More sensible error handling when we receive an SSH1 public key
[u/mdw/putty] / sshrsa.c
1 /*
2 * RSA implementation for PuTTY.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <assert.h>
9
10 #include "ssh.h"
11 #include "misc.h"
12
13 #define GET_32BIT(cp) \
14 (((unsigned long)(unsigned char)(cp)[0] << 24) | \
15 ((unsigned long)(unsigned char)(cp)[1] << 16) | \
16 ((unsigned long)(unsigned char)(cp)[2] << 8) | \
17 ((unsigned long)(unsigned char)(cp)[3]))
18
19 #define PUT_32BIT(cp, value) { \
20 (cp)[0] = (unsigned char)((value) >> 24); \
21 (cp)[1] = (unsigned char)((value) >> 16); \
22 (cp)[2] = (unsigned char)((value) >> 8); \
23 (cp)[3] = (unsigned char)(value); }
24
25 int makekey(unsigned char *data, int len, struct RSAKey *result,
26 unsigned char **keystr, int order)
27 {
28 unsigned char *p = data;
29 int i, n;
30
31 if (len < 4)
32 return -1;
33
34 if (result) {
35 result->bits = 0;
36 for (i = 0; i < 4; i++)
37 result->bits = (result->bits << 8) + *p++;
38 } else
39 p += 4;
40
41 len -= 4;
42
43 /*
44 * order=0 means exponent then modulus (the keys sent by the
45 * server). order=1 means modulus then exponent (the keys
46 * stored in a keyfile).
47 */
48
49 if (order == 0) {
50 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
51 if (n < 0) return -1;
52 p += n;
53 len -= n;
54 }
55
56 n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);
57 if (n < 0 || bignum_bitcount(result->modulus) == 0) return -1;
58 if (result)
59 result->bytes = n - 2;
60 if (keystr)
61 *keystr = p + 2;
62 p += n;
63 len -= n;
64
65 if (order == 1) {
66 n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);
67 if (n < 0) return -1;
68 p += n;
69 len -= n;
70 }
71 return p - data;
72 }
73
74 int makeprivate(unsigned char *data, int len, struct RSAKey *result)
75 {
76 return ssh1_read_bignum(data, len, &result->private_exponent);
77 }
78
79 int rsaencrypt(unsigned char *data, int length, struct RSAKey *key)
80 {
81 Bignum b1, b2;
82 int i;
83 unsigned char *p;
84
85 if (key->bytes < length + 4)
86 return 0; /* RSA key too short! */
87
88 memmove(data + key->bytes - length, data, length);
89 data[0] = 0;
90 data[1] = 2;
91
92 for (i = 2; i < key->bytes - length - 1; i++) {
93 do {
94 data[i] = random_byte();
95 } while (data[i] == 0);
96 }
97 data[key->bytes - length - 1] = 0;
98
99 b1 = bignum_from_bytes(data, key->bytes);
100
101 b2 = modpow(b1, key->exponent, key->modulus);
102
103 p = data;
104 for (i = key->bytes; i--;) {
105 *p++ = bignum_byte(b2, i);
106 }
107
108 freebn(b1);
109 freebn(b2);
110
111 return 1;
112 }
113
114 static void sha512_mpint(SHA512_State * s, Bignum b)
115 {
116 unsigned char lenbuf[4];
117 int len;
118 len = (bignum_bitcount(b) + 8) / 8;
119 PUT_32BIT(lenbuf, len);
120 SHA512_Bytes(s, lenbuf, 4);
121 while (len-- > 0) {
122 lenbuf[0] = bignum_byte(b, len);
123 SHA512_Bytes(s, lenbuf, 1);
124 }
125 memset(lenbuf, 0, sizeof(lenbuf));
126 }
127
128 /*
129 * This function is a wrapper on modpow(). It has the same effect
130 * as modpow(), but employs RSA blinding to protect against timing
131 * attacks.
132 */
133 static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
134 {
135 Bignum random, random_encrypted, random_inverse;
136 Bignum input_blinded, ret_blinded;
137 Bignum ret;
138
139 SHA512_State ss;
140 unsigned char digest512[64];
141 int digestused = lenof(digest512);
142 int hashseq = 0;
143
144 /*
145 * Start by inventing a random number chosen uniformly from the
146 * range 2..modulus-1. (We do this by preparing a random number
147 * of the right length and retrying if it's greater than the
148 * modulus, to prevent any potential Bleichenbacher-like
149 * attacks making use of the uneven distribution within the
150 * range that would arise from just reducing our number mod n.
151 * There are timing implications to the potential retries, of
152 * course, but all they tell you is the modulus, which you
153 * already knew.)
154 *
155 * To preserve determinism and avoid Pageant needing to share
156 * the random number pool, we actually generate this `random'
157 * number by hashing stuff with the private key.
158 */
159 while (1) {
160 int bits, byte, bitsleft, v;
161 random = copybn(key->modulus);
162 /*
163 * Find the topmost set bit. (This function will return its
164 * index plus one.) Then we'll set all bits from that one
165 * downwards randomly.
166 */
167 bits = bignum_bitcount(random);
168 byte = 0;
169 bitsleft = 0;
170 while (bits--) {
171 if (bitsleft <= 0) {
172 bitsleft = 8;
173 /*
174 * Conceptually the following few lines are equivalent to
175 * byte = random_byte();
176 */
177 if (digestused >= lenof(digest512)) {
178 unsigned char seqbuf[4];
179 PUT_32BIT(seqbuf, hashseq);
180 SHA512_Init(&ss);
181 SHA512_Bytes(&ss, "RSA deterministic blinding", 26);
182 SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));
183 sha512_mpint(&ss, key->private_exponent);
184 SHA512_Final(&ss, digest512);
185 hashseq++;
186
187 /*
188 * Now hash that digest plus the signature
189 * input.
190 */
191 SHA512_Init(&ss);
192 SHA512_Bytes(&ss, digest512, sizeof(digest512));
193 sha512_mpint(&ss, input);
194 SHA512_Final(&ss, digest512);
195
196 digestused = 0;
197 }
198 byte = digest512[digestused++];
199 }
200 v = byte & 1;
201 byte >>= 1;
202 bitsleft--;
203 bignum_set_bit(random, bits, v);
204 }
205
206 /*
207 * Now check that this number is strictly greater than
208 * zero, and strictly less than modulus.
209 */
210 if (bignum_cmp(random, Zero) <= 0 ||
211 bignum_cmp(random, key->modulus) >= 0) {
212 freebn(random);
213 continue;
214 } else {
215 break;
216 }
217 }
218
219 /*
220 * RSA blinding relies on the fact that (xy)^d mod n is equal
221 * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
222 * y and y^d; then we multiply x by y, raise to the power d mod
223 * n as usual, and divide by y^d to recover x^d. Thus an
224 * attacker can't correlate the timing of the modpow with the
225 * input, because they don't know anything about the number
226 * that was input to the actual modpow.
227 *
228 * The clever bit is that we don't have to do a huge modpow to
229 * get y and y^d; we will use the number we just invented as
230 * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
231 * from it, which is much faster to do.
232 */
233 random_encrypted = modpow(random, key->exponent, key->modulus);
234 random_inverse = modinv(random, key->modulus);
235 input_blinded = modmul(input, random_encrypted, key->modulus);
236 ret_blinded = modpow(input_blinded, key->private_exponent, key->modulus);
237 ret = modmul(ret_blinded, random_inverse, key->modulus);
238
239 freebn(ret_blinded);
240 freebn(input_blinded);
241 freebn(random_inverse);
242 freebn(random_encrypted);
243 freebn(random);
244
245 return ret;
246 }
247
248 Bignum rsadecrypt(Bignum input, struct RSAKey *key)
249 {
250 return rsa_privkey_op(input, key);
251 }
252
253 int rsastr_len(struct RSAKey *key)
254 {
255 Bignum md, ex;
256 int mdlen, exlen;
257
258 md = key->modulus;
259 ex = key->exponent;
260 mdlen = (bignum_bitcount(md) + 15) / 16;
261 exlen = (bignum_bitcount(ex) + 15) / 16;
262 return 4 * (mdlen + exlen) + 20;
263 }
264
265 void rsastr_fmt(char *str, struct RSAKey *key)
266 {
267 Bignum md, ex;
268 int len = 0, i, nibbles;
269 static const char hex[] = "0123456789abcdef";
270
271 md = key->modulus;
272 ex = key->exponent;
273
274 len += sprintf(str + len, "0x");
275
276 nibbles = (3 + bignum_bitcount(ex)) / 4;
277 if (nibbles < 1)
278 nibbles = 1;
279 for (i = nibbles; i--;)
280 str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
281
282 len += sprintf(str + len, ",0x");
283
284 nibbles = (3 + bignum_bitcount(md)) / 4;
285 if (nibbles < 1)
286 nibbles = 1;
287 for (i = nibbles; i--;)
288 str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
289
290 str[len] = '\0';
291 }
292
293 /*
294 * Generate a fingerprint string for the key. Compatible with the
295 * OpenSSH fingerprint code.
296 */
297 void rsa_fingerprint(char *str, int len, struct RSAKey *key)
298 {
299 struct MD5Context md5c;
300 unsigned char digest[16];
301 char buffer[16 * 3 + 40];
302 int numlen, slen, i;
303
304 MD5Init(&md5c);
305 numlen = ssh1_bignum_length(key->modulus) - 2;
306 for (i = numlen; i--;) {
307 unsigned char c = bignum_byte(key->modulus, i);
308 MD5Update(&md5c, &c, 1);
309 }
310 numlen = ssh1_bignum_length(key->exponent) - 2;
311 for (i = numlen; i--;) {
312 unsigned char c = bignum_byte(key->exponent, i);
313 MD5Update(&md5c, &c, 1);
314 }
315 MD5Final(digest, &md5c);
316
317 sprintf(buffer, "%d ", bignum_bitcount(key->modulus));
318 for (i = 0; i < 16; i++)
319 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
320 digest[i]);
321 strncpy(str, buffer, len);
322 str[len - 1] = '\0';
323 slen = strlen(str);
324 if (key->comment && slen < len - 1) {
325 str[slen] = ' ';
326 strncpy(str + slen + 1, key->comment, len - slen - 1);
327 str[len - 1] = '\0';
328 }
329 }
330
331 /*
332 * Verify that the public data in an RSA key matches the private
333 * data. We also check the private data itself: we ensure that p >
334 * q and that iqmp really is the inverse of q mod p.
335 */
336 int rsa_verify(struct RSAKey *key)
337 {
338 Bignum n, ed, pm1, qm1;
339 int cmp;
340
341 /* n must equal pq. */
342 n = bigmul(key->p, key->q);
343 cmp = bignum_cmp(n, key->modulus);
344 freebn(n);
345 if (cmp != 0)
346 return 0;
347
348 /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
349 pm1 = copybn(key->p);
350 decbn(pm1);
351 ed = modmul(key->exponent, key->private_exponent, pm1);
352 cmp = bignum_cmp(ed, One);
353 sfree(ed);
354 if (cmp != 0)
355 return 0;
356
357 qm1 = copybn(key->q);
358 decbn(qm1);
359 ed = modmul(key->exponent, key->private_exponent, qm1);
360 cmp = bignum_cmp(ed, One);
361 sfree(ed);
362 if (cmp != 0)
363 return 0;
364
365 /*
366 * Ensure p > q.
367 */
368 if (bignum_cmp(key->p, key->q) <= 0)
369 return 0;
370
371 /*
372 * Ensure iqmp * q is congruent to 1, modulo p.
373 */
374 n = modmul(key->iqmp, key->q, key->p);
375 cmp = bignum_cmp(n, One);
376 sfree(n);
377 if (cmp != 0)
378 return 0;
379
380 return 1;
381 }
382
383 /* Public key blob as used by Pageant: exponent before modulus. */
384 unsigned char *rsa_public_blob(struct RSAKey *key, int *len)
385 {
386 int length, pos;
387 unsigned char *ret;
388
389 length = (ssh1_bignum_length(key->modulus) +
390 ssh1_bignum_length(key->exponent) + 4);
391 ret = snewn(length, unsigned char);
392
393 PUT_32BIT(ret, bignum_bitcount(key->modulus));
394 pos = 4;
395 pos += ssh1_write_bignum(ret + pos, key->exponent);
396 pos += ssh1_write_bignum(ret + pos, key->modulus);
397
398 *len = length;
399 return ret;
400 }
401
402 /* Given a public blob, determine its length. */
403 int rsa_public_blob_len(void *data, int maxlen)
404 {
405 unsigned char *p = (unsigned char *)data;
406 int n;
407
408 if (maxlen < 4)
409 return -1;
410 p += 4; /* length word */
411 maxlen -= 4;
412
413 n = ssh1_read_bignum(p, maxlen, NULL); /* exponent */
414 if (n < 0)
415 return -1;
416 p += n;
417
418 n = ssh1_read_bignum(p, maxlen, NULL); /* modulus */
419 if (n < 0)
420 return -1;
421 p += n;
422
423 return p - (unsigned char *)data;
424 }
425
426 void freersakey(struct RSAKey *key)
427 {
428 if (key->modulus)
429 freebn(key->modulus);
430 if (key->exponent)
431 freebn(key->exponent);
432 if (key->private_exponent)
433 freebn(key->private_exponent);
434 if (key->comment)
435 sfree(key->comment);
436 }
437
438 /* ----------------------------------------------------------------------
439 * Implementation of the ssh-rsa signing key type.
440 */
441
442 static void getstring(char **data, int *datalen, char **p, int *length)
443 {
444 *p = NULL;
445 if (*datalen < 4)
446 return;
447 *length = GET_32BIT(*data);
448 *datalen -= 4;
449 *data += 4;
450 if (*datalen < *length)
451 return;
452 *p = *data;
453 *data += *length;
454 *datalen -= *length;
455 }
456 static Bignum getmp(char **data, int *datalen)
457 {
458 char *p;
459 int length;
460 Bignum b;
461
462 getstring(data, datalen, &p, &length);
463 if (!p)
464 return NULL;
465 b = bignum_from_bytes((unsigned char *)p, length);
466 return b;
467 }
468
469 static void *rsa2_newkey(char *data, int len)
470 {
471 char *p;
472 int slen;
473 struct RSAKey *rsa;
474
475 rsa = snew(struct RSAKey);
476 if (!rsa)
477 return NULL;
478 getstring(&data, &len, &p, &slen);
479
480 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
481 sfree(rsa);
482 return NULL;
483 }
484 rsa->exponent = getmp(&data, &len);
485 rsa->modulus = getmp(&data, &len);
486 rsa->private_exponent = NULL;
487 rsa->comment = NULL;
488
489 return rsa;
490 }
491
492 static void rsa2_freekey(void *key)
493 {
494 struct RSAKey *rsa = (struct RSAKey *) key;
495 freersakey(rsa);
496 sfree(rsa);
497 }
498
499 static char *rsa2_fmtkey(void *key)
500 {
501 struct RSAKey *rsa = (struct RSAKey *) key;
502 char *p;
503 int len;
504
505 len = rsastr_len(rsa);
506 p = snewn(len, char);
507 rsastr_fmt(p, rsa);
508 return p;
509 }
510
511 static unsigned char *rsa2_public_blob(void *key, int *len)
512 {
513 struct RSAKey *rsa = (struct RSAKey *) key;
514 int elen, mlen, bloblen;
515 int i;
516 unsigned char *blob, *p;
517
518 elen = (bignum_bitcount(rsa->exponent) + 8) / 8;
519 mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;
520
521 /*
522 * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.
523 * (three length fields, 12+7=19).
524 */
525 bloblen = 19 + elen + mlen;
526 blob = snewn(bloblen, unsigned char);
527 p = blob;
528 PUT_32BIT(p, 7);
529 p += 4;
530 memcpy(p, "ssh-rsa", 7);
531 p += 7;
532 PUT_32BIT(p, elen);
533 p += 4;
534 for (i = elen; i--;)
535 *p++ = bignum_byte(rsa->exponent, i);
536 PUT_32BIT(p, mlen);
537 p += 4;
538 for (i = mlen; i--;)
539 *p++ = bignum_byte(rsa->modulus, i);
540 assert(p == blob + bloblen);
541 *len = bloblen;
542 return blob;
543 }
544
545 static unsigned char *rsa2_private_blob(void *key, int *len)
546 {
547 struct RSAKey *rsa = (struct RSAKey *) key;
548 int dlen, plen, qlen, ulen, bloblen;
549 int i;
550 unsigned char *blob, *p;
551
552 dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;
553 plen = (bignum_bitcount(rsa->p) + 8) / 8;
554 qlen = (bignum_bitcount(rsa->q) + 8) / 8;
555 ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;
556
557 /*
558 * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +
559 * sum of lengths.
560 */
561 bloblen = 16 + dlen + plen + qlen + ulen;
562 blob = snewn(bloblen, unsigned char);
563 p = blob;
564 PUT_32BIT(p, dlen);
565 p += 4;
566 for (i = dlen; i--;)
567 *p++ = bignum_byte(rsa->private_exponent, i);
568 PUT_32BIT(p, plen);
569 p += 4;
570 for (i = plen; i--;)
571 *p++ = bignum_byte(rsa->p, i);
572 PUT_32BIT(p, qlen);
573 p += 4;
574 for (i = qlen; i--;)
575 *p++ = bignum_byte(rsa->q, i);
576 PUT_32BIT(p, ulen);
577 p += 4;
578 for (i = ulen; i--;)
579 *p++ = bignum_byte(rsa->iqmp, i);
580 assert(p == blob + bloblen);
581 *len = bloblen;
582 return blob;
583 }
584
585 static void *rsa2_createkey(unsigned char *pub_blob, int pub_len,
586 unsigned char *priv_blob, int priv_len)
587 {
588 struct RSAKey *rsa;
589 char *pb = (char *) priv_blob;
590
591 rsa = rsa2_newkey((char *) pub_blob, pub_len);
592 rsa->private_exponent = getmp(&pb, &priv_len);
593 rsa->p = getmp(&pb, &priv_len);
594 rsa->q = getmp(&pb, &priv_len);
595 rsa->iqmp = getmp(&pb, &priv_len);
596
597 if (!rsa_verify(rsa)) {
598 rsa2_freekey(rsa);
599 return NULL;
600 }
601
602 return rsa;
603 }
604
605 static void *rsa2_openssh_createkey(unsigned char **blob, int *len)
606 {
607 char **b = (char **) blob;
608 struct RSAKey *rsa;
609
610 rsa = snew(struct RSAKey);
611 if (!rsa)
612 return NULL;
613 rsa->comment = NULL;
614
615 rsa->modulus = getmp(b, len);
616 rsa->exponent = getmp(b, len);
617 rsa->private_exponent = getmp(b, len);
618 rsa->iqmp = getmp(b, len);
619 rsa->p = getmp(b, len);
620 rsa->q = getmp(b, len);
621
622 if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||
623 !rsa->iqmp || !rsa->p || !rsa->q) {
624 sfree(rsa->modulus);
625 sfree(rsa->exponent);
626 sfree(rsa->private_exponent);
627 sfree(rsa->iqmp);
628 sfree(rsa->p);
629 sfree(rsa->q);
630 sfree(rsa);
631 return NULL;
632 }
633
634 return rsa;
635 }
636
637 static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len)
638 {
639 struct RSAKey *rsa = (struct RSAKey *) key;
640 int bloblen, i;
641
642 bloblen =
643 ssh2_bignum_length(rsa->modulus) +
644 ssh2_bignum_length(rsa->exponent) +
645 ssh2_bignum_length(rsa->private_exponent) +
646 ssh2_bignum_length(rsa->iqmp) +
647 ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);
648
649 if (bloblen > len)
650 return bloblen;
651
652 bloblen = 0;
653 #define ENC(x) \
654 PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \
655 for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);
656 ENC(rsa->modulus);
657 ENC(rsa->exponent);
658 ENC(rsa->private_exponent);
659 ENC(rsa->iqmp);
660 ENC(rsa->p);
661 ENC(rsa->q);
662
663 return bloblen;
664 }
665
666 static int rsa2_pubkey_bits(void *blob, int len)
667 {
668 struct RSAKey *rsa;
669 int ret;
670
671 rsa = rsa2_newkey((char *) blob, len);
672 ret = bignum_bitcount(rsa->modulus);
673 rsa2_freekey(rsa);
674
675 return ret;
676 }
677
678 static char *rsa2_fingerprint(void *key)
679 {
680 struct RSAKey *rsa = (struct RSAKey *) key;
681 struct MD5Context md5c;
682 unsigned char digest[16], lenbuf[4];
683 char buffer[16 * 3 + 40];
684 char *ret;
685 int numlen, i;
686
687 MD5Init(&md5c);
688 MD5Update(&md5c, (unsigned char *)"\0\0\0\7ssh-rsa", 11);
689
690 #define ADD_BIGNUM(bignum) \
691 numlen = (bignum_bitcount(bignum)+8)/8; \
692 PUT_32BIT(lenbuf, numlen); MD5Update(&md5c, lenbuf, 4); \
693 for (i = numlen; i-- ;) { \
694 unsigned char c = bignum_byte(bignum, i); \
695 MD5Update(&md5c, &c, 1); \
696 }
697 ADD_BIGNUM(rsa->exponent);
698 ADD_BIGNUM(rsa->modulus);
699 #undef ADD_BIGNUM
700
701 MD5Final(digest, &md5c);
702
703 sprintf(buffer, "ssh-rsa %d ", bignum_bitcount(rsa->modulus));
704 for (i = 0; i < 16; i++)
705 sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",
706 digest[i]);
707 ret = snewn(strlen(buffer) + 1, char);
708 if (ret)
709 strcpy(ret, buffer);
710 return ret;
711 }
712
713 /*
714 * This is the magic ASN.1/DER prefix that goes in the decoded
715 * signature, between the string of FFs and the actual SHA hash
716 * value. The meaning of it is:
717 *
718 * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
719 *
720 * 30 21 -- a constructed SEQUENCE of length 0x21
721 * 30 09 -- a constructed sub-SEQUENCE of length 9
722 * 06 05 -- an object identifier, length 5
723 * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
724 * (the 1,3 comes from 0x2B = 43 = 40*1+3)
725 * 05 00 -- NULL
726 * 04 14 -- a primitive OCTET STRING of length 0x14
727 * [0x14 bytes of hash data follows]
728 *
729 * The object id in the middle there is listed as `id-sha1' in
730 * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
731 * ASN module for PKCS #1) and its expanded form is as follows:
732 *
733 * id-sha1 OBJECT IDENTIFIER ::= {
734 * iso(1) identified-organization(3) oiw(14) secsig(3)
735 * algorithms(2) 26 }
736 */
737 static const unsigned char asn1_weird_stuff[] = {
738 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
739 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
740 };
741
742 #define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )
743
744 static int rsa2_verifysig(void *key, char *sig, int siglen,
745 char *data, int datalen)
746 {
747 struct RSAKey *rsa = (struct RSAKey *) key;
748 Bignum in, out;
749 char *p;
750 int slen;
751 int bytes, i, j, ret;
752 unsigned char hash[20];
753
754 getstring(&sig, &siglen, &p, &slen);
755 if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {
756 return 0;
757 }
758 in = getmp(&sig, &siglen);
759 out = modpow(in, rsa->exponent, rsa->modulus);
760 freebn(in);
761
762 ret = 1;
763
764 bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
765 /* Top (partial) byte should be zero. */
766 if (bignum_byte(out, bytes - 1) != 0)
767 ret = 0;
768 /* First whole byte should be 1. */
769 if (bignum_byte(out, bytes - 2) != 1)
770 ret = 0;
771 /* Most of the rest should be FF. */
772 for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {
773 if (bignum_byte(out, i) != 0xFF)
774 ret = 0;
775 }
776 /* Then we expect to see the asn1_weird_stuff. */
777 for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {
778 if (bignum_byte(out, i) != asn1_weird_stuff[j])
779 ret = 0;
780 }
781 /* Finally, we expect to see the SHA-1 hash of the signed data. */
782 SHA_Simple(data, datalen, hash);
783 for (i = 19, j = 0; i >= 0; i--, j++) {
784 if (bignum_byte(out, i) != hash[j])
785 ret = 0;
786 }
787 freebn(out);
788
789 return ret;
790 }
791
792 static unsigned char *rsa2_sign(void *key, char *data, int datalen,
793 int *siglen)
794 {
795 struct RSAKey *rsa = (struct RSAKey *) key;
796 unsigned char *bytes;
797 int nbytes;
798 unsigned char hash[20];
799 Bignum in, out;
800 int i, j;
801
802 SHA_Simple(data, datalen, hash);
803
804 nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
805 bytes = snewn(nbytes, unsigned char);
806
807 bytes[0] = 1;
808 for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)
809 bytes[i] = 0xFF;
810 for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)
811 bytes[i] = asn1_weird_stuff[j];
812 for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)
813 bytes[i] = hash[j];
814
815 in = bignum_from_bytes(bytes, nbytes);
816 sfree(bytes);
817
818 out = rsa_privkey_op(in, rsa);
819 freebn(in);
820
821 nbytes = (bignum_bitcount(out) + 7) / 8;
822 bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);
823 PUT_32BIT(bytes, 7);
824 memcpy(bytes + 4, "ssh-rsa", 7);
825 PUT_32BIT(bytes + 4 + 7, nbytes);
826 for (i = 0; i < nbytes; i++)
827 bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);
828 freebn(out);
829
830 *siglen = 4 + 7 + 4 + nbytes;
831 return bytes;
832 }
833
834 const struct ssh_signkey ssh_rsa = {
835 rsa2_newkey,
836 rsa2_freekey,
837 rsa2_fmtkey,
838 rsa2_public_blob,
839 rsa2_private_blob,
840 rsa2_createkey,
841 rsa2_openssh_createkey,
842 rsa2_openssh_fmtkey,
843 rsa2_pubkey_bits,
844 rsa2_fingerprint,
845 rsa2_verifysig,
846 rsa2_sign,
847 "ssh-rsa",
848 "rsa2"
849 };