685 noise_ultralight(nsent);
686 if (nsent <= 0) {
687 err = (nsent < 0 ? errno : 0);
688 if (err == EWOULDBLOCK) {
689 /*
690 * Perfectly normal: we've sent all we can for the moment.
691 */
692 s->writable = FALSE;
693 return;
694 } else if (nsent == 0 ||
695 err == ECONNABORTED || err == ECONNRESET) {
696 /*
697 * If send() returns CONNABORTED or CONNRESET, we
698 * unfortunately can't just call plug_closing(),
699 * because it's quite likely that we're currently
700 * _in_ a call from the code we'd be calling back
701 * to, so we'd have to make half the SSH code
702 * reentrant. Instead we flag a pending error on
703 * the socket, to be dealt with (by calling
704 * plug_closing()) at some suitable future moment.
705 */
706 s->pending_error = err;
707 return;
708 } else {
709 /* We're inside the Unix frontend here, so we know
710 * that the frontend handle is unnecessary. */
711 logevent(NULL, error_string(err));
712 fatalbox("%s", error_string(err));
713 }
714 } else {
715 if (s->sending_oob) {
716 if (nsent < len) {
717 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
718 s->sending_oob = len - nsent;
719 } else {
720 s->sending_oob = 0;
721 }
722 } else {
723 bufchain_consume(&s->output_data, nsent);
724 }
725 }
726 }
727 }
728
729 static int sk_tcp_write(Socket sock, char *buf, int len)
730 {
731 Actual_Socket s = (Actual_Socket) sock;
732
733 /*
734 * Add the data to the buffer list on the socket.
735 */
736 bufchain_add(&s->output_data, buf, len);
737
738 /*
739 * Now try sending from the start of the buffer list.
740 */
741 if (s->writable)
742 try_send(s);
743
744 return bufchain_size(&s->output_data);
745 }
746
747 static int sk_tcp_write_oob(Socket sock, char *buf, int len)
748 {
749 Actual_Socket s = (Actual_Socket) sock;
750
751 /*
752 * Replace the buffer list on the socket with the data.
753 */
754 bufchain_clear(&s->output_data);
755 assert(len <= sizeof(s->oobdata));
756 memcpy(s->oobdata, buf, len);
757 s->sending_oob = len;
758
759 /*
760 * Now try sending from the start of the buffer list.
761 */
762 if (s->writable)
763 try_send(s);
764
765 return s->sending_oob;
766 }
767
768 int select_result(int fd, int event)
769 {
770 int ret;
771 int err;
772 char buf[20480]; /* nice big buffer for plenty of speed */
773 Actual_Socket s;
774 u_long atmark;
775
776 /* Find the Socket structure */
777 s = find234(sktree, (void *) fd, cmpforsearch);
778 if (!s)
779 return 1; /* boggle */
780
781 noise_ultralight(event);
782
783 switch (event) {
784 #ifdef FIXME_NONBLOCKING_CONNECTIONS
785 case FIXME: /* connected */
786 s->connected = s->writable = 1;
787 break;
788 #endif
789 case 4: /* exceptional */
790 if (!s->oobinline) {
791 /*
792 * On a non-oobinline socket, this indicates that we
793 * can immediately perform an OOB read and get back OOB
794 * data, which we will send to the back end with
795 * type==2 (urgent data).
796 */
797 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
798 noise_ultralight(ret);
799 if (ret <= 0) {
800 char *str = (ret == 0 ? "Internal networking trouble" :
801 error_string(errno));
802 /* We're inside the Unix frontend here, so we know
803 * that the frontend handle is unnecessary. */
804 logevent(NULL, str);
805 fatalbox("%s", str);
806 } else {
807 return plug_receive(s->plug, 2, buf, ret);
808 }
809 break;
810 }
811
812 /*
813 * If we reach here, this is an oobinline socket, which
814 * means we should set s->oobpending and then deal with it
815 * when we get called for the readability event (which
816 * should also occur).
817 */
818 s->oobpending = TRUE;
819 break;
820 case 1: /* readable; also acceptance */
821 if (s->listener) {
822 /*
823 * On a listening socket, the readability event means a
824 * connection is ready to be accepted.
825 */
826 struct sockaddr_in isa;
827 int addrlen = sizeof(struct sockaddr_in);
828 int t; /* socket of connection */
829
830 memset(&isa, 0, sizeof(struct sockaddr_in));
831 err = 0;
832 t = accept(s->s,(struct sockaddr *)&isa,&addrlen);
833 if (t < 0) {
834 break;
835 }
836
837 if (s->localhost_only && !ipv4_is_loopback(isa.sin_addr)) {
838 close(t); /* someone let nonlocal through?! */
839 } else if (plug_accepting(s->plug, (void*)t)) {
840 close(t); /* denied or error */
841 }
842 break;
843 }
844
845 /*
846 * If we reach here, this is not a listening socket, so
847 * readability really means readability.
848 */
849
850 /* In the case the socket is still frozen, we don't even bother */
851 if (s->frozen) {
852 s->frozen_readable = 1;
853 break;
854 }
855
856 /*
857 * We have received data on the socket. For an oobinline
858 * socket, this might be data _before_ an urgent pointer,
859 * in which case we send it to the back end with type==1
860 * (data prior to urgent).
861 */
862 if (s->oobinline && s->oobpending) {
863 atmark = 1;
864 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
865 s->oobpending = FALSE; /* clear this indicator */
866 } else
867 atmark = 1;
868
869 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
870 noise_ultralight(ret);
871 if (ret < 0) {
872 if (errno == EWOULDBLOCK) {
873 break;
874 }
875 }
876 if (ret < 0) {
877 return plug_closing(s->plug, error_string(errno), errno, 0);
878 } else if (0 == ret) {
879 return plug_closing(s->plug, NULL, 0, 0);
880 } else {
881 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
882 }
883 break;
884 case 2: /* writable */
885 {
886 int bufsize_before, bufsize_after;
887 s->writable = 1;
888 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
889 try_send(s);
890 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
891 if (bufsize_after < bufsize_before)
892 plug_sent(s->plug, bufsize_after);
893 }
894 break;
895 }
896
897 return 1;
898 }
899
900 /*
901 * Deal with socket errors detected in try_send().
902 */
903 void net_pending_errors(void)
904 {
905 int i;
906 Actual_Socket s;
907
908 /*
909 * This might be a fiddly business, because it's just possible
910 * that handling a pending error on one socket might cause
911 * others to be closed. (I can't think of any reason this might
912 * happen in current SSH implementation, but to maintain
913 * generality of this network layer I'll assume the worst.)
914 *
915 * So what we'll do is search the socket list for _one_ socket
916 * with a pending error, and then handle it, and then search
917 * the list again _from the beginning_. Repeat until we make a
918 * pass with no socket errors present. That way we are
919 * protected against the socket list changing under our feet.
920 */
921
922 do {
923 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
924 if (s->pending_error) {
925 /*
926 * An error has occurred on this socket. Pass it to the
927 * plug.
928 */
929 plug_closing(s->plug, error_string(s->pending_error),
930 s->pending_error, 0);
931 break;
932 }
933 }
934 } while (s);
935 }
936
937 /*
938 * Each socket abstraction contains a `void *' private field in
939 * which the client can keep state.
940 */
941 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
942 {
943 Actual_Socket s = (Actual_Socket) sock;
944 s->private_ptr = ptr;
945 }
946
947 static void *sk_tcp_get_private_ptr(Socket sock)
948 {
949 Actual_Socket s = (Actual_Socket) sock;
950 return s->private_ptr;
951 }
952
953 /*
954 * Special error values are returned from sk_namelookup and sk_new
955 * if there's a problem. These functions extract an error message,
956 * or return NULL if there's no problem.
957 */
958 char *sk_addr_error(SockAddr addr)
959 {
960 return addr->error;
961 }
962 static char *sk_tcp_socket_error(Socket sock)
963 {
964 Actual_Socket s = (Actual_Socket) sock;
965 return s->error;
966 }
967
968 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
969 {
970 Actual_Socket s = (Actual_Socket) sock;
971 if (s->frozen == is_frozen)
972 return;
973 s->frozen = is_frozen;
974 if (!is_frozen && s->frozen_readable) {
975 char c;
976 recv(s->s, &c, 1, MSG_PEEK);
977 }
978 s->frozen_readable = 0;
979 }
980
981 /*
982 * For Unix select()-based frontends: enumerate all sockets
983 * currently active, and state whether we currently wish to receive
984 * select events on them for reading, writing and exceptional
985 * status.
986 */
987 static void set_rwx(Actual_Socket s, int *rwx)
988 {
989 int val = 0;
990 if (s->connected && !s->frozen)
991 val |= 1 | 4; /* read, except */
992 if (bufchain_size(&s->output_data))
993 val |= 2; /* write */
994 if (s->listener)
995 val |= 1; /* read == accept */
996 *rwx = val;
997 }
998
999 int first_socket(int *state, int *rwx)
1000 {
1001 Actual_Socket s;
1002 *state = 0;
1003 s = index234(sktree, (*state)++);
1004 if (s)
1005 set_rwx(s, rwx);
1006 return s ? s->s : -1;
1007 }
1008
1009 int next_socket(int *state, int *rwx)
1010 {
1011 Actual_Socket s = index234(sktree, (*state)++);
1012 if (s)
1013 set_rwx(s, rwx);
1014 return s ? s->s : -1;
1015 }
1016
1017 int net_service_lookup(char *service)
1018 {
1019 struct servent *se;
1020 se = getservbyname(service, NULL);
1021 if (se != NULL)
1022 return ntohs(se->s_port);
1023 else
1024 return 0;
1025 }