The remaining issue in `win-askappend-multi' appears to have been
[u/mdw/putty] / windows / winhandl.c
1 /*
2 * winhandl.c: Module to give Windows front ends the general
3 * ability to deal with consoles, pipes, serial ports, or any other
4 * type of data stream accessed through a Windows API HANDLE rather
5 * than a WinSock SOCKET.
6 *
7 * We do this by spawning a subthread to continuously try to read
8 * from the handle. Every time a read successfully returns some
9 * data, the subthread sets an event object which is picked up by
10 * the main thread, and the main thread then sets an event in
11 * return to instruct the subthread to resume reading.
12 *
13 * Output works precisely the other way round, in a second
14 * subthread. The output subthread should not be attempting to
15 * write all the time, because it hasn't always got data _to_
16 * write; so the output thread waits for an event object notifying
17 * it to _attempt_ a write, and then it sets an event in return
18 * when one completes.
19 *
20 * (It's terribly annoying having to spawn a subthread for each
21 * direction of each handle. Technically it isn't necessary for
22 * serial ports, since we could use overlapped I/O within the main
23 * thread and wait directly on the event objects in the OVERLAPPED
24 * structures. However, we can't use this trick for some types of
25 * file handle at all - for some reason Windows restricts use of
26 * OVERLAPPED to files which were opened with the overlapped flag -
27 * and so we must use threads for those. This being the case, it's
28 * simplest just to use threads for everything rather than trying
29 * to keep track of multiple completely separate mechanisms.)
30 */
31
32 #include <assert.h>
33
34 #include "putty.h"
35
36 /* ----------------------------------------------------------------------
37 * Generic definitions.
38 */
39
40 /*
41 * Maximum amount of backlog we will allow to build up on an input
42 * handle before we stop reading from it.
43 */
44 #define MAX_BACKLOG 32768
45
46 struct handle_generic {
47 /*
48 * Initial fields common to both handle_input and handle_output
49 * structures.
50 *
51 * The three HANDLEs are set up at initialisation time and are
52 * thereafter read-only to both main thread and subthread.
53 * `moribund' is only used by the main thread; `done' is
54 * written by the main thread before signalling to the
55 * subthread. `defunct' and `busy' are used only by the main
56 * thread.
57 */
58 HANDLE h; /* the handle itself */
59 HANDLE ev_to_main; /* event used to signal main thread */
60 HANDLE ev_from_main; /* event used to signal back to us */
61 int moribund; /* are we going to kill this soon? */
62 int done; /* request subthread to terminate */
63 int defunct; /* has the subthread already gone? */
64 int busy; /* operation currently in progress? */
65 void *privdata; /* for client to remember who they are */
66 };
67
68 /* ----------------------------------------------------------------------
69 * Input threads.
70 */
71
72 /*
73 * Data required by an input thread.
74 */
75 struct handle_input {
76 /*
77 * Copy of the handle_generic structure.
78 */
79 HANDLE h; /* the handle itself */
80 HANDLE ev_to_main; /* event used to signal main thread */
81 HANDLE ev_from_main; /* event used to signal back to us */
82 int moribund; /* are we going to kill this soon? */
83 int done; /* request subthread to terminate */
84 int defunct; /* has the subthread already gone? */
85 int busy; /* operation currently in progress? */
86 void *privdata; /* for client to remember who they are */
87
88 /*
89 * Data set at initialisation and then read-only.
90 */
91 int flags;
92
93 /*
94 * Data set by the input thread before signalling ev_to_main,
95 * and read by the main thread after receiving that signal.
96 */
97 char buffer[4096]; /* the data read from the handle */
98 DWORD len; /* how much data that was */
99 int readret; /* lets us know about read errors */
100
101 /*
102 * Callback function called by this module when data arrives on
103 * an input handle.
104 */
105 handle_inputfn_t gotdata;
106 };
107
108 /*
109 * The actual thread procedure for an input thread.
110 */
111 static DWORD WINAPI handle_input_threadfunc(void *param)
112 {
113 struct handle_input *ctx = (struct handle_input *) param;
114 OVERLAPPED ovl, *povl;
115 HANDLE oev;
116 int readlen;
117
118 if (ctx->flags & HANDLE_FLAG_OVERLAPPED) {
119 povl = &ovl;
120 oev = CreateEvent(NULL, TRUE, FALSE, NULL);
121 } else {
122 povl = NULL;
123 }
124
125 if (ctx->flags & HANDLE_FLAG_UNITBUFFER)
126 readlen = 1;
127 else
128 readlen = sizeof(ctx->buffer);
129
130 while (1) {
131 if (povl) {
132 memset(povl, 0, sizeof(OVERLAPPED));
133 povl->hEvent = oev;
134 }
135 ctx->readret = ReadFile(ctx->h, ctx->buffer, readlen,
136 &ctx->len, povl);
137 if (povl && !ctx->readret && GetLastError() == ERROR_IO_PENDING) {
138 WaitForSingleObject(povl->hEvent, INFINITE);
139 ctx->readret = GetOverlappedResult(ctx->h, povl, &ctx->len, FALSE);
140 }
141
142 if (!ctx->readret)
143 ctx->len = 0;
144
145 if (ctx->readret && ctx->len == 0 &&
146 (ctx->flags & HANDLE_FLAG_IGNOREEOF))
147 continue;
148
149 SetEvent(ctx->ev_to_main);
150
151 if (!ctx->len)
152 break;
153
154 WaitForSingleObject(ctx->ev_from_main, INFINITE);
155 if (ctx->done)
156 break; /* main thread told us to shut down */
157 }
158
159 if (povl)
160 CloseHandle(oev);
161
162 return 0;
163 }
164
165 /*
166 * This is called after a succcessful read, or from the
167 * `unthrottle' function. It decides whether or not to begin a new
168 * read operation.
169 */
170 static void handle_throttle(struct handle_input *ctx, int backlog)
171 {
172 if (ctx->defunct)
173 return;
174
175 /*
176 * If there's a read operation already in progress, do nothing:
177 * when that completes, we'll come back here and be in a
178 * position to make a better decision.
179 */
180 if (ctx->busy)
181 return;
182
183 /*
184 * Otherwise, we must decide whether to start a new read based
185 * on the size of the backlog.
186 */
187 if (backlog < MAX_BACKLOG) {
188 SetEvent(ctx->ev_from_main);
189 ctx->busy = TRUE;
190 }
191 }
192
193 /* ----------------------------------------------------------------------
194 * Output threads.
195 */
196
197 /*
198 * Data required by an output thread.
199 */
200 struct handle_output {
201 /*
202 * Copy of the handle_generic structure.
203 */
204 HANDLE h; /* the handle itself */
205 HANDLE ev_to_main; /* event used to signal main thread */
206 HANDLE ev_from_main; /* event used to signal back to us */
207 int moribund; /* are we going to kill this soon? */
208 int done; /* request subthread to terminate */
209 int defunct; /* has the subthread already gone? */
210 int busy; /* operation currently in progress? */
211 void *privdata; /* for client to remember who they are */
212
213 /*
214 * Data set at initialisation and then read-only.
215 */
216 int flags;
217
218 /*
219 * Data set by the main thread before signalling ev_from_main,
220 * and read by the input thread after receiving that signal.
221 */
222 char *buffer; /* the data to write */
223 DWORD len; /* how much data there is */
224
225 /*
226 * Data set by the input thread before signalling ev_to_main,
227 * and read by the main thread after receiving that signal.
228 */
229 DWORD lenwritten; /* how much data we actually wrote */
230 int writeret; /* return value from WriteFile */
231
232 /*
233 * Data only ever read or written by the main thread.
234 */
235 bufchain queued_data; /* data still waiting to be written */
236
237 /*
238 * Callback function called when the backlog in the bufchain
239 * drops.
240 */
241 handle_outputfn_t sentdata;
242 };
243
244 static DWORD WINAPI handle_output_threadfunc(void *param)
245 {
246 struct handle_output *ctx = (struct handle_output *) param;
247 OVERLAPPED ovl, *povl;
248
249 if (ctx->flags & HANDLE_FLAG_OVERLAPPED)
250 povl = &ovl;
251 else
252 povl = NULL;
253
254 while (1) {
255 WaitForSingleObject(ctx->ev_from_main, INFINITE);
256 if (ctx->done) {
257 SetEvent(ctx->ev_to_main);
258 break;
259 }
260 if (povl)
261 memset(povl, 0, sizeof(OVERLAPPED));
262 ctx->writeret = WriteFile(ctx->h, ctx->buffer, ctx->len,
263 &ctx->lenwritten, povl);
264 if (povl && !ctx->writeret && GetLastError() == ERROR_IO_PENDING)
265 ctx->writeret = GetOverlappedResult(ctx->h, povl,
266 &ctx->lenwritten, TRUE);
267
268 SetEvent(ctx->ev_to_main);
269 if (!ctx->writeret)
270 break;
271 }
272
273 return 0;
274 }
275
276 static void handle_try_output(struct handle_output *ctx)
277 {
278 void *senddata;
279 int sendlen;
280
281 if (!ctx->busy && bufchain_size(&ctx->queued_data)) {
282 bufchain_prefix(&ctx->queued_data, &senddata, &sendlen);
283 ctx->buffer = senddata;
284 ctx->len = sendlen;
285 SetEvent(ctx->ev_from_main);
286 ctx->busy = TRUE;
287 }
288 }
289
290 /* ----------------------------------------------------------------------
291 * Unified code handling both input and output threads.
292 */
293
294 struct handle {
295 int output;
296 union {
297 struct handle_generic g;
298 struct handle_input i;
299 struct handle_output o;
300 } u;
301 };
302
303 static tree234 *handles_by_evtomain;
304
305 static int handle_cmp_evtomain(void *av, void *bv)
306 {
307 struct handle *a = (struct handle *)av;
308 struct handle *b = (struct handle *)bv;
309
310 if ((unsigned)a->u.g.ev_to_main < (unsigned)b->u.g.ev_to_main)
311 return -1;
312 else if ((unsigned)a->u.g.ev_to_main > (unsigned)b->u.g.ev_to_main)
313 return +1;
314 else
315 return 0;
316 }
317
318 static int handle_find_evtomain(void *av, void *bv)
319 {
320 HANDLE *a = (HANDLE *)av;
321 struct handle *b = (struct handle *)bv;
322
323 if ((unsigned)*a < (unsigned)b->u.g.ev_to_main)
324 return -1;
325 else if ((unsigned)*a > (unsigned)b->u.g.ev_to_main)
326 return +1;
327 else
328 return 0;
329 }
330
331 struct handle *handle_input_new(HANDLE handle, handle_inputfn_t gotdata,
332 void *privdata, int flags)
333 {
334 struct handle *h = snew(struct handle);
335
336 h->output = FALSE;
337 h->u.i.h = handle;
338 h->u.i.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
339 h->u.i.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
340 h->u.i.gotdata = gotdata;
341 h->u.i.defunct = FALSE;
342 h->u.i.moribund = FALSE;
343 h->u.i.done = FALSE;
344 h->u.i.privdata = privdata;
345 h->u.i.flags = flags;
346
347 if (!handles_by_evtomain)
348 handles_by_evtomain = newtree234(handle_cmp_evtomain);
349 add234(handles_by_evtomain, h);
350
351 CreateThread(NULL, 0, handle_input_threadfunc,
352 &h->u.i, 0, NULL);
353 h->u.i.busy = TRUE;
354
355 return h;
356 }
357
358 struct handle *handle_output_new(HANDLE handle, handle_outputfn_t sentdata,
359 void *privdata, int flags)
360 {
361 struct handle *h = snew(struct handle);
362
363 h->output = TRUE;
364 h->u.o.h = handle;
365 h->u.o.ev_to_main = CreateEvent(NULL, FALSE, FALSE, NULL);
366 h->u.o.ev_from_main = CreateEvent(NULL, FALSE, FALSE, NULL);
367 h->u.o.busy = FALSE;
368 h->u.o.defunct = FALSE;
369 h->u.o.moribund = FALSE;
370 h->u.o.done = FALSE;
371 h->u.o.privdata = privdata;
372 bufchain_init(&h->u.o.queued_data);
373 h->u.o.sentdata = sentdata;
374 h->u.o.flags = flags;
375
376 if (!handles_by_evtomain)
377 handles_by_evtomain = newtree234(handle_cmp_evtomain);
378 add234(handles_by_evtomain, h);
379
380 CreateThread(NULL, 0, handle_output_threadfunc,
381 &h->u.i, 0, NULL);
382
383 return h;
384 }
385
386 int handle_write(struct handle *h, const void *data, int len)
387 {
388 assert(h->output);
389 bufchain_add(&h->u.o.queued_data, data, len);
390 handle_try_output(&h->u.o);
391 return bufchain_size(&h->u.o.queued_data);
392 }
393
394 HANDLE *handle_get_events(int *nevents)
395 {
396 HANDLE *ret;
397 struct handle *h;
398 int i, n, size;
399
400 /*
401 * Go through our tree counting the handle objects currently
402 * engaged in useful activity.
403 */
404 ret = NULL;
405 n = size = 0;
406 if (handles_by_evtomain) {
407 for (i = 0; (h = index234(handles_by_evtomain, i)) != NULL; i++) {
408 if (h->u.g.busy) {
409 if (n >= size) {
410 size += 32;
411 ret = sresize(ret, size, HANDLE);
412 }
413 ret[n++] = h->u.g.ev_to_main;
414 }
415 }
416 }
417
418 *nevents = n;
419 return ret;
420 }
421
422 static void handle_destroy(struct handle *h)
423 {
424 if (h->output)
425 bufchain_clear(&h->u.o.queued_data);
426 CloseHandle(h->u.g.ev_from_main);
427 CloseHandle(h->u.g.ev_to_main);
428 del234(handles_by_evtomain, h);
429 sfree(h);
430 }
431
432 void handle_free(struct handle *h)
433 {
434 /*
435 * If the handle is currently busy, we cannot immediately free
436 * it. Instead we must wait until it's finished its current
437 * operation, because otherwise the subthread will write to
438 * invalid memory after we free its context from under it.
439 */
440 assert(h && !h->u.g.moribund);
441 if (h->u.g.busy) {
442 /*
443 * Just set the moribund flag, which will be noticed next
444 * time an operation completes.
445 */
446 h->u.g.moribund = TRUE;
447 } else if (h->u.g.defunct) {
448 /*
449 * There isn't even a subthread; we can go straight to
450 * handle_destroy.
451 */
452 handle_destroy(h);
453 } else {
454 /*
455 * The subthread is alive but not busy, so we now signal it
456 * to die. Set the moribund flag to indicate that it will
457 * want destroying after that.
458 */
459 h->u.g.moribund = TRUE;
460 h->u.g.done = TRUE;
461 h->u.g.busy = TRUE;
462 SetEvent(h->u.g.ev_from_main);
463 }
464 }
465
466 void handle_got_event(HANDLE event)
467 {
468 struct handle *h;
469
470 assert(handles_by_evtomain);
471 h = find234(handles_by_evtomain, &event, handle_find_evtomain);
472 if (!h) {
473 /*
474 * This isn't an error condition. If two or more event
475 * objects were signalled during the same select operation,
476 * and processing of the first caused the second handle to
477 * be closed, then it will sometimes happen that we receive
478 * an event notification here for a handle which is already
479 * deceased. In that situation we simply do nothing.
480 */
481 return;
482 }
483
484 if (h->u.g.moribund) {
485 /*
486 * A moribund handle is already treated as dead from the
487 * external user's point of view, so do nothing with the
488 * actual event. Just signal the thread to die if
489 * necessary, or destroy the handle if not.
490 */
491 if (h->u.g.done) {
492 handle_destroy(h);
493 } else {
494 h->u.g.done = TRUE;
495 h->u.g.busy = TRUE;
496 SetEvent(h->u.g.ev_from_main);
497 }
498 return;
499 }
500
501 if (!h->output) {
502 int backlog;
503
504 h->u.i.busy = FALSE;
505
506 /*
507 * A signal on an input handle means data has arrived.
508 */
509 if (h->u.i.len == 0) {
510 /*
511 * EOF, or (nearly equivalently) read error.
512 */
513 h->u.i.gotdata(h, NULL, (h->u.i.readret ? 0 : -1));
514 h->u.i.defunct = TRUE;
515 } else {
516 backlog = h->u.i.gotdata(h, h->u.i.buffer, h->u.i.len);
517 handle_throttle(&h->u.i, backlog);
518 }
519 } else {
520 h->u.o.busy = FALSE;
521
522 /*
523 * A signal on an output handle means we have completed a
524 * write. Call the callback to indicate that the output
525 * buffer size has decreased, or to indicate an error.
526 */
527 if (!h->u.o.writeret) {
528 /*
529 * Write error. Send a negative value to the callback,
530 * and mark the thread as defunct (because the output
531 * thread is terminating by now).
532 */
533 h->u.o.sentdata(h, -1);
534 h->u.o.defunct = TRUE;
535 } else {
536 bufchain_consume(&h->u.o.queued_data, h->u.o.lenwritten);
537 h->u.o.sentdata(h, bufchain_size(&h->u.o.queued_data));
538 handle_try_output(&h->u.o);
539 }
540 }
541 }
542
543 void handle_unthrottle(struct handle *h, int backlog)
544 {
545 assert(!h->output);
546 handle_throttle(&h->u.i, backlog);
547 }
548
549 int handle_backlog(struct handle *h)
550 {
551 assert(h->output);
552 return bufchain_size(&h->u.o.queued_data);
553 }
554
555 void *handle_get_privdata(struct handle *h)
556 {
557 return h->u.g.privdata;
558 }