Initialise (struct Socket_tag).connected in sk_register().
[u/mdw/putty] / unix / uxnet.c
1 /*
2 * Unix networking abstraction.
3 */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8 #include <errno.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <sys/types.h>
12 #include <sys/socket.h>
13 #include <sys/ioctl.h>
14 #include <arpa/inet.h>
15 #include <netinet/in.h>
16 #include <netinet/tcp.h>
17 #include <netdb.h>
18 #include <sys/un.h>
19
20 #define DEFINE_PLUG_METHOD_MACROS
21 #include "putty.h"
22 #include "network.h"
23 #include "tree234.h"
24
25 #ifndef X11_UNIX_PATH
26 # define X11_UNIX_PATH "/tmp/.X11-unix/X"
27 #endif
28
29 struct Socket_tag {
30 struct socket_function_table *fn;
31 /* the above variable absolutely *must* be the first in this structure */
32 const char *error;
33 int s;
34 Plug plug;
35 void *private_ptr;
36 bufchain output_data;
37 int connected;
38 int writable;
39 int frozen; /* this causes readability notifications to be ignored */
40 int frozen_readable; /* this means we missed at least one readability
41 * notification while we were frozen */
42 int localhost_only; /* for listening sockets */
43 char oobdata[1];
44 int sending_oob;
45 int oobpending; /* is there OOB data available to read? */
46 int oobinline;
47 int pending_error; /* in case send() returns error */
48 int listener;
49 int nodelay, keepalive; /* for connect()-type sockets */
50 int privport, port; /* and again */
51 SockAddr addr;
52 };
53
54 /*
55 * We used to typedef struct Socket_tag *Socket.
56 *
57 * Since we have made the networking abstraction slightly more
58 * abstract, Socket no longer means a tcp socket (it could mean
59 * an ssl socket). So now we must use Actual_Socket when we know
60 * we are talking about a tcp socket.
61 */
62 typedef struct Socket_tag *Actual_Socket;
63
64 struct SockAddr_tag {
65 const char *error;
66 /*
67 * Which address family this address belongs to. AF_INET for
68 * IPv4; AF_INET6 for IPv6; AF_UNSPEC indicates that name
69 * resolution has not been done and a simple host name is held
70 * in this SockAddr structure.
71 */
72 int family;
73 #ifndef NO_IPV6
74 struct addrinfo *ais; /* Addresses IPv6 style. */
75 struct addrinfo *ai; /* steps along the linked list */
76 #else
77 unsigned long *addresses; /* Addresses IPv4 style. */
78 int naddresses, curraddr;
79 #endif
80 char hostname[512]; /* Store an unresolved host name. */
81 };
82
83 static tree234 *sktree;
84
85 static void uxsel_tell(Actual_Socket s);
86
87 static int cmpfortree(void *av, void *bv)
88 {
89 Actual_Socket a = (Actual_Socket) av, b = (Actual_Socket) bv;
90 int as = a->s, bs = b->s;
91 if (as < bs)
92 return -1;
93 if (as > bs)
94 return +1;
95 return 0;
96 }
97
98 static int cmpforsearch(void *av, void *bv)
99 {
100 Actual_Socket b = (Actual_Socket) bv;
101 int as = *(int *)av, bs = b->s;
102 if (as < bs)
103 return -1;
104 if (as > bs)
105 return +1;
106 return 0;
107 }
108
109 void sk_init(void)
110 {
111 sktree = newtree234(cmpfortree);
112 }
113
114 void sk_cleanup(void)
115 {
116 Actual_Socket s;
117 int i;
118
119 if (sktree) {
120 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
121 close(s->s);
122 }
123 }
124 }
125
126 SockAddr sk_namelookup(const char *host, char **canonicalname, int address_family)
127 {
128 SockAddr ret = snew(struct SockAddr_tag);
129 #ifndef NO_IPV6
130 struct addrinfo hints;
131 int err;
132 #else
133 unsigned long a;
134 struct hostent *h = NULL;
135 int n;
136 #endif
137 char realhost[8192];
138
139 /* Clear the structure and default to IPv4. */
140 memset(ret, 0, sizeof(struct SockAddr_tag));
141 ret->family = 0; /* We set this one when we have resolved the host. */
142 *realhost = '\0';
143 ret->error = NULL;
144
145 #ifndef NO_IPV6
146 hints.ai_flags = AI_CANONNAME;
147 hints.ai_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
148 address_family == ADDRTYPE_IPV6 ? AF_INET6 :
149 AF_UNSPEC);
150 hints.ai_socktype = SOCK_STREAM;
151 hints.ai_protocol = 0;
152 hints.ai_addrlen = 0;
153 hints.ai_addr = NULL;
154 hints.ai_canonname = NULL;
155 hints.ai_next = NULL;
156 err = getaddrinfo(host, NULL, &hints, &ret->ais);
157 ret->ai = ret->ais;
158 if (err != 0) {
159 ret->error = gai_strerror(err);
160 return ret;
161 }
162 ret->family = ret->ai->ai_family;
163 *realhost = '\0';
164 if (ret->ai->ai_canonname != NULL)
165 strncat(realhost, ret->ai->ai_canonname, sizeof(realhost) - 1);
166 else
167 strncat(realhost, host, sizeof(realhost) - 1);
168 #else
169 if ((a = inet_addr(host)) == (unsigned long)(in_addr_t)(-1)) {
170 /*
171 * Otherwise use the IPv4-only gethostbyname... (NOTE:
172 * we don't use gethostbyname as a fallback!)
173 */
174 if (ret->family == 0) {
175 /*debug(("Resolving \"%s\" with gethostbyname() (IPv4 only)...\n", host)); */
176 if ( (h = gethostbyname(host)) )
177 ret->family = AF_INET;
178 }
179 if (ret->family == 0) {
180 ret->error = (h_errno == HOST_NOT_FOUND ||
181 h_errno == NO_DATA ||
182 h_errno == NO_ADDRESS ? "Host does not exist" :
183 h_errno == TRY_AGAIN ?
184 "Temporary name service failure" :
185 "gethostbyname: unknown error");
186 return ret;
187 }
188 /* This way we are always sure the h->h_name is valid :) */
189 strncpy(realhost, h->h_name, sizeof(realhost));
190 for (n = 0; h->h_addr_list[n]; n++);
191 ret->addresses = snewn(n, unsigned long);
192 ret->naddresses = n;
193 for (n = 0; n < ret->naddresses; n++) {
194 memcpy(&a, h->h_addr_list[n], sizeof(a));
195 ret->addresses[n] = ntohl(a);
196 }
197 } else {
198 /*
199 * This must be a numeric IPv4 address because it caused a
200 * success return from inet_addr.
201 */
202 ret->family = AF_INET;
203 strncpy(realhost, host, sizeof(realhost));
204 ret->addresses = snew(unsigned long);
205 ret->naddresses = 1;
206 ret->addresses[0] = ntohl(a);
207 ret->curraddr = 0;
208 }
209 #endif
210 realhost[lenof(realhost)-1] = '\0';
211 *canonicalname = snewn(1+strlen(realhost), char);
212 strcpy(*canonicalname, realhost);
213 return ret;
214 }
215
216 SockAddr sk_nonamelookup(const char *host)
217 {
218 SockAddr ret = snew(struct SockAddr_tag);
219 ret->error = NULL;
220 ret->family = AF_UNSPEC;
221 strncpy(ret->hostname, host, lenof(ret->hostname));
222 ret->hostname[lenof(ret->hostname)-1] = '\0';
223 #ifndef NO_IPV6
224 ret->ais = NULL;
225 #else
226 ret->addresses = NULL;
227 #endif
228 return ret;
229 }
230
231 static int sk_nextaddr(SockAddr addr)
232 {
233 #ifndef NO_IPV6
234 if (addr->ai->ai_next) {
235 addr->ai = addr->ai->ai_next;
236 addr->family = addr->ai->ai_family;
237 return TRUE;
238 } else
239 return FALSE;
240 #else
241 if (addr->curraddr+1 < addr->naddresses) {
242 addr->curraddr++;
243 return TRUE;
244 } else {
245 return FALSE;
246 }
247 #endif
248 }
249
250 void sk_getaddr(SockAddr addr, char *buf, int buflen)
251 {
252
253 if (addr->family == AF_UNSPEC) {
254 strncpy(buf, addr->hostname, buflen);
255 buf[buflen-1] = '\0';
256 } else {
257 #ifndef NO_IPV6
258 if (getnameinfo(addr->ai->ai_addr, addr->ai->ai_addrlen, buf, buflen,
259 NULL, 0, NI_NUMERICHOST) != 0) {
260 buf[0] = '\0';
261 strncat(buf, "<unknown>", buflen - 1);
262 }
263 #else
264 struct in_addr a;
265 assert(addr->family == AF_INET);
266 a.s_addr = htonl(addr->addresses[addr->curraddr]);
267 strncpy(buf, inet_ntoa(a), buflen);
268 buf[buflen-1] = '\0';
269 #endif
270 }
271 }
272
273 int sk_hostname_is_local(char *name)
274 {
275 return !strcmp(name, "localhost");
276 }
277
278 #define ipv4_is_loopback(addr) \
279 (((addr).s_addr & htonl(0xff000000)) == htonl(0x7f000000))
280
281 static int sockaddr_is_loopback(struct sockaddr *sa)
282 {
283 struct sockaddr_in *sin;
284 #ifndef NO_IPV6
285 struct sockaddr_in6 *sin6;
286 #endif
287
288 switch (sa->sa_family) {
289 case AF_INET:
290 sin = (struct sockaddr_in *)sa;
291 return ipv4_is_loopback(sin->sin_addr);
292 #ifndef NO_IPV6
293 case AF_INET6:
294 sin6 = (struct sockaddr_in6 *)sa;
295 return IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr);
296 #endif
297 case AF_UNIX:
298 return TRUE;
299 default:
300 return FALSE;
301 }
302 }
303
304 int sk_address_is_local(SockAddr addr)
305 {
306
307 if (addr->family == AF_UNSPEC)
308 return 0; /* we don't know; assume not */
309 else {
310 #ifndef NO_IPV6
311 return sockaddr_is_loopback(addr->ai->ai_addr);
312 #else
313 struct in_addr a;
314 assert(addr->family == AF_INET);
315 a.s_addr = htonl(addr->addresses[addr->curraddr]);
316 return ipv4_is_loopback(a);
317 #endif
318 }
319 }
320
321 int sk_addrtype(SockAddr addr)
322 {
323 return (addr->family == AF_INET ? ADDRTYPE_IPV4 :
324 #ifndef NO_IPV6
325 addr->family == AF_INET6 ? ADDRTYPE_IPV6 :
326 #endif
327 ADDRTYPE_NAME);
328 }
329
330 void sk_addrcopy(SockAddr addr, char *buf)
331 {
332
333 #ifndef NO_IPV6
334 if (addr->family == AF_INET)
335 memcpy(buf, &((struct sockaddr_in *)addr->ai->ai_addr)->sin_addr,
336 sizeof(struct in_addr));
337 else if (addr->family == AF_INET6)
338 memcpy(buf, &((struct sockaddr_in6 *)addr->ai->ai_addr)->sin6_addr,
339 sizeof(struct in6_addr));
340 else
341 assert(FALSE);
342 #else
343 struct in_addr a;
344
345 assert(addr->family == AF_INET);
346 a.s_addr = htonl(addr->addresses[addr->curraddr]);
347 memcpy(buf, (char*) &a.s_addr, 4);
348 #endif
349 }
350
351 void sk_addr_free(SockAddr addr)
352 {
353
354 #ifndef NO_IPV6
355 if (addr->ais != NULL)
356 freeaddrinfo(addr->ais);
357 #else
358 sfree(addr->addresses);
359 #endif
360 sfree(addr);
361 }
362
363 static Plug sk_tcp_plug(Socket sock, Plug p)
364 {
365 Actual_Socket s = (Actual_Socket) sock;
366 Plug ret = s->plug;
367 if (p)
368 s->plug = p;
369 return ret;
370 }
371
372 static void sk_tcp_flush(Socket s)
373 {
374 /*
375 * We send data to the socket as soon as we can anyway,
376 * so we don't need to do anything here. :-)
377 */
378 }
379
380 static void sk_tcp_close(Socket s);
381 static int sk_tcp_write(Socket s, const char *data, int len);
382 static int sk_tcp_write_oob(Socket s, const char *data, int len);
383 static void sk_tcp_set_private_ptr(Socket s, void *ptr);
384 static void *sk_tcp_get_private_ptr(Socket s);
385 static void sk_tcp_set_frozen(Socket s, int is_frozen);
386 static const char *sk_tcp_socket_error(Socket s);
387
388 static struct socket_function_table tcp_fn_table = {
389 sk_tcp_plug,
390 sk_tcp_close,
391 sk_tcp_write,
392 sk_tcp_write_oob,
393 sk_tcp_flush,
394 sk_tcp_set_private_ptr,
395 sk_tcp_get_private_ptr,
396 sk_tcp_set_frozen,
397 sk_tcp_socket_error
398 };
399
400 Socket sk_register(OSSocket sockfd, Plug plug)
401 {
402 Actual_Socket ret;
403
404 /*
405 * Create Socket structure.
406 */
407 ret = snew(struct Socket_tag);
408 ret->fn = &tcp_fn_table;
409 ret->error = NULL;
410 ret->plug = plug;
411 bufchain_init(&ret->output_data);
412 ret->writable = 1; /* to start with */
413 ret->sending_oob = 0;
414 ret->frozen = 1;
415 ret->frozen_readable = 0;
416 ret->localhost_only = 0; /* unused, but best init anyway */
417 ret->pending_error = 0;
418 ret->oobpending = FALSE;
419 ret->listener = 0;
420 ret->addr = NULL;
421 ret->connected = 1;
422
423 ret->s = sockfd;
424
425 if (ret->s < 0) {
426 ret->error = strerror(errno);
427 return (Socket) ret;
428 }
429
430 ret->oobinline = 0;
431
432 uxsel_tell(ret);
433 add234(sktree, ret);
434
435 return (Socket) ret;
436 }
437
438 static int try_connect(Actual_Socket sock)
439 {
440 int s;
441 #ifndef NO_IPV6
442 struct sockaddr_in6 a6;
443 #endif
444 struct sockaddr_in a;
445 struct sockaddr_un au;
446 const struct sockaddr *sa;
447 int err = 0;
448 short localport;
449 int fl, salen;
450
451 if (sock->s >= 0)
452 close(sock->s);
453
454 plug_log(sock->plug, 0, sock->addr, sock->port, NULL, 0);
455
456 /*
457 * Open socket.
458 */
459 assert(sock->addr->family != AF_UNSPEC);
460 s = socket(sock->addr->family, SOCK_STREAM, 0);
461 sock->s = s;
462
463 if (s < 0) {
464 err = errno;
465 goto ret;
466 }
467
468 if (sock->oobinline) {
469 int b = TRUE;
470 setsockopt(s, SOL_SOCKET, SO_OOBINLINE, (void *) &b, sizeof(b));
471 }
472
473 if (sock->nodelay) {
474 int b = TRUE;
475 setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void *) &b, sizeof(b));
476 }
477
478 if (sock->keepalive) {
479 int b = TRUE;
480 setsockopt(s, SOL_SOCKET, SO_KEEPALIVE, (void *) &b, sizeof(b));
481 }
482
483 /*
484 * Bind to local address.
485 */
486 if (sock->privport)
487 localport = 1023; /* count from 1023 downwards */
488 else
489 localport = 0; /* just use port 0 (ie kernel picks) */
490
491 /* BSD IP stacks need sockaddr_in zeroed before filling in */
492 memset(&a,'\0',sizeof(struct sockaddr_in));
493 #ifndef NO_IPV6
494 memset(&a6,'\0',sizeof(struct sockaddr_in6));
495 #endif
496
497 /* We don't try to bind to a local address for UNIX domain sockets. (Why
498 * do we bother doing the bind when localport == 0 anyway?) */
499 if(sock->addr->family != AF_UNIX) {
500 /* Loop round trying to bind */
501 while (1) {
502 int retcode;
503
504 #ifndef NO_IPV6
505 if (sock->addr->family == AF_INET6) {
506 /* XXX use getaddrinfo to get a local address? */
507 a6.sin6_family = AF_INET6;
508 a6.sin6_addr = in6addr_any;
509 a6.sin6_port = htons(localport);
510 retcode = bind(s, (struct sockaddr *) &a6, sizeof(a6));
511 } else
512 #endif
513 {
514 assert(sock->addr->family == AF_INET);
515 a.sin_family = AF_INET;
516 a.sin_addr.s_addr = htonl(INADDR_ANY);
517 a.sin_port = htons(localport);
518 retcode = bind(s, (struct sockaddr *) &a, sizeof(a));
519 }
520 if (retcode >= 0) {
521 err = 0;
522 break; /* done */
523 } else {
524 err = errno;
525 if (err != EADDRINUSE) /* failed, for a bad reason */
526 break;
527 }
528
529 if (localport == 0)
530 break; /* we're only looping once */
531 localport--;
532 if (localport == 0)
533 break; /* we might have got to the end */
534 }
535
536 if (err)
537 goto ret;
538 }
539
540 /*
541 * Connect to remote address.
542 */
543 switch(sock->addr->family) {
544 #ifndef NO_IPV6
545 case AF_INET:
546 /* XXX would be better to have got getaddrinfo() to fill in the port. */
547 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
548 htons(sock->port);
549 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
550 salen = sock->addr->ai->ai_addrlen;
551 break;
552 case AF_INET6:
553 ((struct sockaddr_in *)sock->addr->ai->ai_addr)->sin_port =
554 htons(sock->port);
555 sa = (const struct sockaddr *)sock->addr->ai->ai_addr;
556 salen = sock->addr->ai->ai_addrlen;
557 break;
558 #else
559 case AF_INET:
560 a.sin_family = AF_INET;
561 a.sin_addr.s_addr = htonl(sock->addr->addresses[sock->addr->curraddr]);
562 a.sin_port = htons((short) sock->port);
563 sa = (const struct sockaddr *)&a;
564 salen = sizeof a;
565 break;
566 #endif
567 case AF_UNIX:
568 assert(sock->port == 0); /* to catch confused people */
569 assert(strlen(sock->addr->hostname) < sizeof au.sun_path);
570 memset(&au, 0, sizeof au);
571 au.sun_family = AF_UNIX;
572 strcpy(au.sun_path, sock->addr->hostname);
573 sa = (const struct sockaddr *)&au;
574 salen = sizeof au;
575 break;
576
577 default:
578 assert(0 && "unknown address family");
579 }
580
581 fl = fcntl(s, F_GETFL);
582 if (fl != -1)
583 fcntl(s, F_SETFL, fl | O_NONBLOCK);
584
585 if ((connect(s, sa, salen)) < 0) {
586 if ( errno != EINPROGRESS ) {
587 err = errno;
588 goto ret;
589 }
590 } else {
591 /*
592 * If we _don't_ get EWOULDBLOCK, the connect has completed
593 * and we should set the socket as connected and writable.
594 */
595 sock->connected = 1;
596 sock->writable = 1;
597 }
598
599 uxsel_tell(sock);
600 add234(sktree, sock);
601
602 ret:
603 if (err)
604 plug_log(sock->plug, 1, sock->addr, sock->port, strerror(err), err);
605 return err;
606 }
607
608 Socket sk_new(SockAddr addr, int port, int privport, int oobinline,
609 int nodelay, int keepalive, Plug plug)
610 {
611 Actual_Socket ret;
612 int err;
613
614 /*
615 * Create Socket structure.
616 */
617 ret = snew(struct Socket_tag);
618 ret->fn = &tcp_fn_table;
619 ret->error = NULL;
620 ret->plug = plug;
621 bufchain_init(&ret->output_data);
622 ret->connected = 0; /* to start with */
623 ret->writable = 0; /* to start with */
624 ret->sending_oob = 0;
625 ret->frozen = 0;
626 ret->frozen_readable = 0;
627 ret->localhost_only = 0; /* unused, but best init anyway */
628 ret->pending_error = 0;
629 ret->oobpending = FALSE;
630 ret->listener = 0;
631 ret->addr = addr;
632 ret->s = -1;
633 ret->oobinline = oobinline;
634 ret->nodelay = nodelay;
635 ret->keepalive = keepalive;
636 ret->privport = privport;
637 ret->port = port;
638
639 err = 0;
640 do {
641 err = try_connect(ret);
642 } while (err && sk_nextaddr(ret->addr));
643
644 if (err)
645 ret->error = strerror(err);
646
647 return (Socket) ret;
648 }
649
650 Socket sk_newlistener(char *srcaddr, int port, Plug plug, int local_host_only, int address_family)
651 {
652 int s;
653 #ifndef NO_IPV6
654 struct addrinfo hints, *ai;
655 char portstr[6];
656 struct sockaddr_in6 a6;
657 #endif
658 struct sockaddr *addr;
659 int addrlen;
660 struct sockaddr_in a;
661 Actual_Socket ret;
662 int retcode;
663 int on = 1;
664
665 /*
666 * Create Socket structure.
667 */
668 ret = snew(struct Socket_tag);
669 ret->fn = &tcp_fn_table;
670 ret->error = NULL;
671 ret->plug = plug;
672 bufchain_init(&ret->output_data);
673 ret->writable = 0; /* to start with */
674 ret->sending_oob = 0;
675 ret->frozen = 0;
676 ret->frozen_readable = 0;
677 ret->localhost_only = local_host_only;
678 ret->pending_error = 0;
679 ret->oobpending = FALSE;
680 ret->listener = 1;
681 ret->addr = NULL;
682 ret->connected = 0;
683
684 /*
685 * Translate address_family from platform-independent constants
686 * into local reality.
687 */
688 address_family = (address_family == ADDRTYPE_IPV4 ? AF_INET :
689 address_family == ADDRTYPE_IPV6 ? AF_INET6 : AF_UNSPEC);
690
691 #ifndef NO_IPV6
692 /* Let's default to IPv6.
693 * If the stack doesn't support IPv6, we will fall back to IPv4. */
694 if (address_family == AF_UNSPEC) address_family = AF_INET6;
695 #else
696 /* No other choice, default to IPv4 */
697 if (address_family == AF_UNSPEC) address_family = AF_INET;
698 #endif
699
700 /*
701 * Open socket.
702 */
703 s = socket(address_family, SOCK_STREAM, 0);
704
705 /* If the host doesn't support IPv6 try fallback to IPv4. */
706 if (s < 0 && address_family == AF_INET6) {
707 address_family = AF_INET;
708 s = socket(address_family, SOCK_STREAM, 0);
709 }
710
711 if (s < 0) {
712 ret->error = strerror(errno);
713 return (Socket) ret;
714 }
715
716 ret->oobinline = 0;
717
718 setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (const char *)&on, sizeof(on));
719
720 retcode = -1;
721 addr = NULL; addrlen = -1; /* placate optimiser */
722
723 if (srcaddr != NULL) {
724 #ifndef NO_IPV6
725 hints.ai_flags = AI_NUMERICHOST;
726 hints.ai_family = address_family;
727 hints.ai_socktype = SOCK_STREAM;
728 hints.ai_protocol = 0;
729 hints.ai_addrlen = 0;
730 hints.ai_addr = NULL;
731 hints.ai_canonname = NULL;
732 hints.ai_next = NULL;
733 assert(port >= 0 && port <= 99999);
734 sprintf(portstr, "%d", port);
735 retcode = getaddrinfo(srcaddr, portstr, &hints, &ai);
736 if (retcode == 0) {
737 addr = ai->ai_addr;
738 addrlen = ai->ai_addrlen;
739 }
740 #else
741 memset(&a,'\0',sizeof(struct sockaddr_in));
742 a.sin_family = AF_INET;
743 a.sin_port = htons(port);
744 a.sin_addr.s_addr = inet_addr(srcaddr);
745 if (a.sin_addr.s_addr != (in_addr_t)(-1)) {
746 /* Override localhost_only with specified listen addr. */
747 ret->localhost_only = ipv4_is_loopback(a.sin_addr);
748 got_addr = 1;
749 }
750 addr = (struct sockaddr *)a;
751 addrlen = sizeof(a);
752 retcode = 0;
753 #endif
754 }
755
756 if (retcode != 0) {
757 #ifndef NO_IPV6
758 if (address_family == AF_INET6) {
759 memset(&a6,'\0',sizeof(struct sockaddr_in6));
760 a6.sin6_family = AF_INET6;
761 a6.sin6_port = htons(port);
762 if (local_host_only)
763 a6.sin6_addr = in6addr_loopback;
764 else
765 a6.sin6_addr = in6addr_any;
766 addr = (struct sockaddr *)&a6;
767 addrlen = sizeof(a6);
768 } else
769 #endif
770 {
771 memset(&a,'\0',sizeof(struct sockaddr_in));
772 a.sin_family = AF_INET;
773 a.sin_port = htons(port);
774 if (local_host_only)
775 a.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
776 else
777 a.sin_addr.s_addr = htonl(INADDR_ANY);
778 addr = (struct sockaddr *)&a;
779 addrlen = sizeof(a);
780 }
781 }
782
783 retcode = bind(s, addr, addrlen);
784 if (retcode < 0) {
785 close(s);
786 ret->error = strerror(errno);
787 return (Socket) ret;
788 }
789
790 if (listen(s, SOMAXCONN) < 0) {
791 close(s);
792 ret->error = strerror(errno);
793 return (Socket) ret;
794 }
795
796 ret->s = s;
797
798 uxsel_tell(ret);
799 add234(sktree, ret);
800
801 return (Socket) ret;
802 }
803
804 static void sk_tcp_close(Socket sock)
805 {
806 Actual_Socket s = (Actual_Socket) sock;
807
808 uxsel_del(s->s);
809 del234(sktree, s);
810 close(s->s);
811 if (s->addr)
812 sk_addr_free(s->addr);
813 sfree(s);
814 }
815
816 #define PUT_32BIT_MSB_FIRST(cp, value) ( \
817 (cp)[0] = (char)((value) >> 24), \
818 (cp)[1] = (char)((value) >> 16), \
819 (cp)[2] = (char)((value) >> 8), \
820 (cp)[3] = (char)(value) )
821
822 #define PUT_16BIT_MSB_FIRST(cp, value) ( \
823 (cp)[0] = (char)((value) >> 8), \
824 (cp)[1] = (char)(value) )
825
826 void *sk_getxdmdata(void *sock, int *lenp)
827 {
828 Actual_Socket s = (Actual_Socket) sock;
829 #ifdef NO_IPV6
830 struct sockaddr_in addr;
831 #else
832 struct sockaddr_storage addr;
833 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&addr;
834 #endif
835 struct sockaddr *sa = (struct sockaddr *)&addr;
836 struct sockaddr_in *sin = (struct sockaddr_in *)&addr;
837 socklen_t addrlen;
838 char *buf;
839 static unsigned int unix_addr = 0xFFFFFFFF;
840
841 /*
842 * We must check that this socket really _is_ an Actual_Socket.
843 */
844 if (s->fn != &tcp_fn_table)
845 return NULL; /* failure */
846
847 addrlen = sizeof(addr);
848 if (getsockname(s->s, sa, &addrlen) < 0)
849 return NULL;
850 switch(sa->sa_family) {
851 case AF_INET:
852 *lenp = 6;
853 buf = snewn(*lenp, char);
854 PUT_32BIT_MSB_FIRST(buf, ntohl(sin->sin_addr.s_addr));
855 PUT_16BIT_MSB_FIRST(buf+4, ntohs(sin->sin_port));
856 break;
857 #ifndef NO_IPV6
858 case AF_INET6:
859 *lenp = 6;
860 buf = snewn(*lenp, char);
861 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
862 memcpy(buf, sin6->sin6_addr.s6_addr + 12, 4);
863 PUT_16BIT_MSB_FIRST(buf+4, ntohs(sin6->sin6_port));
864 } else
865 /* This is stupid, but it's what XLib does. */
866 memset(buf, 0, 6);
867 break;
868 #endif
869 case AF_UNIX:
870 *lenp = 6;
871 buf = snewn(*lenp, char);
872 PUT_32BIT_MSB_FIRST(buf, unix_addr--);
873 PUT_16BIT_MSB_FIRST(buf+4, getpid());
874 break;
875
876 /* XXX IPV6 */
877
878 default:
879 return NULL;
880 }
881
882 return buf;
883 }
884
885 /*
886 * The function which tries to send on a socket once it's deemed
887 * writable.
888 */
889 void try_send(Actual_Socket s)
890 {
891 while (s->sending_oob || bufchain_size(&s->output_data) > 0) {
892 int nsent;
893 int err;
894 void *data;
895 int len, urgentflag;
896
897 if (s->sending_oob) {
898 urgentflag = MSG_OOB;
899 len = s->sending_oob;
900 data = &s->oobdata;
901 } else {
902 urgentflag = 0;
903 bufchain_prefix(&s->output_data, &data, &len);
904 }
905 nsent = send(s->s, data, len, urgentflag);
906 noise_ultralight(nsent);
907 if (nsent <= 0) {
908 err = (nsent < 0 ? errno : 0);
909 if (err == EWOULDBLOCK) {
910 /*
911 * Perfectly normal: we've sent all we can for the moment.
912 */
913 s->writable = FALSE;
914 return;
915 } else if (nsent == 0 ||
916 err == ECONNABORTED || err == ECONNRESET) {
917 /*
918 * If send() returns CONNABORTED or CONNRESET, we
919 * unfortunately can't just call plug_closing(),
920 * because it's quite likely that we're currently
921 * _in_ a call from the code we'd be calling back
922 * to, so we'd have to make half the SSH code
923 * reentrant. Instead we flag a pending error on
924 * the socket, to be dealt with (by calling
925 * plug_closing()) at some suitable future moment.
926 */
927 s->pending_error = err;
928 return;
929 } else {
930 /* We're inside the Unix frontend here, so we know
931 * that the frontend handle is unnecessary. */
932 logevent(NULL, strerror(err));
933 fatalbox("%s", strerror(err));
934 }
935 } else {
936 if (s->sending_oob) {
937 if (nsent < len) {
938 memmove(s->oobdata, s->oobdata+nsent, len-nsent);
939 s->sending_oob = len - nsent;
940 } else {
941 s->sending_oob = 0;
942 }
943 } else {
944 bufchain_consume(&s->output_data, nsent);
945 }
946 }
947 }
948 uxsel_tell(s);
949 }
950
951 static int sk_tcp_write(Socket sock, const char *buf, int len)
952 {
953 Actual_Socket s = (Actual_Socket) sock;
954
955 /*
956 * Add the data to the buffer list on the socket.
957 */
958 bufchain_add(&s->output_data, buf, len);
959
960 /*
961 * Now try sending from the start of the buffer list.
962 */
963 if (s->writable)
964 try_send(s);
965
966 /*
967 * Update the select() status to correctly reflect whether or
968 * not we should be selecting for write.
969 */
970 uxsel_tell(s);
971
972 return bufchain_size(&s->output_data);
973 }
974
975 static int sk_tcp_write_oob(Socket sock, const char *buf, int len)
976 {
977 Actual_Socket s = (Actual_Socket) sock;
978
979 /*
980 * Replace the buffer list on the socket with the data.
981 */
982 bufchain_clear(&s->output_data);
983 assert(len <= sizeof(s->oobdata));
984 memcpy(s->oobdata, buf, len);
985 s->sending_oob = len;
986
987 /*
988 * Now try sending from the start of the buffer list.
989 */
990 if (s->writable)
991 try_send(s);
992
993 /*
994 * Update the select() status to correctly reflect whether or
995 * not we should be selecting for write.
996 */
997 uxsel_tell(s);
998
999 return s->sending_oob;
1000 }
1001
1002 static int net_select_result(int fd, int event)
1003 {
1004 int ret;
1005 char buf[20480]; /* nice big buffer for plenty of speed */
1006 Actual_Socket s;
1007 u_long atmark;
1008
1009 /* Find the Socket structure */
1010 s = find234(sktree, &fd, cmpforsearch);
1011 if (!s)
1012 return 1; /* boggle */
1013
1014 noise_ultralight(event);
1015
1016 switch (event) {
1017 case 4: /* exceptional */
1018 if (!s->oobinline) {
1019 /*
1020 * On a non-oobinline socket, this indicates that we
1021 * can immediately perform an OOB read and get back OOB
1022 * data, which we will send to the back end with
1023 * type==2 (urgent data).
1024 */
1025 ret = recv(s->s, buf, sizeof(buf), MSG_OOB);
1026 noise_ultralight(ret);
1027 if (ret <= 0) {
1028 const char *str = (ret == 0 ? "Internal networking trouble" :
1029 strerror(errno));
1030 /* We're inside the Unix frontend here, so we know
1031 * that the frontend handle is unnecessary. */
1032 logevent(NULL, str);
1033 fatalbox("%s", str);
1034 } else {
1035 /*
1036 * Receiving actual data on a socket means we can
1037 * stop falling back through the candidate
1038 * addresses to connect to.
1039 */
1040 if (s->addr) {
1041 sk_addr_free(s->addr);
1042 s->addr = NULL;
1043 }
1044 return plug_receive(s->plug, 2, buf, ret);
1045 }
1046 break;
1047 }
1048
1049 /*
1050 * If we reach here, this is an oobinline socket, which
1051 * means we should set s->oobpending and then deal with it
1052 * when we get called for the readability event (which
1053 * should also occur).
1054 */
1055 s->oobpending = TRUE;
1056 break;
1057 case 1: /* readable; also acceptance */
1058 if (s->listener) {
1059 /*
1060 * On a listening socket, the readability event means a
1061 * connection is ready to be accepted.
1062 */
1063 #ifdef NO_IPV6
1064 struct sockaddr_in ss;
1065 #else
1066 struct sockaddr_storage ss;
1067 #endif
1068 socklen_t addrlen = sizeof(ss);
1069 int t; /* socket of connection */
1070
1071 memset(&ss, 0, addrlen);
1072 t = accept(s->s, (struct sockaddr *)&ss, &addrlen);
1073 if (t < 0) {
1074 break;
1075 }
1076
1077 if (s->localhost_only &&
1078 !sockaddr_is_loopback((struct sockaddr *)&ss)) {
1079 close(t); /* someone let nonlocal through?! */
1080 } else if (plug_accepting(s->plug, t)) {
1081 close(t); /* denied or error */
1082 }
1083 break;
1084 }
1085
1086 /*
1087 * If we reach here, this is not a listening socket, so
1088 * readability really means readability.
1089 */
1090
1091 /* In the case the socket is still frozen, we don't even bother */
1092 if (s->frozen) {
1093 s->frozen_readable = 1;
1094 break;
1095 }
1096
1097 /*
1098 * We have received data on the socket. For an oobinline
1099 * socket, this might be data _before_ an urgent pointer,
1100 * in which case we send it to the back end with type==1
1101 * (data prior to urgent).
1102 */
1103 if (s->oobinline && s->oobpending) {
1104 atmark = 1;
1105 if (ioctl(s->s, SIOCATMARK, &atmark) == 0 && atmark)
1106 s->oobpending = FALSE; /* clear this indicator */
1107 } else
1108 atmark = 1;
1109
1110 ret = recv(s->s, buf, s->oobpending ? 1 : sizeof(buf), 0);
1111 noise_ultralight(ret);
1112 if (ret < 0) {
1113 if (errno == EWOULDBLOCK) {
1114 break;
1115 }
1116 }
1117 if (ret < 0) {
1118 /*
1119 * An error at this point _might_ be an error reported
1120 * by a non-blocking connect(). So before we return a
1121 * panic status to the user, let's just see whether
1122 * that's the case.
1123 */
1124 int err = errno;
1125 if (s->addr) {
1126 plug_log(s->plug, 1, s->addr, s->port, strerror(err), err);
1127 while (s->addr && sk_nextaddr(s->addr)) {
1128 err = try_connect(s);
1129 }
1130 }
1131 if (err != 0)
1132 return plug_closing(s->plug, strerror(err), err, 0);
1133 } else if (0 == ret) {
1134 return plug_closing(s->plug, NULL, 0, 0);
1135 } else {
1136 /*
1137 * Receiving actual data on a socket means we can
1138 * stop falling back through the candidate
1139 * addresses to connect to.
1140 */
1141 if (s->addr) {
1142 sk_addr_free(s->addr);
1143 s->addr = NULL;
1144 }
1145 return plug_receive(s->plug, atmark ? 0 : 1, buf, ret);
1146 }
1147 break;
1148 case 2: /* writable */
1149 if (!s->connected) {
1150 /*
1151 * select() reports a socket as _writable_ when an
1152 * asynchronous connection is completed.
1153 */
1154 s->connected = s->writable = 1;
1155 uxsel_tell(s);
1156 break;
1157 } else {
1158 int bufsize_before, bufsize_after;
1159 s->writable = 1;
1160 bufsize_before = s->sending_oob + bufchain_size(&s->output_data);
1161 try_send(s);
1162 bufsize_after = s->sending_oob + bufchain_size(&s->output_data);
1163 if (bufsize_after < bufsize_before)
1164 plug_sent(s->plug, bufsize_after);
1165 }
1166 break;
1167 }
1168
1169 return 1;
1170 }
1171
1172 /*
1173 * Deal with socket errors detected in try_send().
1174 */
1175 void net_pending_errors(void)
1176 {
1177 int i;
1178 Actual_Socket s;
1179
1180 /*
1181 * This might be a fiddly business, because it's just possible
1182 * that handling a pending error on one socket might cause
1183 * others to be closed. (I can't think of any reason this might
1184 * happen in current SSH implementation, but to maintain
1185 * generality of this network layer I'll assume the worst.)
1186 *
1187 * So what we'll do is search the socket list for _one_ socket
1188 * with a pending error, and then handle it, and then search
1189 * the list again _from the beginning_. Repeat until we make a
1190 * pass with no socket errors present. That way we are
1191 * protected against the socket list changing under our feet.
1192 */
1193
1194 do {
1195 for (i = 0; (s = index234(sktree, i)) != NULL; i++) {
1196 if (s->pending_error) {
1197 /*
1198 * An error has occurred on this socket. Pass it to the
1199 * plug.
1200 */
1201 plug_closing(s->plug, strerror(s->pending_error),
1202 s->pending_error, 0);
1203 break;
1204 }
1205 }
1206 } while (s);
1207 }
1208
1209 /*
1210 * Each socket abstraction contains a `void *' private field in
1211 * which the client can keep state.
1212 */
1213 static void sk_tcp_set_private_ptr(Socket sock, void *ptr)
1214 {
1215 Actual_Socket s = (Actual_Socket) sock;
1216 s->private_ptr = ptr;
1217 }
1218
1219 static void *sk_tcp_get_private_ptr(Socket sock)
1220 {
1221 Actual_Socket s = (Actual_Socket) sock;
1222 return s->private_ptr;
1223 }
1224
1225 /*
1226 * Special error values are returned from sk_namelookup and sk_new
1227 * if there's a problem. These functions extract an error message,
1228 * or return NULL if there's no problem.
1229 */
1230 const char *sk_addr_error(SockAddr addr)
1231 {
1232 return addr->error;
1233 }
1234 static const char *sk_tcp_socket_error(Socket sock)
1235 {
1236 Actual_Socket s = (Actual_Socket) sock;
1237 return s->error;
1238 }
1239
1240 static void sk_tcp_set_frozen(Socket sock, int is_frozen)
1241 {
1242 Actual_Socket s = (Actual_Socket) sock;
1243 if (s->frozen == is_frozen)
1244 return;
1245 s->frozen = is_frozen;
1246 if (!is_frozen && s->frozen_readable) {
1247 char c;
1248 recv(s->s, &c, 1, MSG_PEEK);
1249 }
1250 s->frozen_readable = 0;
1251 uxsel_tell(s);
1252 }
1253
1254 static void uxsel_tell(Actual_Socket s)
1255 {
1256 int rwx = 0;
1257 if (!s->connected)
1258 rwx |= 2; /* write == connect */
1259 if (s->connected && !s->frozen)
1260 rwx |= 1 | 4; /* read, except */
1261 if (bufchain_size(&s->output_data))
1262 rwx |= 2; /* write */
1263 if (s->listener)
1264 rwx |= 1; /* read == accept */
1265 uxsel_set(s->s, rwx, net_select_result);
1266 }
1267
1268 int net_service_lookup(char *service)
1269 {
1270 struct servent *se;
1271 se = getservbyname(service, NULL);
1272 if (se != NULL)
1273 return ntohs(se->s_port);
1274 else
1275 return 0;
1276 }
1277
1278 SockAddr platform_get_x11_unix_address(int displaynum, char **canonicalname)
1279 {
1280 SockAddr ret = snew(struct SockAddr_tag);
1281 int n;
1282
1283 memset(ret, 0, sizeof *ret);
1284 ret->family = AF_UNIX;
1285 n = snprintf(ret->hostname, sizeof ret->hostname,
1286 "%s%d", X11_UNIX_PATH, displaynum);
1287 if(n < 0)
1288 ret->error = "snprintf failed";
1289 else if(n >= sizeof ret->hostname)
1290 ret->error = "X11 UNIX name too long";
1291 else
1292 *canonicalname = dupstr(ret->hostname);
1293 #ifndef NO_IPV6
1294 ret->ais = NULL;
1295 #else
1296 ret->addresses = NULL;
1297 #endif
1298 return ret;
1299 }