sshbn.c (modmul): Prevent buffer underrun.
[u/mdw/putty] / sshbn.c
1 /*
2 * Bignum routines for RSA and DH and stuff.
3 */
4
5 #include <stdio.h>
6 #include <assert.h>
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "misc.h"
11
12 /*
13 * Usage notes:
14 * * Do not call the DIVMOD_WORD macro with expressions such as array
15 * subscripts, as some implementations object to this (see below).
16 * * Note that none of the division methods below will cope if the
17 * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
18 * to avoid this case.
19 * If this condition occurs, in the case of the x86 DIV instruction,
20 * an overflow exception will occur, which (according to a correspondent)
21 * will manifest on Windows as something like
22 * 0xC0000095: Integer overflow
23 * The C variant won't give the right answer, either.
24 */
25
26 #if defined __GNUC__ && defined __i386__
27 typedef unsigned long BignumInt;
28 typedef unsigned long long BignumDblInt;
29 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
30 #define BIGNUM_TOP_BIT 0x80000000UL
31 #define BIGNUM_INT_BITS 32
32 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
33 #define DIVMOD_WORD(q, r, hi, lo, w) \
34 __asm__("div %2" : \
35 "=d" (r), "=a" (q) : \
36 "r" (w), "d" (hi), "a" (lo))
37 #elif defined _MSC_VER && defined _M_IX86
38 typedef unsigned __int32 BignumInt;
39 typedef unsigned __int64 BignumDblInt;
40 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
41 #define BIGNUM_TOP_BIT 0x80000000UL
42 #define BIGNUM_INT_BITS 32
43 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
44 /* Note: MASM interprets array subscripts in the macro arguments as
45 * assembler syntax, which gives the wrong answer. Don't supply them.
46 * <http://msdn2.microsoft.com/en-us/library/bf1dw62z.aspx> */
47 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
48 __asm mov edx, hi \
49 __asm mov eax, lo \
50 __asm div w \
51 __asm mov r, edx \
52 __asm mov q, eax \
53 } while(0)
54 #elif defined _LP64
55 /* 64-bit architectures can do 32x32->64 chunks at a time */
56 typedef unsigned int BignumInt;
57 typedef unsigned long BignumDblInt;
58 #define BIGNUM_INT_MASK 0xFFFFFFFFU
59 #define BIGNUM_TOP_BIT 0x80000000U
60 #define BIGNUM_INT_BITS 32
61 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
62 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
63 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
64 q = n / w; \
65 r = n % w; \
66 } while (0)
67 #elif defined _LLP64
68 /* 64-bit architectures in which unsigned long is 32 bits, not 64 */
69 typedef unsigned long BignumInt;
70 typedef unsigned long long BignumDblInt;
71 #define BIGNUM_INT_MASK 0xFFFFFFFFUL
72 #define BIGNUM_TOP_BIT 0x80000000UL
73 #define BIGNUM_INT_BITS 32
74 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
75 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
76 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
77 q = n / w; \
78 r = n % w; \
79 } while (0)
80 #else
81 /* Fallback for all other cases */
82 typedef unsigned short BignumInt;
83 typedef unsigned long BignumDblInt;
84 #define BIGNUM_INT_MASK 0xFFFFU
85 #define BIGNUM_TOP_BIT 0x8000U
86 #define BIGNUM_INT_BITS 16
87 #define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
88 #define DIVMOD_WORD(q, r, hi, lo, w) do { \
89 BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
90 q = n / w; \
91 r = n % w; \
92 } while (0)
93 #endif
94
95 #define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
96
97 #define BIGNUM_INTERNAL
98 typedef BignumInt *Bignum;
99
100 #include "ssh.h"
101
102 BignumInt bnZero[1] = { 0 };
103 BignumInt bnOne[2] = { 1, 1 };
104
105 /*
106 * The Bignum format is an array of `BignumInt'. The first
107 * element of the array counts the remaining elements. The
108 * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_
109 * significant digit first. (So it's trivial to extract the bit
110 * with value 2^n for any n.)
111 *
112 * All Bignums in this module are positive. Negative numbers must
113 * be dealt with outside it.
114 *
115 * INVARIANT: the most significant word of any Bignum must be
116 * nonzero.
117 */
118
119 Bignum Zero = bnZero, One = bnOne;
120
121 static Bignum newbn(int length)
122 {
123 Bignum b = snewn(length + 1, BignumInt);
124 if (!b)
125 abort(); /* FIXME */
126 memset(b, 0, (length + 1) * sizeof(*b));
127 b[0] = length;
128 return b;
129 }
130
131 void bn_restore_invariant(Bignum b)
132 {
133 while (b[0] > 1 && b[b[0]] == 0)
134 b[0]--;
135 }
136
137 Bignum copybn(Bignum orig)
138 {
139 Bignum b = snewn(orig[0] + 1, BignumInt);
140 if (!b)
141 abort(); /* FIXME */
142 memcpy(b, orig, (orig[0] + 1) * sizeof(*b));
143 return b;
144 }
145
146 void freebn(Bignum b)
147 {
148 /*
149 * Burn the evidence, just in case.
150 */
151 smemclr(b, sizeof(b[0]) * (b[0] + 1));
152 sfree(b);
153 }
154
155 Bignum bn_power_2(int n)
156 {
157 Bignum ret = newbn(n / BIGNUM_INT_BITS + 1);
158 bignum_set_bit(ret, n, 1);
159 return ret;
160 }
161
162 /*
163 * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all
164 * big-endian arrays of 'len' BignumInts. Returns a BignumInt carried
165 * off the top.
166 */
167 static BignumInt internal_add(const BignumInt *a, const BignumInt *b,
168 BignumInt *c, int len)
169 {
170 int i;
171 BignumDblInt carry = 0;
172
173 for (i = len-1; i >= 0; i--) {
174 carry += (BignumDblInt)a[i] + b[i];
175 c[i] = (BignumInt)carry;
176 carry >>= BIGNUM_INT_BITS;
177 }
178
179 return (BignumInt)carry;
180 }
181
182 /*
183 * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are
184 * all big-endian arrays of 'len' BignumInts. Any borrow from the top
185 * is ignored.
186 */
187 static void internal_sub(const BignumInt *a, const BignumInt *b,
188 BignumInt *c, int len)
189 {
190 int i;
191 BignumDblInt carry = 1;
192
193 for (i = len-1; i >= 0; i--) {
194 carry += (BignumDblInt)a[i] + (b[i] ^ BIGNUM_INT_MASK);
195 c[i] = (BignumInt)carry;
196 carry >>= BIGNUM_INT_BITS;
197 }
198 }
199
200 /*
201 * Compute c = a * b.
202 * Input is in the first len words of a and b.
203 * Result is returned in the first 2*len words of c.
204 *
205 * 'scratch' must point to an array of BignumInt of size at least
206 * mul_compute_scratch(len). (This covers the needs of internal_mul
207 * and all its recursive calls to itself.)
208 */
209 #define KARATSUBA_THRESHOLD 50
210 static int mul_compute_scratch(int len)
211 {
212 int ret = 0;
213 while (len > KARATSUBA_THRESHOLD) {
214 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
215 int midlen = botlen + 1;
216 ret += 4*midlen;
217 len = midlen;
218 }
219 return ret;
220 }
221 static void internal_mul(const BignumInt *a, const BignumInt *b,
222 BignumInt *c, int len, BignumInt *scratch)
223 {
224 if (len > KARATSUBA_THRESHOLD) {
225 int i;
226
227 /*
228 * Karatsuba divide-and-conquer algorithm. Cut each input in
229 * half, so that it's expressed as two big 'digits' in a giant
230 * base D:
231 *
232 * a = a_1 D + a_0
233 * b = b_1 D + b_0
234 *
235 * Then the product is of course
236 *
237 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
238 *
239 * and we compute the three coefficients by recursively
240 * calling ourself to do half-length multiplications.
241 *
242 * The clever bit that makes this worth doing is that we only
243 * need _one_ half-length multiplication for the central
244 * coefficient rather than the two that it obviouly looks
245 * like, because we can use a single multiplication to compute
246 *
247 * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
248 *
249 * and then we subtract the other two coefficients (a_1 b_1
250 * and a_0 b_0) which we were computing anyway.
251 *
252 * Hence we get to multiply two numbers of length N in about
253 * three times as much work as it takes to multiply numbers of
254 * length N/2, which is obviously better than the four times
255 * as much work it would take if we just did a long
256 * conventional multiply.
257 */
258
259 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
260 int midlen = botlen + 1;
261 BignumDblInt carry;
262
263 /*
264 * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping
265 * in the output array, so we can compute them immediately in
266 * place.
267 */
268
269 #ifdef KARA_DEBUG
270 printf("a1,a0 = 0x");
271 for (i = 0; i < len; i++) {
272 if (i == toplen) printf(", 0x");
273 printf("%0*x", BIGNUM_INT_BITS/4, a[i]);
274 }
275 printf("\n");
276 printf("b1,b0 = 0x");
277 for (i = 0; i < len; i++) {
278 if (i == toplen) printf(", 0x");
279 printf("%0*x", BIGNUM_INT_BITS/4, b[i]);
280 }
281 printf("\n");
282 #endif
283
284 /* a_1 b_1 */
285 internal_mul(a, b, c, toplen, scratch);
286 #ifdef KARA_DEBUG
287 printf("a1b1 = 0x");
288 for (i = 0; i < 2*toplen; i++) {
289 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
290 }
291 printf("\n");
292 #endif
293
294 /* a_0 b_0 */
295 internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);
296 #ifdef KARA_DEBUG
297 printf("a0b0 = 0x");
298 for (i = 0; i < 2*botlen; i++) {
299 printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);
300 }
301 printf("\n");
302 #endif
303
304 /* Zero padding. midlen exceeds toplen by at most 2, so just
305 * zero the first two words of each input and the rest will be
306 * copied over. */
307 scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;
308
309 for (i = 0; i < toplen; i++) {
310 scratch[midlen - toplen + i] = a[i]; /* a_1 */
311 scratch[2*midlen - toplen + i] = b[i]; /* b_1 */
312 }
313
314 /* compute a_1 + a_0 */
315 scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);
316 #ifdef KARA_DEBUG
317 printf("a1plusa0 = 0x");
318 for (i = 0; i < midlen; i++) {
319 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
320 }
321 printf("\n");
322 #endif
323 /* compute b_1 + b_0 */
324 scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,
325 scratch+midlen+1, botlen);
326 #ifdef KARA_DEBUG
327 printf("b1plusb0 = 0x");
328 for (i = 0; i < midlen; i++) {
329 printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);
330 }
331 printf("\n");
332 #endif
333
334 /*
335 * Now we can do the third multiplication.
336 */
337 internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,
338 scratch + 4*midlen);
339 #ifdef KARA_DEBUG
340 printf("a1plusa0timesb1plusb0 = 0x");
341 for (i = 0; i < 2*midlen; i++) {
342 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
343 }
344 printf("\n");
345 #endif
346
347 /*
348 * Now we can reuse the first half of 'scratch' to compute the
349 * sum of the outer two coefficients, to subtract from that
350 * product to obtain the middle one.
351 */
352 scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;
353 for (i = 0; i < 2*toplen; i++)
354 scratch[2*midlen - 2*toplen + i] = c[i];
355 scratch[1] = internal_add(scratch+2, c + 2*toplen,
356 scratch+2, 2*botlen);
357 #ifdef KARA_DEBUG
358 printf("a1b1plusa0b0 = 0x");
359 for (i = 0; i < 2*midlen; i++) {
360 printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);
361 }
362 printf("\n");
363 #endif
364
365 internal_sub(scratch + 2*midlen, scratch,
366 scratch + 2*midlen, 2*midlen);
367 #ifdef KARA_DEBUG
368 printf("a1b0plusa0b1 = 0x");
369 for (i = 0; i < 2*midlen; i++) {
370 printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);
371 }
372 printf("\n");
373 #endif
374
375 /*
376 * And now all we need to do is to add that middle coefficient
377 * back into the output. We may have to propagate a carry
378 * further up the output, but we can be sure it won't
379 * propagate right the way off the top.
380 */
381 carry = internal_add(c + 2*len - botlen - 2*midlen,
382 scratch + 2*midlen,
383 c + 2*len - botlen - 2*midlen, 2*midlen);
384 i = 2*len - botlen - 2*midlen - 1;
385 while (carry) {
386 assert(i >= 0);
387 carry += c[i];
388 c[i] = (BignumInt)carry;
389 carry >>= BIGNUM_INT_BITS;
390 i--;
391 }
392 #ifdef KARA_DEBUG
393 printf("ab = 0x");
394 for (i = 0; i < 2*len; i++) {
395 printf("%0*x", BIGNUM_INT_BITS/4, c[i]);
396 }
397 printf("\n");
398 #endif
399
400 } else {
401 int i;
402 BignumInt carry;
403 BignumDblInt t;
404 const BignumInt *ap, *bp;
405 BignumInt *cp, *cps;
406
407 /*
408 * Multiply in the ordinary O(N^2) way.
409 */
410
411 for (i = 0; i < 2 * len; i++)
412 c[i] = 0;
413
414 for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {
415 carry = 0;
416 for (cp = cps, bp = b + len; cp--, bp-- > b ;) {
417 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
418 *cp = (BignumInt) t;
419 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
420 }
421 *cp = carry;
422 }
423 }
424 }
425
426 /*
427 * Variant form of internal_mul used for the initial step of
428 * Montgomery reduction. Only bothers outputting 'len' words
429 * (everything above that is thrown away).
430 */
431 static void internal_mul_low(const BignumInt *a, const BignumInt *b,
432 BignumInt *c, int len, BignumInt *scratch)
433 {
434 if (len > KARATSUBA_THRESHOLD) {
435 int i;
436
437 /*
438 * Karatsuba-aware version of internal_mul_low. As before, we
439 * express each input value as a shifted combination of two
440 * halves:
441 *
442 * a = a_1 D + a_0
443 * b = b_1 D + b_0
444 *
445 * Then the full product is, as before,
446 *
447 * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
448 *
449 * Provided we choose D on the large side (so that a_0 and b_0
450 * are _at least_ as long as a_1 and b_1), we don't need the
451 * topmost term at all, and we only need half of the middle
452 * term. So there's no point in doing the proper Karatsuba
453 * optimisation which computes the middle term using the top
454 * one, because we'd take as long computing the top one as
455 * just computing the middle one directly.
456 *
457 * So instead, we do a much more obvious thing: we call the
458 * fully optimised internal_mul to compute a_0 b_0, and we
459 * recursively call ourself to compute the _bottom halves_ of
460 * a_1 b_0 and a_0 b_1, each of which we add into the result
461 * in the obvious way.
462 *
463 * In other words, there's no actual Karatsuba _optimisation_
464 * in this function; the only benefit in doing it this way is
465 * that we call internal_mul proper for a large part of the
466 * work, and _that_ can optimise its operation.
467 */
468
469 int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */
470
471 /*
472 * Scratch space for the various bits and pieces we're going
473 * to be adding together: we need botlen*2 words for a_0 b_0
474 * (though we may end up throwing away its topmost word), and
475 * toplen words for each of a_1 b_0 and a_0 b_1. That adds up
476 * to exactly 2*len.
477 */
478
479 /* a_0 b_0 */
480 internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,
481 scratch + 2*len);
482
483 /* a_1 b_0 */
484 internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,
485 scratch + 2*len);
486
487 /* a_0 b_1 */
488 internal_mul_low(a + len - toplen, b, scratch, toplen,
489 scratch + 2*len);
490
491 /* Copy the bottom half of the big coefficient into place */
492 for (i = 0; i < botlen; i++)
493 c[toplen + i] = scratch[2*toplen + botlen + i];
494
495 /* Add the two small coefficients, throwing away the returned carry */
496 internal_add(scratch, scratch + toplen, scratch, toplen);
497
498 /* And add that to the large coefficient, leaving the result in c. */
499 internal_add(scratch, scratch + 2*toplen + botlen - toplen,
500 c, toplen);
501
502 } else {
503 int i;
504 BignumInt carry;
505 BignumDblInt t;
506 const BignumInt *ap, *bp;
507 BignumInt *cp, *cps;
508
509 /*
510 * Multiply in the ordinary O(N^2) way.
511 */
512
513 for (i = 0; i < len; i++)
514 c[i] = 0;
515
516 for (cps = c + len, ap = a + len; ap-- > a; cps--) {
517 carry = 0;
518 for (cp = cps, bp = b + len; bp--, cp-- > c ;) {
519 t = (MUL_WORD(*ap, *bp) + carry) + *cp;
520 *cp = (BignumInt) t;
521 carry = (BignumInt)(t >> BIGNUM_INT_BITS);
522 }
523 }
524 }
525 }
526
527 /*
528 * Montgomery reduction. Expects x to be a big-endian array of 2*len
529 * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len *
530 * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array
531 * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <=
532 * x' < n.
533 *
534 * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts
535 * each, containing respectively n and the multiplicative inverse of
536 * -n mod r.
537 *
538 * 'tmp' is an array of BignumInt used as scratch space, of length at
539 * least 3*len + mul_compute_scratch(len).
540 */
541 static void monty_reduce(BignumInt *x, const BignumInt *n,
542 const BignumInt *mninv, BignumInt *tmp, int len)
543 {
544 int i;
545 BignumInt carry;
546
547 /*
548 * Multiply x by (-n)^{-1} mod r. This gives us a value m such
549 * that mn is congruent to -x mod r. Hence, mn+x is an exact
550 * multiple of r, and is also (obviously) congruent to x mod n.
551 */
552 internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);
553
554 /*
555 * Compute t = (mn+x)/r in ordinary, non-modular, integer
556 * arithmetic. By construction this is exact, and is congruent mod
557 * n to x * r^{-1}, i.e. the answer we want.
558 *
559 * The following multiply leaves that answer in the _most_
560 * significant half of the 'x' array, so then we must shift it
561 * down.
562 */
563 internal_mul(tmp, n, tmp+len, len, tmp + 3*len);
564 carry = internal_add(x, tmp+len, x, 2*len);
565 for (i = 0; i < len; i++)
566 x[len + i] = x[i], x[i] = 0;
567
568 /*
569 * Reduce t mod n. This doesn't require a full-on division by n,
570 * but merely a test and single optional subtraction, since we can
571 * show that 0 <= t < 2n.
572 *
573 * Proof:
574 * + we computed m mod r, so 0 <= m < r.
575 * + so 0 <= mn < rn, obviously
576 * + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn
577 * + yielding 0 <= (mn+x)/r < 2n as required.
578 */
579 if (!carry) {
580 for (i = 0; i < len; i++)
581 if (x[len + i] != n[i])
582 break;
583 }
584 if (carry || i >= len || x[len + i] > n[i])
585 internal_sub(x+len, n, x+len, len);
586 }
587
588 static void internal_add_shifted(BignumInt *number,
589 unsigned n, int shift)
590 {
591 int word = 1 + (shift / BIGNUM_INT_BITS);
592 int bshift = shift % BIGNUM_INT_BITS;
593 BignumDblInt addend;
594
595 addend = (BignumDblInt)n << bshift;
596
597 while (addend) {
598 addend += number[word];
599 number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
600 addend >>= BIGNUM_INT_BITS;
601 word++;
602 }
603 }
604
605 /*
606 * Compute a = a % m.
607 * Input in first alen words of a and first mlen words of m.
608 * Output in first alen words of a
609 * (of which first alen-mlen words will be zero).
610 * The MSW of m MUST have its high bit set.
611 * Quotient is accumulated in the `quotient' array, which is a Bignum
612 * rather than the internal bigendian format. Quotient parts are shifted
613 * left by `qshift' before adding into quot.
614 */
615 static void internal_mod(BignumInt *a, int alen,
616 BignumInt *m, int mlen,
617 BignumInt *quot, int qshift)
618 {
619 BignumInt m0, m1;
620 unsigned int h;
621 int i, k;
622
623 m0 = m[0];
624 if (mlen > 1)
625 m1 = m[1];
626 else
627 m1 = 0;
628
629 for (i = 0; i <= alen - mlen; i++) {
630 BignumDblInt t;
631 unsigned int q, r, c, ai1;
632
633 if (i == 0) {
634 h = 0;
635 } else {
636 h = a[i - 1];
637 a[i - 1] = 0;
638 }
639
640 if (i == alen - 1)
641 ai1 = 0;
642 else
643 ai1 = a[i + 1];
644
645 /* Find q = h:a[i] / m0 */
646 if (h >= m0) {
647 /*
648 * Special case.
649 *
650 * To illustrate it, suppose a BignumInt is 8 bits, and
651 * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
652 * our initial division will be 0xA123 / 0xA1, which
653 * will give a quotient of 0x100 and a divide overflow.
654 * However, the invariants in this division algorithm
655 * are not violated, since the full number A1:23:... is
656 * _less_ than the quotient prefix A1:B2:... and so the
657 * following correction loop would have sorted it out.
658 *
659 * In this situation we set q to be the largest
660 * quotient we _can_ stomach (0xFF, of course).
661 */
662 q = BIGNUM_INT_MASK;
663 } else {
664 /* Macro doesn't want an array subscript expression passed
665 * into it (see definition), so use a temporary. */
666 BignumInt tmplo = a[i];
667 DIVMOD_WORD(q, r, h, tmplo, m0);
668
669 /* Refine our estimate of q by looking at
670 h:a[i]:a[i+1] / m0:m1 */
671 t = MUL_WORD(m1, q);
672 if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
673 q--;
674 t -= m1;
675 r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
676 if (r >= (BignumDblInt) m0 &&
677 t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
678 }
679 }
680
681 /* Subtract q * m from a[i...] */
682 c = 0;
683 for (k = mlen - 1; k >= 0; k--) {
684 t = MUL_WORD(q, m[k]);
685 t += c;
686 c = (unsigned)(t >> BIGNUM_INT_BITS);
687 if ((BignumInt) t > a[i + k])
688 c++;
689 a[i + k] -= (BignumInt) t;
690 }
691
692 /* Add back m in case of borrow */
693 if (c != h) {
694 t = 0;
695 for (k = mlen - 1; k >= 0; k--) {
696 t += m[k];
697 t += a[i + k];
698 a[i + k] = (BignumInt) t;
699 t = t >> BIGNUM_INT_BITS;
700 }
701 q--;
702 }
703 if (quot)
704 internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
705 }
706 }
707
708 /*
709 * Compute (base ^ exp) % mod, the pedestrian way.
710 */
711 Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod)
712 {
713 BignumInt *a, *b, *n, *m, *scratch;
714 int mshift;
715 int mlen, scratchlen, i, j;
716 Bignum base, result;
717
718 /*
719 * The most significant word of mod needs to be non-zero. It
720 * should already be, but let's make sure.
721 */
722 assert(mod[mod[0]] != 0);
723
724 /*
725 * Make sure the base is smaller than the modulus, by reducing
726 * it modulo the modulus if not.
727 */
728 base = bigmod(base_in, mod);
729
730 /* Allocate m of size mlen, copy mod to m */
731 /* We use big endian internally */
732 mlen = mod[0];
733 m = snewn(mlen, BignumInt);
734 for (j = 0; j < mlen; j++)
735 m[j] = mod[mod[0] - j];
736
737 /* Shift m left to make msb bit set */
738 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
739 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
740 break;
741 if (mshift) {
742 for (i = 0; i < mlen - 1; i++)
743 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
744 m[mlen - 1] = m[mlen - 1] << mshift;
745 }
746
747 /* Allocate n of size mlen, copy base to n */
748 n = snewn(mlen, BignumInt);
749 i = mlen - base[0];
750 for (j = 0; j < i; j++)
751 n[j] = 0;
752 for (j = 0; j < (int)base[0]; j++)
753 n[i + j] = base[base[0] - j];
754
755 /* Allocate a and b of size 2*mlen. Set a = 1 */
756 a = snewn(2 * mlen, BignumInt);
757 b = snewn(2 * mlen, BignumInt);
758 for (i = 0; i < 2 * mlen; i++)
759 a[i] = 0;
760 a[2 * mlen - 1] = 1;
761
762 /* Scratch space for multiplies */
763 scratchlen = mul_compute_scratch(mlen);
764 scratch = snewn(scratchlen, BignumInt);
765
766 /* Skip leading zero bits of exp. */
767 i = 0;
768 j = BIGNUM_INT_BITS-1;
769 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
770 j--;
771 if (j < 0) {
772 i++;
773 j = BIGNUM_INT_BITS-1;
774 }
775 }
776
777 /* Main computation */
778 while (i < (int)exp[0]) {
779 while (j >= 0) {
780 internal_mul(a + mlen, a + mlen, b, mlen, scratch);
781 internal_mod(b, mlen * 2, m, mlen, NULL, 0);
782 if ((exp[exp[0] - i] & (1 << j)) != 0) {
783 internal_mul(b + mlen, n, a, mlen, scratch);
784 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
785 } else {
786 BignumInt *t;
787 t = a;
788 a = b;
789 b = t;
790 }
791 j--;
792 }
793 i++;
794 j = BIGNUM_INT_BITS-1;
795 }
796
797 /* Fixup result in case the modulus was shifted */
798 if (mshift) {
799 for (i = mlen - 1; i < 2 * mlen - 1; i++)
800 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
801 a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
802 internal_mod(a, mlen * 2, m, mlen, NULL, 0);
803 for (i = 2 * mlen - 1; i >= mlen; i--)
804 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
805 }
806
807 /* Copy result to buffer */
808 result = newbn(mod[0]);
809 for (i = 0; i < mlen; i++)
810 result[result[0] - i] = a[i + mlen];
811 while (result[0] > 1 && result[result[0]] == 0)
812 result[0]--;
813
814 /* Free temporary arrays */
815 for (i = 0; i < 2 * mlen; i++)
816 a[i] = 0;
817 sfree(a);
818 for (i = 0; i < scratchlen; i++)
819 scratch[i] = 0;
820 sfree(scratch);
821 for (i = 0; i < 2 * mlen; i++)
822 b[i] = 0;
823 sfree(b);
824 for (i = 0; i < mlen; i++)
825 m[i] = 0;
826 sfree(m);
827 for (i = 0; i < mlen; i++)
828 n[i] = 0;
829 sfree(n);
830
831 freebn(base);
832
833 return result;
834 }
835
836 /*
837 * Compute (base ^ exp) % mod. Uses the Montgomery multiplication
838 * technique where possible, falling back to modpow_simple otherwise.
839 */
840 Bignum modpow(Bignum base_in, Bignum exp, Bignum mod)
841 {
842 BignumInt *a, *b, *x, *n, *mninv, *scratch;
843 int len, scratchlen, i, j;
844 Bignum base, base2, r, rn, inv, result;
845
846 /*
847 * The most significant word of mod needs to be non-zero. It
848 * should already be, but let's make sure.
849 */
850 assert(mod[mod[0]] != 0);
851
852 /*
853 * mod had better be odd, or we can't do Montgomery multiplication
854 * using a power of two at all.
855 */
856 if (!(mod[1] & 1))
857 return modpow_simple(base_in, exp, mod);
858
859 /*
860 * Make sure the base is smaller than the modulus, by reducing
861 * it modulo the modulus if not.
862 */
863 base = bigmod(base_in, mod);
864
865 /*
866 * Compute the inverse of n mod r, for monty_reduce. (In fact we
867 * want the inverse of _minus_ n mod r, but we'll sort that out
868 * below.)
869 */
870 len = mod[0];
871 r = bn_power_2(BIGNUM_INT_BITS * len);
872 inv = modinv(mod, r);
873
874 /*
875 * Multiply the base by r mod n, to get it into Montgomery
876 * representation.
877 */
878 base2 = modmul(base, r, mod);
879 freebn(base);
880 base = base2;
881
882 rn = bigmod(r, mod); /* r mod n, i.e. Montgomerified 1 */
883
884 freebn(r); /* won't need this any more */
885
886 /*
887 * Set up internal arrays of the right lengths, in big-endian
888 * format, containing the base, the modulus, and the modulus's
889 * inverse.
890 */
891 n = snewn(len, BignumInt);
892 for (j = 0; j < len; j++)
893 n[len - 1 - j] = mod[j + 1];
894
895 mninv = snewn(len, BignumInt);
896 for (j = 0; j < len; j++)
897 mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);
898 freebn(inv); /* we don't need this copy of it any more */
899 /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */
900 x = snewn(len, BignumInt);
901 for (j = 0; j < len; j++)
902 x[j] = 0;
903 internal_sub(x, mninv, mninv, len);
904
905 /* x = snewn(len, BignumInt); */ /* already done above */
906 for (j = 0; j < len; j++)
907 x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);
908 freebn(base); /* we don't need this copy of it any more */
909
910 a = snewn(2*len, BignumInt);
911 b = snewn(2*len, BignumInt);
912 for (j = 0; j < len; j++)
913 a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);
914 freebn(rn);
915
916 /* Scratch space for multiplies */
917 scratchlen = 3*len + mul_compute_scratch(len);
918 scratch = snewn(scratchlen, BignumInt);
919
920 /* Skip leading zero bits of exp. */
921 i = 0;
922 j = BIGNUM_INT_BITS-1;
923 while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
924 j--;
925 if (j < 0) {
926 i++;
927 j = BIGNUM_INT_BITS-1;
928 }
929 }
930
931 /* Main computation */
932 while (i < (int)exp[0]) {
933 while (j >= 0) {
934 internal_mul(a + len, a + len, b, len, scratch);
935 monty_reduce(b, n, mninv, scratch, len);
936 if ((exp[exp[0] - i] & (1 << j)) != 0) {
937 internal_mul(b + len, x, a, len, scratch);
938 monty_reduce(a, n, mninv, scratch, len);
939 } else {
940 BignumInt *t;
941 t = a;
942 a = b;
943 b = t;
944 }
945 j--;
946 }
947 i++;
948 j = BIGNUM_INT_BITS-1;
949 }
950
951 /*
952 * Final monty_reduce to get back from the adjusted Montgomery
953 * representation.
954 */
955 monty_reduce(a, n, mninv, scratch, len);
956
957 /* Copy result to buffer */
958 result = newbn(mod[0]);
959 for (i = 0; i < len; i++)
960 result[result[0] - i] = a[i + len];
961 while (result[0] > 1 && result[result[0]] == 0)
962 result[0]--;
963
964 /* Free temporary arrays */
965 for (i = 0; i < scratchlen; i++)
966 scratch[i] = 0;
967 sfree(scratch);
968 for (i = 0; i < 2 * len; i++)
969 a[i] = 0;
970 sfree(a);
971 for (i = 0; i < 2 * len; i++)
972 b[i] = 0;
973 sfree(b);
974 for (i = 0; i < len; i++)
975 mninv[i] = 0;
976 sfree(mninv);
977 for (i = 0; i < len; i++)
978 n[i] = 0;
979 sfree(n);
980 for (i = 0; i < len; i++)
981 x[i] = 0;
982 sfree(x);
983
984 return result;
985 }
986
987 /*
988 * Compute (p * q) % mod.
989 * The most significant word of mod MUST be non-zero.
990 * We assume that the result array is the same size as the mod array.
991 */
992 Bignum modmul(Bignum p, Bignum q, Bignum mod)
993 {
994 BignumInt *a, *n, *m, *o, *scratch;
995 int mshift, scratchlen;
996 int pqlen, mlen, rlen, i, j;
997 Bignum result;
998
999 /* Allocate m of size mlen, copy mod to m */
1000 /* We use big endian internally */
1001 mlen = mod[0];
1002 m = snewn(mlen, BignumInt);
1003 for (j = 0; j < mlen; j++)
1004 m[j] = mod[mod[0] - j];
1005
1006 /* Shift m left to make msb bit set */
1007 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1008 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1009 break;
1010 if (mshift) {
1011 for (i = 0; i < mlen - 1; i++)
1012 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1013 m[mlen - 1] = m[mlen - 1] << mshift;
1014 }
1015
1016 pqlen = (p[0] > q[0] ? p[0] : q[0]);
1017
1018 /* Make sure that we're allowing enough space. The shifting below will
1019 * underflow the vectors we allocate if `pqlen' is too small.
1020 */
1021 if (2*pqlen <= mlen)
1022 pqlen = mlen/2 + 1;
1023
1024 /* Allocate n of size pqlen, copy p to n */
1025 n = snewn(pqlen, BignumInt);
1026 i = pqlen - p[0];
1027 for (j = 0; j < i; j++)
1028 n[j] = 0;
1029 for (j = 0; j < (int)p[0]; j++)
1030 n[i + j] = p[p[0] - j];
1031
1032 /* Allocate o of size pqlen, copy q to o */
1033 o = snewn(pqlen, BignumInt);
1034 i = pqlen - q[0];
1035 for (j = 0; j < i; j++)
1036 o[j] = 0;
1037 for (j = 0; j < (int)q[0]; j++)
1038 o[i + j] = q[q[0] - j];
1039
1040 /* Allocate a of size 2*pqlen for result */
1041 a = snewn(2 * pqlen, BignumInt);
1042
1043 /* Scratch space for multiplies */
1044 scratchlen = mul_compute_scratch(pqlen);
1045 scratch = snewn(scratchlen, BignumInt);
1046
1047 /* Main computation */
1048 internal_mul(n, o, a, pqlen, scratch);
1049 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1050
1051 /* Fixup result in case the modulus was shifted */
1052 if (mshift) {
1053 for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++)
1054 a[i] = (a[i] << mshift) | (a[i + 1] >> (BIGNUM_INT_BITS - mshift));
1055 a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift;
1056 internal_mod(a, pqlen * 2, m, mlen, NULL, 0);
1057 for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--)
1058 a[i] = (a[i] >> mshift) | (a[i - 1] << (BIGNUM_INT_BITS - mshift));
1059 }
1060
1061 /* Copy result to buffer */
1062 rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);
1063 result = newbn(rlen);
1064 for (i = 0; i < rlen; i++)
1065 result[result[0] - i] = a[i + 2 * pqlen - rlen];
1066 while (result[0] > 1 && result[result[0]] == 0)
1067 result[0]--;
1068
1069 /* Free temporary arrays */
1070 for (i = 0; i < scratchlen; i++)
1071 scratch[i] = 0;
1072 sfree(scratch);
1073 for (i = 0; i < 2 * pqlen; i++)
1074 a[i] = 0;
1075 sfree(a);
1076 for (i = 0; i < mlen; i++)
1077 m[i] = 0;
1078 sfree(m);
1079 for (i = 0; i < pqlen; i++)
1080 n[i] = 0;
1081 sfree(n);
1082 for (i = 0; i < pqlen; i++)
1083 o[i] = 0;
1084 sfree(o);
1085
1086 return result;
1087 }
1088
1089 /*
1090 * Compute p % mod.
1091 * The most significant word of mod MUST be non-zero.
1092 * We assume that the result array is the same size as the mod array.
1093 * We optionally write out a quotient if `quotient' is non-NULL.
1094 * We can avoid writing out the result if `result' is NULL.
1095 */
1096 static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient)
1097 {
1098 BignumInt *n, *m;
1099 int mshift;
1100 int plen, mlen, i, j;
1101
1102 /* Allocate m of size mlen, copy mod to m */
1103 /* We use big endian internally */
1104 mlen = mod[0];
1105 m = snewn(mlen, BignumInt);
1106 for (j = 0; j < mlen; j++)
1107 m[j] = mod[mod[0] - j];
1108
1109 /* Shift m left to make msb bit set */
1110 for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
1111 if ((m[0] << mshift) & BIGNUM_TOP_BIT)
1112 break;
1113 if (mshift) {
1114 for (i = 0; i < mlen - 1; i++)
1115 m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
1116 m[mlen - 1] = m[mlen - 1] << mshift;
1117 }
1118
1119 plen = p[0];
1120 /* Ensure plen > mlen */
1121 if (plen <= mlen)
1122 plen = mlen + 1;
1123
1124 /* Allocate n of size plen, copy p to n */
1125 n = snewn(plen, BignumInt);
1126 for (j = 0; j < plen; j++)
1127 n[j] = 0;
1128 for (j = 1; j <= (int)p[0]; j++)
1129 n[plen - j] = p[j];
1130
1131 /* Main computation */
1132 internal_mod(n, plen, m, mlen, quotient, mshift);
1133
1134 /* Fixup result in case the modulus was shifted */
1135 if (mshift) {
1136 for (i = plen - mlen - 1; i < plen - 1; i++)
1137 n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
1138 n[plen - 1] = n[plen - 1] << mshift;
1139 internal_mod(n, plen, m, mlen, quotient, 0);
1140 for (i = plen - 1; i >= plen - mlen; i--)
1141 n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
1142 }
1143
1144 /* Copy result to buffer */
1145 if (result) {
1146 for (i = 1; i <= (int)result[0]; i++) {
1147 int j = plen - i;
1148 result[i] = j >= 0 ? n[j] : 0;
1149 }
1150 }
1151
1152 /* Free temporary arrays */
1153 for (i = 0; i < mlen; i++)
1154 m[i] = 0;
1155 sfree(m);
1156 for (i = 0; i < plen; i++)
1157 n[i] = 0;
1158 sfree(n);
1159 }
1160
1161 /*
1162 * Decrement a number.
1163 */
1164 void decbn(Bignum bn)
1165 {
1166 int i = 1;
1167 while (i < (int)bn[0] && bn[i] == 0)
1168 bn[i++] = BIGNUM_INT_MASK;
1169 bn[i]--;
1170 }
1171
1172 Bignum bignum_from_bytes(const unsigned char *data, int nbytes)
1173 {
1174 Bignum result;
1175 int w, i;
1176
1177 w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */
1178
1179 result = newbn(w);
1180 for (i = 1; i <= w; i++)
1181 result[i] = 0;
1182 for (i = nbytes; i--;) {
1183 unsigned char byte = *data++;
1184 result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS);
1185 }
1186
1187 while (result[0] > 1 && result[result[0]] == 0)
1188 result[0]--;
1189 return result;
1190 }
1191
1192 /*
1193 * Read an SSH-1-format bignum from a data buffer. Return the number
1194 * of bytes consumed, or -1 if there wasn't enough data.
1195 */
1196 int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result)
1197 {
1198 const unsigned char *p = data;
1199 int i;
1200 int w, b;
1201
1202 if (len < 2)
1203 return -1;
1204
1205 w = 0;
1206 for (i = 0; i < 2; i++)
1207 w = (w << 8) + *p++;
1208 b = (w + 7) / 8; /* bits -> bytes */
1209
1210 if (len < b+2)
1211 return -1;
1212
1213 if (!result) /* just return length */
1214 return b + 2;
1215
1216 *result = bignum_from_bytes(p, b);
1217
1218 return p + b - data;
1219 }
1220
1221 /*
1222 * Return the bit count of a bignum, for SSH-1 encoding.
1223 */
1224 int bignum_bitcount(Bignum bn)
1225 {
1226 int bitcount = bn[0] * BIGNUM_INT_BITS - 1;
1227 while (bitcount >= 0
1228 && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;
1229 return bitcount + 1;
1230 }
1231
1232 /*
1233 * Return the byte length of a bignum when SSH-1 encoded.
1234 */
1235 int ssh1_bignum_length(Bignum bn)
1236 {
1237 return 2 + (bignum_bitcount(bn) + 7) / 8;
1238 }
1239
1240 /*
1241 * Return the byte length of a bignum when SSH-2 encoded.
1242 */
1243 int ssh2_bignum_length(Bignum bn)
1244 {
1245 return 4 + (bignum_bitcount(bn) + 8) / 8;
1246 }
1247
1248 /*
1249 * Return a byte from a bignum; 0 is least significant, etc.
1250 */
1251 int bignum_byte(Bignum bn, int i)
1252 {
1253 if (i >= (int)(BIGNUM_INT_BYTES * bn[0]))
1254 return 0; /* beyond the end */
1255 else
1256 return (bn[i / BIGNUM_INT_BYTES + 1] >>
1257 ((i % BIGNUM_INT_BYTES)*8)) & 0xFF;
1258 }
1259
1260 /*
1261 * Return a bit from a bignum; 0 is least significant, etc.
1262 */
1263 int bignum_bit(Bignum bn, int i)
1264 {
1265 if (i >= (int)(BIGNUM_INT_BITS * bn[0]))
1266 return 0; /* beyond the end */
1267 else
1268 return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;
1269 }
1270
1271 /*
1272 * Set a bit in a bignum; 0 is least significant, etc.
1273 */
1274 void bignum_set_bit(Bignum bn, int bitnum, int value)
1275 {
1276 if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0]))
1277 abort(); /* beyond the end */
1278 else {
1279 int v = bitnum / BIGNUM_INT_BITS + 1;
1280 int mask = 1 << (bitnum % BIGNUM_INT_BITS);
1281 if (value)
1282 bn[v] |= mask;
1283 else
1284 bn[v] &= ~mask;
1285 }
1286 }
1287
1288 /*
1289 * Write a SSH-1-format bignum into a buffer. It is assumed the
1290 * buffer is big enough. Returns the number of bytes used.
1291 */
1292 int ssh1_write_bignum(void *data, Bignum bn)
1293 {
1294 unsigned char *p = data;
1295 int len = ssh1_bignum_length(bn);
1296 int i;
1297 int bitc = bignum_bitcount(bn);
1298
1299 *p++ = (bitc >> 8) & 0xFF;
1300 *p++ = (bitc) & 0xFF;
1301 for (i = len - 2; i--;)
1302 *p++ = bignum_byte(bn, i);
1303 return len;
1304 }
1305
1306 /*
1307 * Compare two bignums. Returns like strcmp.
1308 */
1309 int bignum_cmp(Bignum a, Bignum b)
1310 {
1311 int amax = a[0], bmax = b[0];
1312 int i = (amax > bmax ? amax : bmax);
1313 while (i) {
1314 BignumInt aval = (i > amax ? 0 : a[i]);
1315 BignumInt bval = (i > bmax ? 0 : b[i]);
1316 if (aval < bval)
1317 return -1;
1318 if (aval > bval)
1319 return +1;
1320 i--;
1321 }
1322 return 0;
1323 }
1324
1325 /*
1326 * Right-shift one bignum to form another.
1327 */
1328 Bignum bignum_rshift(Bignum a, int shift)
1329 {
1330 Bignum ret;
1331 int i, shiftw, shiftb, shiftbb, bits;
1332 BignumInt ai, ai1;
1333
1334 bits = bignum_bitcount(a) - shift;
1335 ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
1336
1337 if (ret) {
1338 shiftw = shift / BIGNUM_INT_BITS;
1339 shiftb = shift % BIGNUM_INT_BITS;
1340 shiftbb = BIGNUM_INT_BITS - shiftb;
1341
1342 ai1 = a[shiftw + 1];
1343 for (i = 1; i <= (int)ret[0]; i++) {
1344 ai = ai1;
1345 ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);
1346 ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;
1347 }
1348 }
1349
1350 return ret;
1351 }
1352
1353 /*
1354 * Non-modular multiplication and addition.
1355 */
1356 Bignum bigmuladd(Bignum a, Bignum b, Bignum addend)
1357 {
1358 int alen = a[0], blen = b[0];
1359 int mlen = (alen > blen ? alen : blen);
1360 int rlen, i, maxspot;
1361 int wslen;
1362 BignumInt *workspace;
1363 Bignum ret;
1364
1365 /* mlen space for a, mlen space for b, 2*mlen for result,
1366 * plus scratch space for multiplication */
1367 wslen = mlen * 4 + mul_compute_scratch(mlen);
1368 workspace = snewn(wslen, BignumInt);
1369 for (i = 0; i < mlen; i++) {
1370 workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);
1371 workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);
1372 }
1373
1374 internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,
1375 workspace + 2 * mlen, mlen, workspace + 4 * mlen);
1376
1377 /* now just copy the result back */
1378 rlen = alen + blen + 1;
1379 if (addend && rlen <= (int)addend[0])
1380 rlen = addend[0] + 1;
1381 ret = newbn(rlen);
1382 maxspot = 0;
1383 for (i = 1; i <= (int)ret[0]; i++) {
1384 ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);
1385 if (ret[i] != 0)
1386 maxspot = i;
1387 }
1388 ret[0] = maxspot;
1389
1390 /* now add in the addend, if any */
1391 if (addend) {
1392 BignumDblInt carry = 0;
1393 for (i = 1; i <= rlen; i++) {
1394 carry += (i <= (int)ret[0] ? ret[i] : 0);
1395 carry += (i <= (int)addend[0] ? addend[i] : 0);
1396 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1397 carry >>= BIGNUM_INT_BITS;
1398 if (ret[i] != 0 && i > maxspot)
1399 maxspot = i;
1400 }
1401 }
1402 ret[0] = maxspot;
1403
1404 for (i = 0; i < wslen; i++)
1405 workspace[i] = 0;
1406 sfree(workspace);
1407 return ret;
1408 }
1409
1410 /*
1411 * Non-modular multiplication.
1412 */
1413 Bignum bigmul(Bignum a, Bignum b)
1414 {
1415 return bigmuladd(a, b, NULL);
1416 }
1417
1418 /*
1419 * Simple addition.
1420 */
1421 Bignum bigadd(Bignum a, Bignum b)
1422 {
1423 int alen = a[0], blen = b[0];
1424 int rlen = (alen > blen ? alen : blen) + 1;
1425 int i, maxspot;
1426 Bignum ret;
1427 BignumDblInt carry;
1428
1429 ret = newbn(rlen);
1430
1431 carry = 0;
1432 maxspot = 0;
1433 for (i = 1; i <= rlen; i++) {
1434 carry += (i <= (int)a[0] ? a[i] : 0);
1435 carry += (i <= (int)b[0] ? b[i] : 0);
1436 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1437 carry >>= BIGNUM_INT_BITS;
1438 if (ret[i] != 0 && i > maxspot)
1439 maxspot = i;
1440 }
1441 ret[0] = maxspot;
1442
1443 return ret;
1444 }
1445
1446 /*
1447 * Subtraction. Returns a-b, or NULL if the result would come out
1448 * negative (recall that this entire bignum module only handles
1449 * positive numbers).
1450 */
1451 Bignum bigsub(Bignum a, Bignum b)
1452 {
1453 int alen = a[0], blen = b[0];
1454 int rlen = (alen > blen ? alen : blen);
1455 int i, maxspot;
1456 Bignum ret;
1457 BignumDblInt carry;
1458
1459 ret = newbn(rlen);
1460
1461 carry = 1;
1462 maxspot = 0;
1463 for (i = 1; i <= rlen; i++) {
1464 carry += (i <= (int)a[0] ? a[i] : 0);
1465 carry += (i <= (int)b[0] ? b[i] ^ BIGNUM_INT_MASK : BIGNUM_INT_MASK);
1466 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1467 carry >>= BIGNUM_INT_BITS;
1468 if (ret[i] != 0 && i > maxspot)
1469 maxspot = i;
1470 }
1471 ret[0] = maxspot;
1472
1473 if (!carry) {
1474 freebn(ret);
1475 return NULL;
1476 }
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * Create a bignum which is the bitmask covering another one. That
1483 * is, the smallest integer which is >= N and is also one less than
1484 * a power of two.
1485 */
1486 Bignum bignum_bitmask(Bignum n)
1487 {
1488 Bignum ret = copybn(n);
1489 int i;
1490 BignumInt j;
1491
1492 i = ret[0];
1493 while (n[i] == 0 && i > 0)
1494 i--;
1495 if (i <= 0)
1496 return ret; /* input was zero */
1497 j = 1;
1498 while (j < n[i])
1499 j = 2 * j + 1;
1500 ret[i] = j;
1501 while (--i > 0)
1502 ret[i] = BIGNUM_INT_MASK;
1503 return ret;
1504 }
1505
1506 /*
1507 * Convert a (max 32-bit) long into a bignum.
1508 */
1509 Bignum bignum_from_long(unsigned long nn)
1510 {
1511 Bignum ret;
1512 BignumDblInt n = nn;
1513
1514 ret = newbn(3);
1515 ret[1] = (BignumInt)(n & BIGNUM_INT_MASK);
1516 ret[2] = (BignumInt)((n >> BIGNUM_INT_BITS) & BIGNUM_INT_MASK);
1517 ret[3] = 0;
1518 ret[0] = (ret[2] ? 2 : 1);
1519 return ret;
1520 }
1521
1522 /*
1523 * Add a long to a bignum.
1524 */
1525 Bignum bignum_add_long(Bignum number, unsigned long addendx)
1526 {
1527 Bignum ret = newbn(number[0] + 1);
1528 int i, maxspot = 0;
1529 BignumDblInt carry = 0, addend = addendx;
1530
1531 for (i = 1; i <= (int)ret[0]; i++) {
1532 carry += addend & BIGNUM_INT_MASK;
1533 carry += (i <= (int)number[0] ? number[i] : 0);
1534 addend >>= BIGNUM_INT_BITS;
1535 ret[i] = (BignumInt) carry & BIGNUM_INT_MASK;
1536 carry >>= BIGNUM_INT_BITS;
1537 if (ret[i] != 0)
1538 maxspot = i;
1539 }
1540 ret[0] = maxspot;
1541 return ret;
1542 }
1543
1544 /*
1545 * Compute the residue of a bignum, modulo a (max 16-bit) short.
1546 */
1547 unsigned short bignum_mod_short(Bignum number, unsigned short modulus)
1548 {
1549 BignumDblInt mod, r;
1550 int i;
1551
1552 r = 0;
1553 mod = modulus;
1554 for (i = number[0]; i > 0; i--)
1555 r = (r * (BIGNUM_TOP_BIT % mod) * 2 + number[i] % mod) % mod;
1556 return (unsigned short) r;
1557 }
1558
1559 #ifdef DEBUG
1560 void diagbn(char *prefix, Bignum md)
1561 {
1562 int i, nibbles, morenibbles;
1563 static const char hex[] = "0123456789ABCDEF";
1564
1565 debug(("%s0x", prefix ? prefix : ""));
1566
1567 nibbles = (3 + bignum_bitcount(md)) / 4;
1568 if (nibbles < 1)
1569 nibbles = 1;
1570 morenibbles = 4 * md[0] - nibbles;
1571 for (i = 0; i < morenibbles; i++)
1572 debug(("-"));
1573 for (i = nibbles; i--;)
1574 debug(("%c",
1575 hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));
1576
1577 if (prefix)
1578 debug(("\n"));
1579 }
1580 #endif
1581
1582 /*
1583 * Simple division.
1584 */
1585 Bignum bigdiv(Bignum a, Bignum b)
1586 {
1587 Bignum q = newbn(a[0]);
1588 bigdivmod(a, b, NULL, q);
1589 return q;
1590 }
1591
1592 /*
1593 * Simple remainder.
1594 */
1595 Bignum bigmod(Bignum a, Bignum b)
1596 {
1597 Bignum r = newbn(b[0]);
1598 bigdivmod(a, b, r, NULL);
1599 return r;
1600 }
1601
1602 /*
1603 * Greatest common divisor.
1604 */
1605 Bignum biggcd(Bignum av, Bignum bv)
1606 {
1607 Bignum a = copybn(av);
1608 Bignum b = copybn(bv);
1609
1610 while (bignum_cmp(b, Zero) != 0) {
1611 Bignum t = newbn(b[0]);
1612 bigdivmod(a, b, t, NULL);
1613 while (t[0] > 1 && t[t[0]] == 0)
1614 t[0]--;
1615 freebn(a);
1616 a = b;
1617 b = t;
1618 }
1619
1620 freebn(b);
1621 return a;
1622 }
1623
1624 /*
1625 * Modular inverse, using Euclid's extended algorithm.
1626 */
1627 Bignum modinv(Bignum number, Bignum modulus)
1628 {
1629 Bignum a = copybn(modulus);
1630 Bignum b = copybn(number);
1631 Bignum xp = copybn(Zero);
1632 Bignum x = copybn(One);
1633 int sign = +1;
1634
1635 while (bignum_cmp(b, One) != 0) {
1636 Bignum t = newbn(b[0]);
1637 Bignum q = newbn(a[0]);
1638 bigdivmod(a, b, t, q);
1639 while (t[0] > 1 && t[t[0]] == 0)
1640 t[0]--;
1641 freebn(a);
1642 a = b;
1643 b = t;
1644 t = xp;
1645 xp = x;
1646 x = bigmuladd(q, xp, t);
1647 sign = -sign;
1648 freebn(t);
1649 freebn(q);
1650 }
1651
1652 freebn(b);
1653 freebn(a);
1654 freebn(xp);
1655
1656 /* now we know that sign * x == 1, and that x < modulus */
1657 if (sign < 0) {
1658 /* set a new x to be modulus - x */
1659 Bignum newx = newbn(modulus[0]);
1660 BignumInt carry = 0;
1661 int maxspot = 1;
1662 int i;
1663
1664 for (i = 1; i <= (int)newx[0]; i++) {
1665 BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);
1666 BignumInt bword = (i <= (int)x[0] ? x[i] : 0);
1667 newx[i] = aword - bword - carry;
1668 bword = ~bword;
1669 carry = carry ? (newx[i] >= bword) : (newx[i] > bword);
1670 if (newx[i] != 0)
1671 maxspot = i;
1672 }
1673 newx[0] = maxspot;
1674 freebn(x);
1675 x = newx;
1676 }
1677
1678 /* and return. */
1679 return x;
1680 }
1681
1682 /*
1683 * Render a bignum into decimal. Return a malloced string holding
1684 * the decimal representation.
1685 */
1686 char *bignum_decimal(Bignum x)
1687 {
1688 int ndigits, ndigit;
1689 int i, iszero;
1690 BignumDblInt carry;
1691 char *ret;
1692 BignumInt *workspace;
1693
1694 /*
1695 * First, estimate the number of digits. Since log(10)/log(2)
1696 * is just greater than 93/28 (the joys of continued fraction
1697 * approximations...) we know that for every 93 bits, we need
1698 * at most 28 digits. This will tell us how much to malloc.
1699 *
1700 * Formally: if x has i bits, that means x is strictly less
1701 * than 2^i. Since 2 is less than 10^(28/93), this is less than
1702 * 10^(28i/93). We need an integer power of ten, so we must
1703 * round up (rounding down might make it less than x again).
1704 * Therefore if we multiply the bit count by 28/93, rounding
1705 * up, we will have enough digits.
1706 *
1707 * i=0 (i.e., x=0) is an irritating special case.
1708 */
1709 i = bignum_bitcount(x);
1710 if (!i)
1711 ndigits = 1; /* x = 0 */
1712 else
1713 ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */
1714 ndigits++; /* allow for trailing \0 */
1715 ret = snewn(ndigits, char);
1716
1717 /*
1718 * Now allocate some workspace to hold the binary form as we
1719 * repeatedly divide it by ten. Initialise this to the
1720 * big-endian form of the number.
1721 */
1722 workspace = snewn(x[0], BignumInt);
1723 for (i = 0; i < (int)x[0]; i++)
1724 workspace[i] = x[x[0] - i];
1725
1726 /*
1727 * Next, write the decimal number starting with the last digit.
1728 * We use ordinary short division, dividing 10 into the
1729 * workspace.
1730 */
1731 ndigit = ndigits - 1;
1732 ret[ndigit] = '\0';
1733 do {
1734 iszero = 1;
1735 carry = 0;
1736 for (i = 0; i < (int)x[0]; i++) {
1737 carry = (carry << BIGNUM_INT_BITS) + workspace[i];
1738 workspace[i] = (BignumInt) (carry / 10);
1739 if (workspace[i])
1740 iszero = 0;
1741 carry %= 10;
1742 }
1743 ret[--ndigit] = (char) (carry + '0');
1744 } while (!iszero);
1745
1746 /*
1747 * There's a chance we've fallen short of the start of the
1748 * string. Correct if so.
1749 */
1750 if (ndigit > 0)
1751 memmove(ret, ret + ndigit, ndigits - ndigit);
1752
1753 /*
1754 * Done.
1755 */
1756 sfree(workspace);
1757 return ret;
1758 }
1759
1760 #ifdef TESTBN
1761
1762 #include <stdio.h>
1763 #include <stdlib.h>
1764 #include <ctype.h>
1765
1766 /*
1767 * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset
1768 *
1769 * Then feed to this program's standard input the output of
1770 * testdata/bignum.py .
1771 */
1772
1773 void modalfatalbox(char *p, ...)
1774 {
1775 va_list ap;
1776 fprintf(stderr, "FATAL ERROR: ");
1777 va_start(ap, p);
1778 vfprintf(stderr, p, ap);
1779 va_end(ap);
1780 fputc('\n', stderr);
1781 exit(1);
1782 }
1783
1784 #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' )
1785
1786 int main(int argc, char **argv)
1787 {
1788 char *buf;
1789 int line = 0;
1790 int passes = 0, fails = 0;
1791
1792 while ((buf = fgetline(stdin)) != NULL) {
1793 int maxlen = strlen(buf);
1794 unsigned char *data = snewn(maxlen, unsigned char);
1795 unsigned char *ptrs[5], *q;
1796 int ptrnum;
1797 char *bufp = buf;
1798
1799 line++;
1800
1801 q = data;
1802 ptrnum = 0;
1803
1804 while (*bufp && !isspace((unsigned char)*bufp))
1805 bufp++;
1806 if (bufp)
1807 *bufp++ = '\0';
1808
1809 while (*bufp) {
1810 char *start, *end;
1811 int i;
1812
1813 while (*bufp && !isxdigit((unsigned char)*bufp))
1814 bufp++;
1815 start = bufp;
1816
1817 if (!*bufp)
1818 break;
1819
1820 while (*bufp && isxdigit((unsigned char)*bufp))
1821 bufp++;
1822 end = bufp;
1823
1824 if (ptrnum >= lenof(ptrs))
1825 break;
1826 ptrs[ptrnum++] = q;
1827
1828 for (i = -((end - start) & 1); i < end-start; i += 2) {
1829 unsigned char val = (i < 0 ? 0 : fromxdigit(start[i]));
1830 val = val * 16 + fromxdigit(start[i+1]);
1831 *q++ = val;
1832 }
1833
1834 ptrs[ptrnum] = q;
1835 }
1836
1837 if (!strcmp(buf, "mul")) {
1838 Bignum a, b, c, p;
1839
1840 if (ptrnum != 3) {
1841 printf("%d: mul with %d parameters, expected 3\n", line, ptrnum);
1842 exit(1);
1843 }
1844 a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1845 b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1846 c = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1847 p = bigmul(a, b);
1848
1849 if (bignum_cmp(c, p) == 0) {
1850 passes++;
1851 } else {
1852 char *as = bignum_decimal(a);
1853 char *bs = bignum_decimal(b);
1854 char *cs = bignum_decimal(c);
1855 char *ps = bignum_decimal(p);
1856
1857 printf("%d: fail: %s * %s gave %s expected %s\n",
1858 line, as, bs, ps, cs);
1859 fails++;
1860
1861 sfree(as);
1862 sfree(bs);
1863 sfree(cs);
1864 sfree(ps);
1865 }
1866 freebn(a);
1867 freebn(b);
1868 freebn(c);
1869 freebn(p);
1870 } else if (!strcmp(buf, "pow")) {
1871 Bignum base, expt, modulus, expected, answer;
1872
1873 if (ptrnum != 4) {
1874 printf("%d: mul with %d parameters, expected 4\n", line, ptrnum);
1875 exit(1);
1876 }
1877
1878 base = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]);
1879 expt = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]);
1880 modulus = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]);
1881 expected = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]);
1882 answer = modpow(base, expt, modulus);
1883
1884 if (bignum_cmp(expected, answer) == 0) {
1885 passes++;
1886 } else {
1887 char *as = bignum_decimal(base);
1888 char *bs = bignum_decimal(expt);
1889 char *cs = bignum_decimal(modulus);
1890 char *ds = bignum_decimal(answer);
1891 char *ps = bignum_decimal(expected);
1892
1893 printf("%d: fail: %s ^ %s mod %s gave %s expected %s\n",
1894 line, as, bs, cs, ds, ps);
1895 fails++;
1896
1897 sfree(as);
1898 sfree(bs);
1899 sfree(cs);
1900 sfree(ds);
1901 sfree(ps);
1902 }
1903 freebn(base);
1904 freebn(expt);
1905 freebn(modulus);
1906 freebn(expected);
1907 freebn(answer);
1908 } else {
1909 printf("%d: unrecognised test keyword: '%s'\n", line, buf);
1910 exit(1);
1911 }
1912
1913 sfree(buf);
1914 sfree(data);
1915 }
1916
1917 printf("passed %d failed %d total %d\n", passes, fails, passes+fails);
1918 return fails != 0;
1919 }
1920
1921 #endif